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Abstract—In many real-world applications data arrive contin-
uously, in the form of streams. Such data can be used for the
acquisition of knowledge by machine learning methods. In data
streams learning, novelty detection is a relevant topic, which aims
to identify the emergence of a new concept or a drift in the known
concept in real time. Most approaches in the literature that focus
on the novelty detection problem, make assumptions that limit
the method usefulness. For instance, some methods are designed
lying on the supposition that labeled data will be available at some
time in the stream, while others restrict the proposed algorithm
to one-class problems. Some recent approaches aim to overcome
the limitations mentioned, considering multiclass problems and
unlabeled data streams. In addition, there are also proposals
that explore concepts of fuzzy set theory to add more flexibility
to the learning process, although restricted to labeled streams.
In this paper, we propose a method for novelty detection in data
streams called Possibilistic Fuzzy multiclass Novelty Detector
for data streams (PFuzzND). Our methods generates models
based on a proposed summarization structures named SPFMiC
(Supervised Possibilistic Fuzzy Micro-Cluster), which provides
flexible class boundaries, allowing the identification of different
types of novel information, i.e, novel classes, extension of classes
or outliers more efficiently. Experiments show that our approach
is promising in dealing with the changes in data streams and
presents improvements in comparison to the non-fuzzy version.

I. INTRODUCTION

In data stream learning, a large amount of continuously
generated data is used as source for the automatic acquisition
of useful knowledge by machine learning methods. Further-
more, in real-world scenarios a Data Stream (DS) can be
infinite in size and can change its statistical distribution over
time [1]. Hence, classical machine learning methods require
the development of mechanisms to be able to deal with DSs
particularities.

Among the possible tasks under data streams, Novelty
Detection (ND) is the primary focus of this paper. It can be
seen as a classification task, which aims to identify new or
unknown circumstances not seen before. It is an important
subject of study, especially in DSs, where new concepts can
appear, disappear or evolve over time. Therefore, ND in DSs
makes it possible to distinguish the novel concepts from noise
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data, where novel concepts may be characterized as new
concepts or changes in known concepts [1].

In the DS scenario, ND has received increasing attention
from the scientific world [2]. Different works approach ND
in DSs as a one-class classification task, in which the known
concept is represented only by the normal class. Hence, the
examples not explained by the model are then classified
as unknown or novelty [3], [4]. However, this taks can be
viewed as more general [5], i.e, in ND problems, it is more
likely that the known concept may be composed by different
classes. Furthermore, novel classes may appear in the course
of time, which results in a phenomenon known as concept
evolution [1]. Morcover, the distribution of known classes can
change, resulting in a phenomenon known as concept drift.
Thus, the decision model must evolve to represent the novel
classes and the changes in the known classes. Following this
idea, some works have recently been proposed [4]-[8]. The
present work contributes with algorithms for detecting novelty
in a multiclass classification task, which is regarded as a
challenging task, but also a more realistic scenario for many
real applications.

In order to obtain more flexible learning models considering
the changes of the data, researchers have recently developed
methods using concepts of the fuzzy set theory [9]. Resonating
with the search for more flexible learning, we propose a
method called Possibilistic Fuzzy multiclass Novelty Detector
for data streams (PFuzzND), which is an extension of our
previos method named Fuzzy multiclass Novelty Detector for
data streams (FuzzND) [10]. Our proposals adopts a summa-
rization structure named Supervised Possibilistic Fuzzy Micro-
Clusters (SPEMIC). In addition, we used a fuzzy clustering
similarity measure 'R [11] to compare novel detected patterns
with the ones already included in the current model. Based
on the comparison results, the algorithm decides whether the
patterns represent a novel class or is related to a pattern already
detected. The experiments demonstrated that the proposed
methods can deal better with the changes in the DS, reacting
more precisely to them, and presents more stable results over



the data stream in relation to similar methods in the literature.

The paper is organized as follows: Section II discusses
related works that concern ND problem and fuzzy approaches
to data stream. In Section III we describe the proposed method,
PFuzzND. In Section IV we discuss the experiments settings
to evaluate our proposals. Evaluation results and conclusions
are provided respectively in Section V and Section VI.

II. RELATED WORK

Concerning ND in DS learning, it is usually assumed that
a labeled set is initially available and the unlabeled data
arrive continuously in the form of streams. In addition, ND
algorithms should consider that data may change over time,
so the learning of a generic model from DS can be quite
challenging.

In DS learning, ND approaches usually are divided into two
steps [2], called Framework Offline-Online. During the first
step (offline), it is assumed the availability of a labeled set
which correspond to the normal concept. A normal concept
can be seen as a normal situation, i.e, non-fraudulent credit
card transactions. The labeled set is then used to generate the
initial model, which is able to recognize the normal concept
and will be used for the ND task. In the second step (online),
the unlabeled data arriving from the stream, are classified
incrementally as normal or unknown, in order to update the
initial model and detect novel concepts. One of the advantages
of this method is the instantaneous results generation, due to
the model adaption that occurs incrementally. Also, the ND
procedure may be executed independently from the classifica-
tion procedure.

There are mainly two approaches for ND in DS [2]: one-
class and multiclass. In the one-class approach an initial model
is generated based on examples from one class, usually a
class that represents the normal concept. In the online phase,
different methods consider clusters of examples not explained
by the current model (also named as unknown examples) to
build a Novelty Pattern (NP) [3], [5], which is defined as a
pattern identified from cohesive groups of similar examples
marked with the unknown profile by the classification model
[5]. A NP can indicate a change in the known concepts, named
concept drift, or the appearing of a new one, named concept
evolution [1].

In contrast, in the multiclass approach, it is assumed that the
normal concept can be composed by a set of different classes
[4]-[8], which can be viewed as a more likely approach,
concerning DSs. However, most works limit the emergence
of NP in one at a time, i.e., examples from different classes
cannot appear interchangeably. In addition, some of these
works update the decision model assuming that the true label
for all instances will be available at a particular timestamp
(time of arrival of the examples), characterizing an unrealistic
assumption regarding DSs scenarios.

Recent works are being developed in order to handle
this disadvantages [5], [8]. The AnyNovel [8] algorithm is
mainly composed of two components: the Cohesion Validation
Component (CVC) and OBSERVER. The CVC component
aggregates dependent examples, representing the same con-
cept, and those that can not be explained are stored in a
temporary buffer. The OBSERVER monitors the evolution of
the DS by analyzing the examples, which can be from different
novel classes aggregated in the temporary buffer. Although
this method can detect emergence of multiples novel classes
it requires the true label for uncertain examples.

The MINAS algorithm, [5], which is the base for the pro-
posal we present in this paper, applies unsupervised learning
approaches in order to identify concept evolution in a multi-
class scenario, thus not requiring the true label of examples to
update the model. MINAS classifies new incoming instances
as the known classes, known NPs or unknown. Unknown
examples are the ones located outside the decision boundaries
of all micro-clusters that composes the decision model of
the method. The declared unknown examples are stored in
a short-term memory. When the short-term memory reaches
a certain amount of examples, they are clustered in order to
discover cohesive groups, that may represent a NP, extension
of a known class or extension of a known NP. This method
considers the appearance of multiples NPs. Although efficient
in detecting NPs, MINAS is very sensitive to noisy data and
data scale, what causes a decrease in its accuracy.

A. Fuzzy Set Theory in Data Stream

The growth of DSs mining propels the search for methods
to create more dynamic and flexible models, that can better
deal with changes in data. DSs mining models that use fuzzy
set theory have recently been proposed towards solving this
issue, with promising results [12]-[14].

The ND task, in particular, have also been addressed by
using concepts of fuzzy set theory. The data stream classifier
eClass [15] is based on an evolving Fuzzy Rule-Based (FRB)
classifier system of Takagi—Sugeno (eTS) type. This approach
is divided in two phases, the prediction and evolution phases.
During the first phase, the class label of an example is
predicted; in the second phase, however, the true class label
is required and used as supervisory information to update the
classifier. Although this method can adapt to the emergence of
novel classes, it is based on an unrealistic assumption, since
labeling all the DS is time consuming. Also, this type of
information may arrive late and not be useful to the current
state of the DS.

I our previous work we proposed the FuzzND (Fuzzy
multiclass Novelty Detector for data streams) [10], which is a
fuzzy generalization for the offline-online framework presented
in MINAS [5]. In the offline step a decision model is learned
from a labeled set of examples using the Fuzzy C-Means



(FCM) [16] clustering algorithm. Later, during the online
step, new unlabeled examples that come from the data stream
are classified, incrementally, in one of the known classes of
the model or as unknown by taking into consideration the
membership values. Intermittently, the unknown examples are
clustered in order to look for cohesive groups which are
incorporated in the decision model as novel patterns. This
method, however, can not handle situations where only one
class appear for a time period, and the use of memberships is
not ideal to detect outliers [17].

Although showing promising results, the fuzzy algorithms
mentioned before still presents challenges to be addressed.
In light of this problems we propose the method named
PFuzzND, which will be presented in the next section.

III. POSSIBILISTIC FUZZY MULTICLASS NOVELTY
DETECTOR

The proposed method called PFuzzND is based on the well-
known clustering method Possibilistic Fuzzy C-Means (PFCM)
[18], which uses the FCM memberships and PCM typicalities
in order to create models less sensitive to initialization and
parameter choices, and can best describe outliers.

In order to provide statistics for the calculation of
the typicalities, the Supervised Possibilistic Fuzzy Micro-
Cluster (SPFMiC) was proposed. A SPFMiC with fuzzi-
fication parameter m and typicality parameter n, for a
set of examples eq,...,ey d-dimensional, with member-
ship values p1, ..., N, values of typicality vy, ..., v, times-
tamps ti,...,tx and centroid c¢ is defined as the vector
(MﬂTﬂWlthlf, SSD¢, N, t,class_id). Where, M¢®
is the linear sum of the examples memberships powered by
m, T is the linear sum of the examples typicalities powered
by n, CF'1¢ is the linear sum of the examples weighted by
their memberships. C'F'15 is the linear sum of the examples
weighted by their typicalities. SS D¢ is the quadratic sum of
distances from the examples to the micro-cluster prototype
weighted by the example’s membership, N is the number
of examples associated to the micro-cluster, ¢ is the ordinary
mean of timestamps for points associated to the SPFMiC, and
class_id is the class associated to the micro-cluster.

1) Offline Step: Concerning the proposed method, Algo-
rithm 1 shows the offline step, that requires as input the data
stream D.S, the FCM parameter m, the number of clusters by
class k_class and the labeled set that is going to be used to
calculate the first micro-clusters init_points.

In Algorithm 1, lines 4 and 3 are methods that were revised
to comply to fuzzy set theory concepts. At the beginning, for
each class of the labeled set, the set of corresponding points
is given as entry for the FCM clustering algorithm (Step 3).
The clusters of each set returned by the FCM are stored in
variable class_cluster and lately summarized in a supervised
fuzzy micro-cluster structure in the function summarize (Step

Algorithm 1 PFuzzND - Offline Step Based on [10]
Require: DS, m, k_class,init_points
model «
: for each class C; € init_points do
class_clusters <— FCM(init_pointscjqass—c; , m, k_class)
class_SPFMiC < SUMMARIZE(class_clusters)
model < model U class_SPFMiC
end for

AR

4). The decision model is defined as the set of SPEMiCs found
for all different classes (Step 5).

2) Online Step: Algorithm 2 describes the online step,
where the input parameters init_@ is an initial threshold for
classifying and processing the examples. The Ogqqpter and
01455 parameters correspond to adaptation thresholds for the
classification step. Examples labeled as unknown are stored
in a short-term memory (short_memory). T is the minimum
amount of unknown examples in the short_memory for the
novelty detection procedure to be executed. Parameter P is a
time threshold related to the forgetfulness of older SPFMiCs
and ts is a time limit corresponding to the removal of
older unknown examples in short_memory. maxr_micegss
corresponds to the maximum of micro-groups per class. The
parameters «, 3, K and n are required for the calculation of
typicalities, as well as being used to define the centroid of the
SPFMiCs.

Algorithm 2 PFuzzND - Online Step
Require: DS, init_0,0,qapt; Octass, m, T, P, ts
Require: max_micejqss, @, B, K, n, decnhew

1: short_memory < 0

2: all_tipmaz < init_0

3: while 1SEMPTY(DS) do

4: x < NEXT(DS)
S all_m < MEMBERSHIP(z, model, m)
6: all_t < TYPICALLITY (z, model, n, k, 3)
7: (maz_class, max_tip) < MAX(all_t)
8: if max_tip > MEAN(all_tipmaz) — Gadapt then
9: all_tipmas < all_tipmaz U max_tip
10: x.class < mazx_class
11: UPDATE(modelciqss—maz_class: & all_m, all_t)
12: else if max_tip > MEAN(all_tipmaz) — Oclass then
13: CREATE_SFMIC(model, x, max_class, decnhew)
14: if [model iqss—man_class| > Mmaz_micejqss then
15: model <— REMOVE_SPFMIC(model jqss=maz_class)
16: end if
17: else
18: z.class <+ unknown
19: short_memory < short_memory U x
20: if |short_memory| > T then
21: model < NOVELTY_DETECTION (short_memory, model)
22: end if
23: end if
24: current_time < x.time
25: model < REMOVE_SPFMIC(model, P)
26: short_memory <~ REMOVE_UNKNOWN (short_memory, ts)

27: end while

In Algorithm 2, for each example z that arrives from
the stream, the algorithm calculates the memberships and



typicalities of x concerning all SPEMiCs present in the model
(Steps 5-6). Typicality values will be used to decide whether «
will receive the label of an existing class or will be classified
as unknown. This process is done by verifying if the highest
typicality is greater or equal to the mean of the maximum
typicalities of all the previous examples labeled as belonging
to a class known (stored in all_tip,,qz), minus an adaptation
threshold 6,44y, Whose function is to ensure that slightly
below-average examples can be classified with the known
labels (Step 8). When the first example is being processed,
its highest typicality value will be compared to the value of
the initial parameter init_6.

If « is labeled as belonging to an existing class Cj, i.e.,
its maximum typicity is greater than or equal to the mean
of the maximum typicalities of previous examples minus an
adaptive threshold 6,44p¢. Its maximum typicality is added
to all_tipmqs, to update the mean of the previous maximum
typiccalities (Steps 9), and z is associated with the SPFMiCs
of class C_i (Steps 11). Otherwise, if x is greater than or
equal to the average of previous maximum typicalities minus
an adaptation threshold 6.,ss (Step 12), x corresponds to a
potential extension of class C; and a new SPEMIC is created
for this class with x as the prototype (Step 13).

3) Novelty Detection Step: Whenever a new example is
marked with the unknown profile, PFuzzND verifies if there
is a minimal number of examples in the short-term memory
(short_memory). If so, PFuzzND executes a novelty detec-
tion procedure in an unsupervised fashion which requires as
input the structure short_memory containing the unknown
examples, the FC'M fuzzification parameter m and the num-
ber of clusters k_short.

Algorithm 3 PFuzzND - Novelty Detection Step

Require: short_memory, model, m,k_short

1: temp_clusters <— FCM(short_memory, m, k_short)
2: for each cluster temp_c; € temp_cluster do

3: if VALIDATE(temp_c;) then

4: SPFMiCNp < SUMARIZING(temp_c;)
S: for each SPFMiC jq55—Np# NP; € model do
6: FR + SIMILARITY (N Py, temp_c;)
7 all_FR <+ all_FRUFR

8: end for

9: (labelmaz, max_fr) <+ MAX(all_F R)
10: if max_fr > ¢ then

11: SPFMiCpnp.label < labelmax

12: model < SPFMiCyp

13: else

14: labelpew < NEW_NP_LABEL(model)
15: SPFEMiC\np.label < labelnew

16: model < SPFMiCyp

17: end if

18: end if

19: end for

In Algorithm 3 the first step is the application of FCM [16]
on the examples in the short-term memory (short_memory),
producing k_short clusters (Step 1). PFuzzND evaluates each

one of the clusters to decide if it is valid, by checking if its
fuzzy silhouette coefficient [19] is greater than O and if it has
a representative number of examples (Step 3).

Whenever a cluster is validated, it represents a Novelty
Pattern (NP). The next step is to summarize the valid cluster
and check if it will be assigned a new label generated by
the method, or the label of the closest NP already labelled
before. The new labels are defined as NP#id, where #id is
a unique number that represents the NP. In order to assign
a label to a new NP, PFuzzND determines the similarity
between the valid cluster representing the new NP and the
other NP clusters already in the model, by calculating the
fuzzy clustering similarity F'R introduced in [11] (Steps 5-8).
If the maximum similarity between the new NP cluster and
the other NP clusters is greater than a ¢ parameter chosen by
the user, the new NP cluster receives the same label as the NP
cluster to which it has the maximum similarity (Steps 11-12).
Otherwise, a new label is created and associated to the new
NP cluster (Steps 14-16). If a cluster is not validated, it is
discarded, and its examples remain in the short-term memory
(short_memory) until the model decides to remove them.

Unlike the FuzzND method that uses class compatibility
through fuzzy memberships to classify new examples in order
to identify outliers, in PFuzzND the use of typicalities allows
a better description of these types of examples during the
classification step.

IV. EXPERIMENTS

In order to verify the advantages of the possibilistic fuzzy-
based approaches proposed here, we compare the results
of PFuzzND against the results obtained from the MINAS
and FuzzND algorithms. The proposed approache was imple-
mented using the R language, assisted by packages, namely
stream [20] and e1071 [21]. Each experiment was executed 5
times, due to the randomness of the clustering algorithms used
in the offfine phase and in the novelty detection procedure.

Next, we explain with more details the datasets and evalu-
ation metrics used in the experiments.

A. Datasets

The evaluation of the methods was done using synthetic
datasets named MOA3 [5], RBF [22] and SynEDC. Table I
presents details of each dataset, columns #Instances and #At-
tributes indicate the total number of examples and attributes
for each dataset respectively. The total number of classes and
number of classes available during the offline phase are indi-
cated at columns #Classes and #Classes (Offline) respectively.
The difference between the values of these two last columns is
the number of novel classes that the algorithms are expected
to detect. The specificities for the experiments executions are
described in subsection IV-B.



TABLE I
DATA SETS USED IN EXPERIMENTS

Identifier  #Instances  #Attributes  #Classes  #Classes (Offline)

MOA3 100,000 4 4 2
SynEDC 400,000 54 20 7
RBF 48,588 2 5 3

B. Algorithms

1) FuzzND: Concerning the offline phase, parameters m
and k_class were set to 2 and 4 respectively. Regarding the
online phase, parameters were defined as described in Table II.
Parameter init_0.,ss was defined as 0.3, 0.3 and 0.2 for
the datasets MOA3, RBF and SynEDC respectively, due to
the high dimension of SynEDC. These parameter values were
chosen for the offline and online phases because they have led
to the best results in preliminary experiments.

TABLE 11
FuzzND PARAMETERS - Online PHASE

Parameter Value
nit_0 0.3
init_Ocrass *
ea,da,pt 0.1
T 40
P 500
ts 200

In regards to the novelty detection step, the parameters
m and k_short were defined as 2 and 4 respectively. The
parameters used in the experiments for the proposed method
outlined in this work were chosen empirically.

2) PFuzzND: Regarding the PFuzzND method, empirically
determined results analyzes demonstrated a sensitivity of the
algorithm to different datasets. Thus, the parameters k_class,
k_short, ts, min_weight and the thresholds init_0 and
Oadapt Were selected differently, for each dataset, according to
Table III. The common parameters 7°,P and ts were set with
the same values as in FuzzND, to ensure a valid comparison.

TABLE III
PFUZZND PARAMETERS BY DATASET

init_0  Oclass  Oadapt k_class  k_short ts min_weight
MOA 0.95 0.80 0.00 4 4 200 25
RBF 0.95 0.80 0.00 4 4 200 25
SynEDC 0.90 0.58 0.00 8 8 200 25

3) MINAS: Concerning MINAS, the common parameters
T,P and ts were set with the same values as in PFuzzND
and FuzzND, to ensure a valid comparison. In addition, the
number of micro clusters in the offline and novelty detection
step were set similarly to PFuzzND algorithm Table III. The
threshold for novelty detection was set to 1.1 and the threshold
strategy chosen was the strategy 1, as defined to their default
values listed in [5].

C. Evaluation

Experiments
confusion-matrix

were evaluated using the incremental
proposed by [23], which evolves
incrementally as soon as a new data point is classified.
This matrix is composed by rows and columns that represent
known classes, unknown examples and NPs. In this approach,
NPs may be associated with a known class, thus being
considered an extension of this class, or not being associated
to any known class, thereby constituting a potential emergent
class. It is important to state that a novel class may be
represented by more than one NP, while a NP can represent
only one class.

To observe the results of each algorithm through time, we
presented the evaluation results in each 1000 interval of points
defined. At this evaluation moments, it was calculated the
Macro F-Score metric considering only the examples classified
with a NP label or a class label. Moreover, the rate of examples
classified as unknown by the algorithm was determined by the
unknown rate (UnkR) measure [5], defined in Equation 1. In
this equation, #C' is the total number of classes, #UnkR;
is the number of examples of class C; classified as unknown,
and Exc; is the total number of examples from class C;. The
results are presented in Section V.

#UnkR;

#FEzxc; ) M

Unkr—#c Z

V. RESULTS

According to the experiment settings described in Sec-
tion IV 90, 370, 48 evaluation moments were defined for
the datasets MOA3, SynEDC and RBF, respectively. Figures
1, 2 and 3 present the Macro F-Score and UnkR results for
the evaluation moments in each dataset for all algorithms. In
these Figures, the vertical dotted lines indicate the evaluation
moments when examples of the novel classes appeared, while
the vertical continuous lines represent the evaluation moments
where a NP was detected by the methods.

The reason behind the results in Fig. 1, Fig. 2 and Fig. 3
is related to the crisp characteristics of the micro-clusters
in MINAS, in which an example must be inside a micro-
cluster radius to be classified as the micro-cluster’s class. In
this scenario, examples that represent an extension of known
classes are first classified as unknown, to be detected later in
the ND procedure as a NP. Concerning DS, some applications
require models that can adapt faster since changes may occur
in a regular way. Furthermore, the use of crisp micro-clusters
makes the learning process more sensitive to noise. On the
other hand, FuzzND and PFuzzND consider fuzzy values,
which make the knowledge acquisition process more flexible,
what can be a relevant contribution considering non-static data.
Besides, the proposed method can detect class extensions in
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Fig. 1. Macro F-Score and Unknown Rate measures for each evaluation moment in MOA3 dataset.
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Fig. 2. Macro F-Score and Unknown Rate measures for each evaluation moment in SynEDC dataset.
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Fig. 3. Macro F-Score and Unknown Rate measures for each evaluation moment in RBF dataset.

the classification step, and adapt the model during the online
phase.

All three methods present results for the Macro F-Score
measure in the dataset RBF (Fig. 3) and MOA3 (Fig. 1) equal
to 1 for all evaluation moments, considering only the examples
explained by the model. Only dataset SynEDC (Fig. 2) shows
different results, and will be explained later.

Regarding MOA3 dataset results (Fig. 1), MINAS algorithm
was able to detect the new classes that emerged along the DS at
moments 25 and 60 as evidenced by the peaks UnkR measure
and reduction of the same after such moments, along with the
constant results of Macro F-Score equal to 1, which means that
the method was able to classify correctly all the examples that

was able to explain. On the other hand, produces more NPs
detections, which may indicate a reaction to the extensions of
classes or NPs, that are identified during the ND procedure.

As for the FuzzND method (Fig. 1a), the results demonstrate
a similar response to the emergence of new classes, in addition
to being able to produce results of Macro F-score constant
and equal to 1. In general, the method was able to detect the
appearance of new classes, evidenced by the increase of the
UnkR measure and its immediate reduction after detection of
a new NP at moments 26 and 61. Because the method can
detect class and NP extensions during the classification step,
the adaptation occurs faster than in MINAS method, which
makes the method less susceptible to the production of NPs



unrelated to the emergence of new classes. However, there may
still be detections of NPs that do not refer to the appearance
of new classes, but in this dataset this characteristic occurs
only once.

Concerning the PFuzzND algorithm, it performed similarly
to the others methods (Fig. 1b). However, it was able to
detect only NPs related to the emergence of new classes.
PfuzzND is also able to detect class or NP extensions during
the classification process, which explains the low UnkR values
during almost all evaluation moments, except for the appear-
ance of new classes. The detection of NPs related only to the
emergence of new classes demonstrates the best performance
of the PFuzzND method over the other two. However, it is
worth mentioning that its parameters were adjusted in order
to provide the results obtained.

The SynEDC dataset has a non-stationary behavior, there-
fore, it suffer changes over time. It contains the emergence
of new classes during the evaluation moments (158, 146,
132, 121, 107, 95, 83, 71, 58, 46, 33, 21, 8). In addition,
in the evaluation moments (171, 183, 196, 208, 221, 233,
246, 258, 271, 283, 296, 308, 321, 333, 346, 358) it presents
reappearance of old classes, which can be characterized as
recurrent classes, i.e., classes that arise along the DS between
large time intervals [2].

Regarding the results, the algorithm MINAS (Fig. 2¢) did not
detect all the new classes that emerged along the DS causing
the reduction of the Macro F-Score measure. Among the 14
new classes that emerged until the moment of evaluation 171
the method was able to detect a total of 8. In addition, after
the moment 171 the presence of peaks in the UnkR measure
indicates that the method may have associated valid groups
of unknown examples to recurrent classes. However, since the
detection of new classes in the previous moments was not
totally effective, the method did not improve its performance in
the classification process, evidenced by the moderate reduction
of the Macro F-Score measure over time.

The FuzzND and PFuzzND methods obtained very similar
results (Fig. 2a and Fig. 2b). Compared to the MINAS algo-
rithm, both methods were able to detect all the new classes that
emerged along the DS. It is important to note that the proposed
methods do not recognize recurring classes as the MINAS algo-
rithm, thus, assuming that recurring classes are new classes.
In general, both methods were able to react quickly to the
emergence of new classes. However, the PFuzzND method
showed smaller peaks of the UnkR measurement, especially
at the beginning of the DS, in addition to maintaining the
Macro F-Score measurement equal to 1 throughout the DS,
unlike the FuzzND method which shows a reduction of this
measure at the end of the DS. These results, however, need to
be better evaluated in order to identify if there is a statistical
difference between them.

The RBF dataset has a stationary behaviour, i.e., it does not

present changes over time. However, it contains the emergence
of new classes during the evaluation moments 8 and 42.

In the dataset RBF (Fig. 3), MINAS presents a behavior
similar to the MOA3 dataset, dectecting more NPs than the
number of novel classes that emerged over time. However,
since this dataset is stationary, most of the NPs detected
indicate misclassification of the examples belonging to the
known classes or known NPs as unknown. As for FuzzND
(Fig. 3a), however, we highlight the low values of the UnkR
measure until the moment of evaluation 8, thus inferring that
the method obtained a good initial model. In addition, as in
the Macro F-Score results of MINAS, FuzzND was also able
to correctly classify all the examples it could explain, a fact
evidenced by the constant values of Macro F-Score equal to
1. However, this method presented a considerable delay for
the detection of NPs related to the appearance of the first new
class, which caused the increase in the UnkR measure that
was moderately reduced after the detection of NPs and its
incorporation in the model at the evaluation moments 14 and
33. Despite the increase in the UnkR measure, FuzzND was
able to adapt correctly to the emergence of new classes and
to detect a number of NPs close to the number of new classes
that appeared in the DS.

In respect to the PFuzzND method (Fig. 3b), the best results
were obtained in relation to the other algorithms, being able
to adapt quickly to the emergence of new classes and to
maintain the UnkR measure with values close to 0. In addition,
it classified correctly all examples not labeled as unknown.
Thus, the algorithm PFuzzND was able to better represent the
distribution of the data in this experiment.

VI. FINAL CONSIDERATIONS

DSs represent a domain of problems that tends to in-
crease, accompanying the technological evolution. Strategies
for extracting knowledge from DSs are a trend within Ma-
chine Learning research. The unpredictable characteristics of
this domains generate difficulties in the learning process,
encouraging the search for flexible learning, for example,
by integrating concepts of fuzzy set theory. Proposals based
on fuzzy concepts aim to collaborate for the flexibility and
adaptability of the knowledge learned.

In the ND task for DSs by means of fuzzy techniques, most
of the proposals are limited to specific domains and consider
the existence of only two classes (Normal and Abnormal).
On the other hand, most of the approaches for multiclass
ND in DSs do not represent the uncertanties that may occur
over time, which can be detrimental in a context in which
the distribution of the data is changeable over time, causing
inadequate representations.

This work presents a new approache for multiclass ND
in DSs. We introduced flexibility in the learning process



through the application of possibilistic fuzzy set theory con-
cepts to construct and manage a summarization structure
for the Offline-Online Framework. The main contributions
can be described as: Definition of supervised possibilistic
fuzzy summarization structures SPFMiC, which offers quality
representations for DSs. In addition, we proposed the novelty
detection algorithm PFuzzND that was able to better react to
changes in synthetic datasets and produce comparable results
in real data.

The experiments held in this work were made with the
purpose to validate our proposals and highlight its advantages
with respect to the similar methods in the literature. Thus,
there is still room for further investigations such as: the devel-
opment of new strategies to reduce the number of parameters
and decrease the methods parameters sensitivity. The study
of different classification methods in order to better define
decision surfaces in complex datasets, for example, that may
show classes overlapping. Moreover, the experiments defined
to evaluate the proposal involve only the method that served
as basis, as described herein, there are other ND approaches
in DSs, including using fuzzy techniques. Therefore, compar-
isons of the new approaches with other existing techniques
are essential. There should also be concern about the use
of evaluation metrics, since the different approaches were
evaluated with different metrics.

The experiments show that the proposals are comparable,
or better to the fuzzy base method, and are advantageous
for general representation and identification of novelties in
DSs. Moreover, the results obtained are an indication that
the proposals are significant and contribute to the future
development of extensions and new techniques based on the
proposals presented in this work. Finally, the possibilistic
fuzzy approache contribute to the advancement of research
communities in flexible learning and DSs learning. .
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