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Abstract— Fuzzy cognitive maps (FCMs) have gained 

popularity within the scientific community due to their capabilities 

in modelling and decision making for complex problems. 

However, learning FCM models automatically from data without 

any expert knowledge and/or historical data remains a 

considerable challenge. For our research, we use the estimated 

weight matrix from the graphical lasso (glasso) method with the 

EBIC regulation technique. Particularly, the glasso is a technique 

originated from machine learning which is used to model a 

problem by learning the weight matrix directly from a dataset. 

Moreover, the relationships are expressed by conditional 

independence among two nodes after conditioning on all the other 

nodes of the graph.  However, the challenging task in this study is 

the investigation of the suitable transformation of the weight 

matrix from a symmetric matrix to asymmetric in order to 

determine the directions of the edges among the concepts and 

construct the glassoFCM model. For this reason, statistical 

comparisons are applied to examine if there are significant 

differences in the value of the output concept when the input 

concepts are rearranged according to four different cases. The 

whole approach was implemented in a business intelligence 

problem of evaluating the willingness of the employees to work in 

Belgian companies. 

Keywords—fuzzy cognitive map; glassoFCM method; graphical 

lasso models; data-driven approach; ordinal data;  

I. INTRODUCTION 

As data modelling is referred to the process of creating a 
model from a dataset that can be useful for recognizing patterns, 
making decisions and/or predictions and control systems [7]. In 
other words, data modelling is a visual representation of a 
problem which often is visualized as a graph. Every graph is 
composed of two important elements (or vertices or nodes) and 
edges [8]. There are many methods to estimate a model from a 
single dataset. The choice of models is depending on the variety 
of variables, the sample size of data and the available 
knowledge (if any) from experts [7]. After data modelling 

(learning the weights between concepts) from experts or from 
available historical data, it is essential to perform policy 
scenarios through a simulation method which is known as 
decision making [27]. One of the well-known methods of 
modelling and simulating a system is the Fuzzy Cognitive Map 
(FCM) [1]. FCM is classified as soft computing technique 
which is trying to mimic humans’ reasoning and decision 
making [1, 2, 3]. It combines the desirable properties of fuzzy 
logic and neural networks. FCMs have been applied in many 
scientific areas such as business, social and political sciences, 
ecological and environmental management, engineering, 
information technology, robotics, expert systems, medicine, 
neuroscience, education and so on [3, 5, 10, 11, 12, 26, 48]. 

Generally, FCM models are categorized into three types: i) 
manual, ii) semi-automated and automated models. Manual 
FCMs are produced by experts manually, semi-automated 
FCMs are constructed by a relatively expert intervention and 
automated FCMs are estimated from historical data. Expert-
based models require relatively fewer data and lead to simpler 
and sparser interpretable models [25, 26]. On the other hand, 
data-driven models require a sufficient amount of training 
historical data; however, they are more expressive since they 
are able to uncover unexpected patterns of the data comparing 
to expert-based models [3, 20, 25, 26]. Mainly, the FCM 
learning methods which construct and train an FCM fall into 
three categories: i) the adaptive-based (usually adapted from 
the Hebbian law), ii) the population-based and iii) the hybrid 
learning algorithms [3, 20, 25, 26]. The adaptive-based 
algorithm is a semi-automated method since it updates the 
weights of the connection matrix obtained from experts. 
Population-based (evolutionary) learning algorithms is an 
automated method which uses solely historical data to estimate 
the weights between concepts. The main goal of this algorithm 
is the estimation of an appropriate model that miming the input 
data. Finally, the hybrid approach combines the adaptive and 
population-based learning methods in which the knowledge of 
an expert and historical data are simultaneously used. 



Therefore, most of the studies have been focused on semi-
automated and automated methods to learn FCM based on 
historical data. However, few approaches have been applied to 
define the relations and the weights among concepts (nodes) 
from cross-sectional data (not historical data). In general, a 
cross-sectional study is defined as an observational study in 
which multiple variables can be studied at a given point in time 
[28]. Schneider, Shnaider, Kandel and Chew [4] proposed a 
distance-based method for constructing FCMs based on 
numerical measurements. The variables are represented as 
numerical vectors which are transformed into fuzzy vectors. 
Next, the determination of positive or negative relations among 
concepts are defined. Afterward, the strength (the weight) of 
each edge is calculated based on the distances between 
numerical vectors. At last, experts must decide the direction of 
causality between concepts indicating the final FCM weighted 
matrix. Consequently, this method is categorized as a semi-
automated method since limited human intervention is required 
[12]. In the last decade, many studies have been used the 
distance-based method to model FCMs using small datasets (up 
to 150 observations) [29 - 33]. However, Dikopoulou, 
Papageorgiou and Vanhoof [12] noted that this method was 
incapable to construct efficient FCM models from larger 
datasets (over 2,900 observations) due to small variability of 
the weighed edges (all weights of the FCM were calculated very 
strong) and high density of the weighted matrix (all concepts 
are connected to each other). As a consequence, the 
interpretability of that FCM was reduced and the decision-
making was impossible to be occurred using the FCM inference 
procedure. 

Nevertheless, an automated FCM model estimation from 
(cross-sectional) data assessing the direct relationships between 
concepts was a major challenge. In order to bridge the gap, in 
2017, we proposed the automated data-driven method, the 
glassoFCM [12] to model an FCM (concerning the job 
satisfaction) from 2,903 categorical ordinal observations 
without expert intervention and/or usage of historical data. The 
glassoFCM is a combination of two methods, the graphical 
least absolute shrinkage and selection operator (glasso) with 
EBIC (Extended Bayesian Information Criterion) 
regularization for data modelling and the FCM simulation for 
decision making. Results had shown that glasso method had 
estimated a sparser graph with a higher standard deviation on 
edge weights comparing to a distance-based method. Therefore, 
the glassoFCM model was easier to interpret and the 
decisions/policies through FCM simulations were meaningful. 
In 2020, we extended our primary research work proposing the 
MAX-threshold algorithm to cut-off (prune) more small 
spurious weights of the glassoFCM model without affecting the 
concepts’ values after the FCM inference procedure [13]. Our 
findings have shown that the density of the automated data-
driven FCM was decreased from 71.1% to 55.6% indicating 
that fewer edges among concepts could perform decisions 
through FCM scenarios. 

Originally, the lasso is a regression analysis method that is 
used for variable selection and regularization in order to 
improve not only the prediction accuracy but also the 
interpretability of the estimated model [6]. Specifically, the ℓ1 
regularization of the lasso algorithm adds a penalty equal to the 

absolute value of the magnitude of coefficients (ℓ1-norm). 
Consequently, some spurious (small) coefficients are shrunk 
exactly to zero. In fact, the tuning parameter 𝜆 controls the 
sparsity of the ℓ1 penalty and it is varied between 0 and +∞. 
The larger the penalty is applied, the further estimates are 
shrunk towards zero. Accordingly, the value of the appropriate 
tuning parameter must be chosen (using for instance, the k-fold 
cross-validation [34]) to select the best fitting model and 
acquire a more accurate estimate of the model’s test error rate 
[6]. Graphical lasso [9, 37] is an algorithm for learning the 
undirected structure of a Gaussian Graphical Model (GGM) 
[35]. In general, graphical models became very popular since 
they were able to model complex problems and estimate the 
interconnections among observed variables in different 
scientific fields such as: statistics, machine learning, 
neuroscience, psychology, biology and business [12, 13, 36]. 
The glasso method utilizes the ℓ1 regularization parameter to 
control the sparsity of the precision matrix. Consequently, it 
estimates a group of networks [14] ranging from a fully 
connected network (𝜆𝑚𝑖𝑛) to an empty network (𝜆𝑚𝑎𝑥). 
Therefore, the best network out of this range of networks must 
be selected by optimizing the fit of the network to the data. 
According to previous studies [16, 38, 39], minimizing the 
Extended Bayesian Information Criterion (EBIC) [14, 15], the 
true network structure was estimated indicating that high 
specificity has occurred. Moreover, the EBIC added an extra 
penalty, the hyperparameter 𝛾 (gamma) to control 
(additionally) the sparsity of the model [16, 14]. 

For the record, the lasso regression algorithm was 
introduced, as an evolutionary algorithm (named as 
LASSOFCM) to learn sparser large-scale FCMs from historical 
data [40]. Results have shown that LASSOFCM was accurately 
learned sparser FCMs with high accuracy comparing to other 
evolutionary methods. This primary approach was classified as 
a semi-automated procedure since a user-defined constant was 
required to balance the sparsity and measurement error. Later, 
Wu and Liu [41] proposed an initialization operator based on 
the LASSOFCM for evolutionary algorithms to learn sparse 
FCMs. In 2019, an automated method was proposed. 
Specifically, the multitasking multiobjective memetic 
algorithm for learning FCMs (MMMA-FCMs) [43] was a 
combination of the LASSOFCM using the decomposition 
strategy into a multiobjective evolutionary algorithm [42] to 
learn large-scale FCMs. The results have shown high accuracy 
and efficiency in the learning procedure testing into different 
numbers of nodes, densities and activation functions. 

However, in this paper, our research interest is solely 
focused on the FCM learning procedure from cross-sectional 
datasets (not from historical data) including 11 variables (ten 
input variables and one output). As reported above, glasso 
method produces symmetric undirected graphs. Generally, in 
order to transform each model into the glassoFCM model, it is 
necessary to determine the direction of the edges among 
concepts. Rearranging the observed concepts in the symmetric 
weight matrix according to different rankings, we obtain the 
upper triangular matrix. Then, we examine the values of the 
observed output concept if they are significantly different (after 
the usage FCM inference procedure) using a one-way ANOVA 
method [23]. The variables are ranked according to four cases: 



i) the strength-centrality of the concepts ii) the average values 
of the variables (from the initial dataset), iii) the random order 
and iv) the inverse strength-centrality ranking. The strength-
centrality of node 𝑖 is defined by the absolute summation of the 
weights that are linked with the node 𝑖 [8]. Consequently, four 
glassoFCM models are constructed, each one for each ranking 
case. Moreover, due to the selection of the upper triangular 
matrix, the last variable (the decision output concept) in the 
matrix is considered as the receiver concept. Mainly, there are 
three types of a node: the transmitter, the receiver and the 
ordinary node [44, 45] depending on the in-degree and out-
degree indices. The in-degree of node 𝑖 is the total number of 
ingoing edges and is defined by the sum of the 𝑖𝑡ℎ row of the 
adjacency matrix; while, the out-degree of node 𝑖 is the total 
number of outgoing edges and is determined by the sum of the 
𝑖𝑡ℎ column of the adjacency matrix. Transmitter nodes have a 
positive out-degree and zero in-degree, receiver nodes have 
positive in-degree and zero out-degree and ordinary nodes have 
both non-zero in-degree and out-degree indices.  

The aim of this study is to examine if the observed 
rearrangements play a determinant role or not to the values of 
the output concept under 60 scenarios policies (15 scenarios for 
each glassoFCM model). It is important to emphasize that in the 
FCM simulation process, only the results of the decision output 
concept (“Willingness to work”) are inspected. This implies that 

the focal concept is always placed in the last (𝑝𝑡ℎ) position of 
the upper-triangular weight matrix; where 𝑝 represents the total 
number of the concepts. The remaining 10 variables represent 
the input concepts associated with job-satisfaction features. 

The rest of the paper is organized as follows: the next 
Section describes the glassoFCM methodology, Section 3 
introduces the real-world job-satisfaction problem considering 
11 features. Section 4 presents the results of glasso model, the 
results of four rankings, the results of FCM scenario analysis 
applying to the produced glassoFCM models and the statistical 
results of comparison using one-way ANOVA. The discussion 
of the results is described in Section 5. Finally, Section 7 
outlines the conclusions. 

II. METHODOLOGIES 

A. The graphical lasso with the Fuzzy Cognitive Map 

(glassoFCM) method 

The glassoFCM methodology [12, 13] was proposed as a 
combination of glasso algorithm with the FCM method to 
model graphs from large datasets and simulate different 
decision-making scenarios. Below, the glasso method, the FCM 
method and the glassoFCM algorithm are described. 

A1.  The graphical lasso with the EBIC regularization 

Principally, an undirected graphical model is a network of 
undirected links indicating conditional dependence among two 
nodes. Such models are members of probability distributions 
respecting the structure of the symmetric graph G = (V, E). 
Mainly, two nodes are considered as independent (if there is no 
link among them) after conditioning on all other variables [47]. 
Therefore, the glasso method is used to estimate the weighted 
adjacency matrix directly from cross-sectional data (containing 
ordinal values) of 𝑛 observations and 𝑝 variables. This 

algorithm is known as a nodewise estimation algorithm [35, 36] 
since it identifies the strength of the association (𝑤𝑖𝑗) between 

two nodes after conditioning on all other variables in the 
network. Moreover, vector 𝜆 consists of a series of 𝜆 values 
which are able to control the sparsity of the graph. Therefore, a 
group of networks [14] is estimated ranging from a very dense 
network (𝜆𝑚𝑖𝑛) to a very sparse (𝜆𝑚𝑎𝑥). In order to estimate the 
graph G, the neighborhoods of all 𝑝 nodes are combined by 
estimating the parameters of a joint distribution from 
observations by a series of regressions in the Generalized Linear 
Model (GLM) [36]. Consequently, for every s ∈ V, the negative 
log-likelihood 𝐿𝐿(𝜃, 𝑋) and the ℓ1-norm of the parameter vector 
‖𝜃‖1 are minimized to shrink small parameters exactly to zero: 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃{𝐿𝐿(𝜃, 𝑋) + 𝜆ℵ‖𝜃1‖} (2) 

where ‖𝜃1‖ = ∑ |𝜃𝑗|𝐽
𝑗=1  is the sum of absolute values of the 

parameters 𝜃 of length vector J. Then, a lower bound 𝜏ℵ [14] is 

applied to the size of the parameters in the true model to ensure 

that false and true positive rates for the lasso estimator. For the 

estimation of the joint distribution, the 𝜏𝑛 is defined as: 

𝜏ℵ ≍ 𝑠0
∗√log

𝑝
𝑛⁄ ≤ 𝑠0

∗𝜆ℵ (3) 

where 𝑠0
∗ represents the true number of neighbours. 

Nevertheless, the true parameter 𝜃∗ and consequently, the 

number of 𝑠0
∗ is unknown. Therefore, the estimated number of 

neighbours �̂�0 is replaced with the estimated parameter vector to 

collect the estimated number of neighbours �̂�0 = ‖�̂�0‖. The 

produced parameters �̂�𝑠,𝑡 and the �̂�𝑡,𝑠 ) among nodes s and t are 

combined using the OR-rule (the mean value is calculated) to 

estimate the weight (�̂�𝑠𝑡).As a result, the final graph is specified 

for the specific value of 𝜆ℵ. Afterward, the Extended Bayesian 

Information Criterion (EBIC) is applied to estimate the fit of the 

model into the data [15]: 

𝐸𝐵𝐼𝐶𝛾(�̂�) = −2𝐿𝐿(𝜃) + �̂�0 log 𝑛 + 2𝛾�̂�0 log 𝑝 (4) 

where 𝛾 is a tuning parameter (0 ≤ 𝛾 ≤ 1) which controls 

the sparsity of the graphs [16, 36, 38, 39]. As the number of 𝛾 

increases, the sparser the graph will be. However, Foygel and 

Drton [16] have proven that if 𝛾 fluctuating between 0 and 0.25 

then the false positives will be decreased, without increasing the 

false negatives. According to Haslbeck and Waldorp [36], the 

computational complexity of algorithm I is 𝒪(𝑝 log(2 ∙ 𝑝)). 

A2.  The Fuzzy Cognitive Map (FCM) method 

A FCM is a graphical representation of a directed weighted 
map consisted of concepts and weighted edges [1, 2, 3]. Each 
concept represents a certain characteristic of the system which 
are connected to each other using directed weighted edges, 
expressing the causal-effect relationships among concepts. 
Each concept carrying a value revealing the degree of activation 
of the concept in the system at a particular time and it is 
indicated by 𝐶𝑖 , 𝑖 = 1,2, … , 𝑝; where 𝑝 denotes the total number 
of variables. Each weight 𝑤𝑖𝑗  of the weighted matrix 𝑊 

indicates the strength of the association between 𝐶𝑖 and 𝐶𝑗 

taking value in the range -1 to 1. Specifically, 𝑤𝑖𝑗 measures how 



much 𝐶𝑖 affects 𝐶𝑗 (𝐶𝑖 → 𝐶𝑗). There are three possible types of 

causal relationships among concepts 𝐶𝑖 and 𝐶𝑗: positive (𝑤𝑖𝑗 >
0), negative (𝑤𝑖𝑗 < 0) and no causality (𝑤𝑖𝑗 = 0).  

The FCM method was primarily proposed by Kosko [1] for 
understanding, modelling and simulating systems with 
numerous interconnections between important components. 
FCMs adapt the desirable properties of fuzzy logic and neural 
networks like the ability to represent the structured knowledge 
of the system and the computation of the inference using a 
numeric matrix operation instead of straightforward IF-THEN 
rules [2]. The initial vector 𝐶0, at time-step 0 (𝓉 = 0), includes 

the values of 𝑝 concepts: 𝐶0 = [𝐶1
0, 𝐶2

0, … , 𝐶𝑝
0]. The modified 

FCM inference rule (5) was the rescale inference to avoid the 
conflicts emerging in the case of non-active concepts. 

𝐶𝑖
(𝓉+1)

= 𝑓 ((2𝐶𝑖
(𝓉)

− 1) + ∑ 𝑤𝑗𝑖 ∙ (2𝐶𝑗
(𝓉)

− 1)

𝑁

j≠i

) 
 

(5) 

Lastly, 𝑓(⋅) is the threshold or alternatively a transformation 
function that constrains the results of the initial vector 𝐶 into 
the range between [0, 1]. In most studies, the sigmoid function 
(6) is widely applied to obtain the inference of the system [20, 
3]. 

𝑓(𝑥) =
1

1 + 𝑒−𝜆𝑥
 (6) 

This process continues until i) the system converges in a 
fixed equilibrium point in which the difference between two 

subsequent values of the outputs must be equal, 𝐶𝑖
𝓉 = 𝐶𝑖

(𝓉+1)
 or 

lower to the residual 𝜀 (epsilon; in most of the cases is equal to 

0.001), 𝐶𝑖
𝓉 − 𝐶𝑖

(𝓉+1)
≤ 𝜀; ii) a limited cycle is reached or iii) a 

chaotic behavior is revealed. 

A3.  The glassoFCM algorithm 

Below, the modelling and the simulation of the glassoFCM 
is presented in 16 steps: 

Algorithm I: The glassoFCM with EBIC regularization via 

Neighborhood Regression 

Input Dataset (n × p, n: observations, p: variables), λℵ 

(vector of 100 values), 𝓉max (maximum number of steps), 

C0( initial vector, 1 × p), ε (residual error) 

Output A converged vector C𝓉 = [C1
 𝓉 , C2

 𝓉 , … , Cp
 𝓉]) 

Step 1: For each λℵ 

 Step 2: For each node s ∈ V  

Step 3: Solve the lasso problem in Equation 2  

Step 4: Threshold the estimates at τℵ (Equation 3) 

Step 5: Aggregate interactions with several 

parameters into a single edge-weight 

   End For 

Step 6: Combine the edge-weights with the OR-rule 

Step 7: Define the graph G based on the zero/nonzero 

pattern in the combined parameter vector 

Step 8: Calculate the EBIC in Equation 4 

End For 

Step 9: Choose the graph G that minimizes EBIC (the 

symmetric weight W matrix is estimated) 

Step 10: Get the upper-triangular matrix of W 

Step 11: While 𝓉 ≤ 𝓉max AND (Vi
𝓉 ≠ Vi

(𝓉+1)
 or Vi

𝓉 −

Vi
(𝓉+1)

> ε) do: 

Step 12: Apply the inference rule (5) to update the 

initial Vector C0. 

Step 13: Use the threshold function (6) to reduce the 

unbounded input of V to a strict range that threshold 

controls. 

Step 14: Save the updated C(𝓉+1) (consider that this 

vector will be the initial vector 𝓉 for the next iteration). 

Step 15: Increase step  𝓉 (𝓉 ← 𝓉 + 1) 

End while 

Step 16: Return the converged vector C𝓉 

END 

III. Data DESCRIPTION 

Job satisfaction is the evaluation of various concepts that 
can describe how employees think about their job [19]. 
Improving job satisfaction features, more employees will be 
satisfied; therefore, their loyalty will be increased and workers 
will be ‘ambassadors’ for the company. Furthermore, 
recruitment costs and employee training will be reduced, while 
HR (Human Resources) will able to recruit talented workers 
and save money.  

 

Fig. 1. The demographic information (gender, age, activity and education) of 

the cross-sectional ordinal dataset including 3134 employees that work in 
Business sectors in Belgium. 

In this study, a dataset of 3,134 records (from the Business 
sector) was used to evaluate on scale 1 (strongly disagree) to 5 
(strongly agree). All variables are associated with a job 
satisfaction problem in Belgium. The input variables are: "V1: 
Competitive salary package", "V2: Prospects/career 
opportunities", "V3: Pleasant working environment ", "V4: 
Offers long-term job security ", "V5: Good balance (private life 



& work)", "V6: Financially sound", "V7: Offers interesting jobs 
(job description)", "V8: Offers good quality of training", "V9: 
Strong management", "V10: Deliberately handles the 
environment and society". The output variable or the decision 
output concept is the 11th variable " V11: Willingness to work to 
company 𝑧", where 𝑧 is one of the 349 observed Belgian 
companies. An example of a question is “When I am looking 
for a job position in company X, the job that offers competitive 
salary package (V1) is important”. Moreover, the questionnaire 
includes demographic questions (Fig. 1) that each participant 
has to complete such as: gender: male (48.56%), female 
(51.44%), age: 18 – 24 (9.7%), 25 – 44 (60.66%), 45 – 65 
(29.64%), education: primary/secondary (37.43%), bachelor 
(31.08%), master (30.44%), N/A (1.05%) and activity: 
production worker (20.61%), office worker (58.20%), manager 
(10.10%), N/A (11.10%). 

IV. RESULTS  

As mention in the introduction, our research of interests are 
i) to transform an undirected weight matrix (which is estimated 
from the glasso algorithm) into a directed weight matrix in 
order to run the FCM simulation process and ii) to investigate 
if any rearrangement of the input concepts affects or not the 
values of the output concept 𝑉11. More details on the glasso 
algorithm i.e. the steps to produce the weighted matrix can be 
found in our previous work [12, 13].  

A. Results of the graphical lasso model 

In this sub-section, the bootnet R package [46] was used to 
integrate the lasso algorithm with the EBIC model selection to 
define relations among the observed variables associated with 
the job attractiveness in Belgium. Specifically, the 
estimateNetwork function utilizes the part of the glasso 
algorithm [8] from the bootnet package [46]. This algorithm 
returns a symmetric weighted adjacency matrix from ordinal 
data. The edge weights can be interpreted as the strength of 
conditional dependence between two variables (Table I).  

TABLE I.    THE SYMMETRIC WEIGHTED ADJACENCY MATRIX IS ESTIMATED 

FROM THE GLASSO METHOD 

 𝑽𝟏 𝑽𝟐 𝑽𝟑 𝑽𝟒 𝑽𝟓 𝑽𝟔 𝑽𝟕 𝑽𝟖 𝑽𝟗 𝑽𝟏𝟎 𝑽𝟏𝟏 

𝑽𝟏 - 0.39 0 0 0 0 0.13 0.10 0.06 0 0 

𝑽𝟐 0.39 - 0.05 0.25 0 0 0.12 0.16 0.12 0 0.08 

𝑽𝟑 0 0.05 - 0.04 0.19 0.07 0.19 0.07 0.08 0.19 0.12 

𝑽𝟒 0 0.25 0.04 - 0.27 0.29 0 0.07 -0.08 0.10 0 

𝑽𝟓 0 0 0.19 0.27 - 0.09 0.05 0 -0.06 0.13 0 

𝑽𝟔 0 0 0.07 0.28 0.09 - 0.04 0 0.38 0 0 

𝑽𝟕 0.13 0.12 0.19 0 0.05 0.04 - 0.32 0 0 0.25 

𝑽𝟖 0.10 0.16 0.07 0.07 0 0 0.32 - 0.20 0.17 0 

𝑽𝟗 0.06 0.12 0.08 -0.08 -0.06 0.38 0 0.20 - 0.10 0 

𝑽𝟏𝟎 0 0.00 0.19 0.10 0.13 0 0 0.17 0.10 - 0 

𝑽𝟏𝟏 0 0.08 0.12 0 0 0 0 0.25 0 0 - 

Moreover, the qgraph package [18] plots the sparser 
graphical models of the observed 11 nodes (10 input and 1 
output). The input nodes (𝑉1 − 𝑉10) in the graph correspond to a 
job-satisfaction factor; while the output concept (𝑉11) represents 
the “Willingness to work” feature. Thus, each edge depicts the 

partial correlation between the features controlling for all other 
connections in the network. Fig. 2 illustrates the partial 
correlations of the Business sector of Table I. Nodes that are 
depicted closer together are strongly related. Hence, wider and 
more saturated edges determine stronger relations; while, 
positive and negative relations are depicted by blue and red 
connections, respectively. 

 

Fig. 2. Graph visualizations of 11 variables associated with job satisfaction 

problem. The graph displays the symmetric weight matrix which is estimated 
from the graphical lasso using the EBIC regularization technique. 

B. Results of Rankings  

After the estimation and the visual inspection of the data-
driven network, it is necessary to transform the symmetric 
weighted matrix graph (Table I) to a directed weighted matrix to 
accomplish the FCM scenarios.  

TABLE II.    REORDERING CASES OF THE CROSS-SECTIONAL DATASET IN 

BUSINESS SECTOR 
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Transmitter 1st V2 V6 V1 V10 

Ordinal 2nd V7 V9 V2 V1 

Ordinal 3rd V4 V4 V3 V5 

Ordinal 4th V8 V2 V4 V6 

Ordinal 5th V9 V1 V5 V3 

Ordinal 6th V3 V7 V6 V9 

Ordinal 7th V6 V8 V7 V8 

Ordinal 8th V5 V3 V8 V4 

Ordinal 9th V1 V5 V9 V7 

Ordinal 10th V10 V10 V10 V2 

Receiver 11th V11 V11 V11 V11 

Because expert knowledge is not available to indicate the 
causal effect connections among variables, the input variables 



will be reordered and the upper weighted triangular matrix will 
be obtained. The variables are ranked according to four cases: i) 
the strength-centrality, ii) the average values of the variables 
(from the dataset), iii) the random order and iv) the inverse 
strength-centrality. 

Table II depicts the ranked cases of strength, mean, random 
and inverse strength that will be used to arrange the weights. 
Afterwards, the weights of the upper triangular matrix are 
reordering according to each of the observed cases.  For 
instance, Table III illustrates the upper weight matrix 
rearranging the variables according to the strength-centrality 
indices. As it is observed, the output concept (𝑉11) is placed 
always in the last position. Additionally, Fig. 3 visualizes the 
directed weighted matrix of Table III. The activator concept 𝑉2 
(the transmitter) is highlighted with red colour; while, the output 
concept 𝑉11 (the receiver) with blue colour. 

TABLE III.    THE  DIRECTED WEIGHTED MATRIX. THE CONCEPTS ARE ORDERED 

BY THE STRENGTH-CENTRALITY INDICES 

 𝑽𝟐 𝑽𝟕 𝑽𝟒 𝑽𝟖 𝑽𝟗 𝑽𝟑 𝑽𝟔 𝑽𝟓 𝑽𝟏 𝑽𝟏𝟎 𝑽𝟏𝟏 

𝑽𝟐 - 0.12 0.25 0.16 0.12 0.05 0 0 0.39 0 0.08 

𝑽𝟕  - 0 0.32 0 0.19 0.04 0.05 0.13 0 0.25 

𝑽𝟒   - 0.07 -0.08 0.04 0.29 0.27 0 0.10 0 

𝑽𝟖       - 0.20 0.07 0 0 0.06 0.17 0 

𝑽𝟗        - 0.09 0.38 -0.07 0 0.10 0 

𝑽𝟑           - 0.07 0.19 0 0 0.12 

𝑽𝟔             - 0.09 0 0 0 

𝑽𝟓               - 0 0 0 

𝑽𝟏                 - 0 0 

𝑽𝟏𝟎                   - 0 

𝑽𝟏𝟏                     - 

 

 

Fig. 3. The upper-triangular weighted matrix of 11 concepts which are ranked 

according to strength-centrality indices in Table II. The transmitter concept 

𝑉2 is highlighted with red colour; while the output concept 𝑉11 of the 
glassoFCM model is marked with blue colour. 

C. Results of FCM Scenario analysis 

In order to estimate the inference of the FCM, we have been 
implemented in R programming language the ‘fcm’ package 
[24] to estimate the inference of the Fuzzy Cognitive Map and 
accomplish the scenario analysis. Particularly, the function 
fcm.infer() is applied. The main inputs of this function are: the 
initial vector (or else the policy scenario) and the weighted 
matrix 𝑊. Additionally, 6 arguments must be set such as the 
number of iterations, the inference rule, the threshold function, 
the lambda and the epsilon parameter. The fcm.infer function 
returns three objects: (a) a data frame which contains the 
concepts’ values of each iteration, (b) an FCM map and (c) the 
convergence plot of 𝜅 steps. (The usage of the function fcm.infer 
including some examples, visit the official CRAN website 
https://cran.r-project.org/web/ 
packages/fcm/vignettes/vignettes.html or the GitHub webpage 
https://github.com/LiaDD/Fuzzy-Cognitive-Maps-FCMs). 
Finally, for the simulations of this study, the rescale-clamped 
inference function and the sigmoid transformation function are 
applied. 

TABLE IV.    THE VALUES OF 𝑉11 (WILLINGNESS TO WORK) AFTER THE FCM 

SIMULATION FOR THE 4 OBSERVED RANKINGS IN THE BUSINESS SECTOR, THE 

NORMALITY TEST AND THE ANOVA ANALYSIS. 
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V2=1 0.561 0.566 0.559 0.539 

V7=1 0.628 0.628 0.618 0.622 

V4=1 0.502 0.518 0.502 0.509 

V8=1 0.504 0.503 0.499 0.545 

V9=1 0.504 0.512 0.499 0.512 

V2=V7=1 0.666 0.665 0.656 0.653 

V2=V4=1 0.562 0.568 0.562 0.539 

V2=V8=1 0.564 0.568 0.559 0.576 

V7=V4=1 0.630 0.639 0.618 0.630 

V7=V8=1 0.631 0.630 0.618 0.628 

V2=V7=V4=1 0.667 0.667 0.656 0.653 

V2=V7=V8=1 0.668 0.667 0.656 0.653 

V7=V4=V8=1 0.632 0.641 0.618 0.634 

V2=V3=V7=1 0.699 0.699 0.699 0.699 

ALL Vi 0.698 0.698 0.698 0.698 

Shapiro-Wilk 

Statistics 
.895 .908 .914 .911 

Sig. .081 .127 .155 .143 

One-way 

Anova 
𝐹(3, 56) = 0.059, 𝑝 = .981 

In total, four models will be created. Specifically, the order 
of variables differs according to Table II. Therefore, the 
transmitter variable that is located in the first place of the 
weighted matrix is different. In particular, for the Strength 
ranking, the transmitter variable is the 𝑉2, for the Mean is the 𝑉6, 
for Random is 𝑉1 and for Reverse Strength is 𝑉10. Thus, 60 
experiments (15 for each case) are conducted and presented in 
Table IV. The results are validated in order to justify if the 
observed rearrangements play a significant role in the output 
(𝑉11) values. For this reason, one-way ANOVA is applied to 
examine if there are significant differences among the values of 
the output. The one-way ANOVA is selected since the Shapiro-

V11 

V2 



Wilk test indicate that the values of Table IV are normally 
distributed. 

V. DISCUSSION OF RESULTS 

For our research, we used the cross-sectional dataset 
consisted of 11 variables and 3.134 records, 11 × 3.134. The 
input nodes corresponded to variables associated with the job 
satisfaction problem, as described in Section II; while, the 
output variable was indicated the “Willingness to work (𝑉11)”. 
In order to define the job-satisfaction model from the data, 
glasso method with the EBIC regularization was used (Table 1 
and Fig. 2). This network structure obtained 34 connections 
(out of 45) in which 32 were assigned with positive weights and 
2 with negative weights. Specifically, the highest positive 
weights were observed between Competitive package and 
Career Opportunities (𝑉1 − 𝑉2, 𝑤12 = .389) and between 
Interesting jobs and Quality of training (𝑉7 − 𝑉8, 𝑤7,8 = .389). 

On the contrary, the negative weights were emerged among 
Long term job security and Strong management (𝑉4 −
𝑉9, 𝑤4,9 = −.076) and among Good balance between private 

life and work and Strong management (𝑉5 − 𝑉9, 𝑤5,9 = −.065) 

indicating that the increase of 𝑉9 causes a very low decrement 
of 𝑉4 and 𝑉5 and vice versa.  

As reported previously, glasso method was returned the 
asymmetric weighted matrix (Table I). For this reason, the upper 
triangular part of the weighted matrix was used after rearranging 
the nodes according to four different cases (Table II). In such 
situations, the first variable was the transmitter variable (the 
concept that could influence other concepts since the in-degree 
is zero). Thus, the last node was determined as the receiver 
variable (the concept that was affected by other variables and it 
could not affect others and the out-degree is zero) [21]. Fig. 3 
was visualized the upper weight matrix of Table III reordering 
the input variables according to strength-centrality indices. It 
was notable to mention that reordering the variables in the 
dataset, the weights among the nodes derived from glasso 
method were not changing. Therefore, the glasso with EBIC 
regularization technique would be applied only once. However, 
some directions of the edges among the concepts could be 
changed. For example, the connection between 𝑉4 and 𝑉6 is 
0.29. Reordering the variables according to Strength and 
Random orderings then 𝑉4 affects 𝑉6 (𝑉4 → 𝑉6). On the other 
hand, if we consider the rearrangements according to Mean and 
Reverse strength rankings then 𝑉6 will affect 𝑉4 (𝑉6 → 𝑉4). 

In order to investigate if the rearrangements of the variables 
(Table II) were sensitive to the output value of 𝑉11, different 
FCM scenarios were accomplished using the fcm.infer function 
(‘fcm’ R package) [24]. Before the comparisons, it was crucial 
to measure the normality of the data in order to select the 
appropriate comparison test. For small sample sizes (< 50 
samples), the Shapiro-Wilk test [22] is a more relevant test to 
assess normality. If the p-value is less than or equal to 0.05 then 
the test rejects the hypothesis of normality and the non-
parametric test will be used. Otherwise, if the p-value is greater 
than 0.05, then the outputs are normally distributed and a 
parametric test will be applied. Table IV showed the results from 
the Shapiro-Wilk test. The output values derived from FCM of 
the four observed cases were determined that the values were 

normally distributed because of the Sig. value of the Shapiro-
Wilk test was greater than 0.05. 

Therefore, the appropriate method to determine whether 
there were any statistically significant differences between the 
means of four orderings was the one-way analysis of variance 
(ANOVA) [23]. Table IV was included the results of ANOVA 
table. Specifically, the significance value in Business 
(𝐹(3,56)  =  0.059, 𝑝 = .981) was above 0.05. Consequently, 
it was concluded that in hierarchical structures or in decision-
making problems with a single output, if the input variables were 
placed in the weight matrix in any order, the result of the 
observed output concept in the FCM simulation would be close 
to the true value.  

VI. CONCLUSION 

The fundamental challenge of this study was the learning 
procedure of the weights among the observed concepts straight 
from the available data without any intervention of experts or 
the usage of historical data. For this reason, we introduced an 
automated data-driven learning algorithm, the glassoFCM 
which modelled (using the glasso with EBIC regularization 
method) and simulated (using the FCM inference method) a 
job-satisfaction problem. Specifically, the resulting FCM 
models were used to analyse and simulate the influence of 10 
concepts in the output concept in order to increase the 
willingness of the employees to work. Due to the estimation of 
the symmetric weight matrix from the glasso method, we 
obtained the upper part of the symmetric weighted matrix in 
order to construct the glassoFCM structure. For this reason, we 
proved that rearranging the input values and maintaining the 
target concept in the last position of the FCM weight matrix the 
values of the output concept were not changed significantly. 
Therefore, our findings could be effective to problems that 
expert knowledge and/or historical data could not determine 
with high assurance the directions of the edges among concepts 
of an FCM. As a consequence, this result has further 
strengthened our confidence to make meaningful 
decisions/predictions in hierarchal FCM structures, when the 
value of a single output (or receiver) concept is examined. 
Moreover, we hope that our research will serve as a base for 
future studies on cases that experts are not confident about 
causal-effect relationships among two concepts in decision-
making problems.  
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