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Abstract—This paper is concerned with interval type-2 (IT2)
fuzzy control design for a class of nonlinear space teleoperation
systems with external disturbances and time-varying delays.
IT2 fuzzy model based (FMB) control design with exponential-
type Barrier Lyapunov function (EBLF) is presented to address
state constraints, communication burden from ground stations
to satellites (space-robot), and uncertain human/environment
interaction parameters in a unified event-triggered control struc-
ture. We show that, with the proposed adaptive event-triggered
control scheme, the exponential convergence performance of the
synchronization tracking errors is guaranteed, while the pre-
scribed constraint requirement is satisfied. Simulation results are
provided to validate the effectiveness of the proposed controller.

Index Terms—Interval type-2 fuzzy control, space teleopera-
tion, state constraint, event-triggered communication.

I. INTRODUCTION

Composed of ground and space manipulators connected via
the Earth-Space communication channel, space teleoperation,
as a typical cyber-physical system (CPS), can effectively
project the perception and control capabilities of ground oper-
ators into on-orbit operation in space. Related technologies can
be widely applied not only to aerospace [1], but also to remote
surgery [2] and autonomous underwater vehicle [3], which
thus leads to increasing attention of theoretical and industrial
fields. Due to the complicated force interaction with the uncer-
tain slave environment in the procedure of on-orbit operation,
it is critical to address external disturbance and long-distance
Earth-Space time delays in a unified framework. It is well
known that the type-1 fuzzy model can be utilized to describe
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the nonlinear plants and unmodelled dynamics, featured by
average weighted sum of local linear subsystems, where the
weightings are characterized by the type-1 membership func-
tions. Thus type-1 FMB control is a promising approach for
nonlinear teleoperation systems in terms of stability analysis
and control synthesis [4], [5]. With the help of universal
approximation capability of fuzzy logic systems (FLS), an
adaptive fuzzy finite-time control scheme [6] was developed
to handle system uncertainties. In [7], the stochastic stability
in mean square for multilateral teleoperation subject to ran-
dom network-induced delays was achieved, where multiple
stochastic delays in communication channels were modelled
via Markov processes. Different from the above FLS utilized to
compensate for the uncertainty, a T-S FMB control criteria [8]
using the upper/lower boundary of time delay was proposed,
leading to less conservative stability conditions and reducing
the constraints on degree of freedom. Although the aforemen-
tioned control strategies could address teleoperation systems to
some extent, certain coefficient information about interaction
with environments is required. However, the slave environment
in space is featured by uncertain and time-varying, especially
in the task of capturing non-cooperative targets. Therefore,
implementing the above controllers would result in limited
performance in space teleoperation. In addition to this, the
communication burden induced by Space-Earth long-distance
signal transmission is not considered, which may increase
the latency of time delay and packet loss. Event-triggered
scheme is a promising tool for CPS to choose necessary
signal transmission, and accordingly receives attention from
the research community [9]–[11]. Nevertheless, to the best
knowledge of the authors, none of the previous works have
thoroughly discussed the above issues of space teleoperation
systems in the framework of FMB control.
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Another important issue in practical space teleoperation is
how to ensure constraint requirement for the sake of operation
safety, especially in the presence of contact collision. Barrier
Lyapunov function (BLF) provides an effective tool to address
systems with state/output constraints, featured by explicitly
containing prescribed constraint functions. Classic log-type
BLF [12] and tan-type BLF [13] were proposed for stability
analysis and control synthesis for constrained systems in the
framework of back-stepping control. By virtue of favorable
differentiation rules, the exponential-type BLF (EBLF) was
developed for nonlinear systems subject to state constraints
with applications to velocity observer design [14], master-slave
synchronization [15], and fault-tolerant control [16]. However,
among the aforementioned research works dealing with state
constraints via BLF, no works discussed the constraint control
issue for teleoperation systems with event-triggered mecha-
nism. In addition to this, how to ensure superior convergence
performance based on event-triggered approach, different from
uniformly ultimately bounded stability [17], [18], is a chal-
lenging issue open to discuss.

Motivated by the above analysis, we propose a novel IT2
fuzzy model based control strategy for a class of space
teleoperation systems with time-varying delays, external dis-
turbance, and system uncertainty. We show that, under the
proposed event-triggered control scheme, the exponential sta-
bility of synchronization tracking errors is realized, while
the prescribed constraint range is never violated. The main
contributions of this paper are summarized as follows.

1) The synchronization control issue for a class of space
teleoperation systems subject to uncertain coefficients of in-
teraction with slave environments is tackled via IT2 FMB
approach, where time-varying delay, external disturbance, and
system uncertainty are addressed in a unified framework of
fuzzy control.

2) The exponentially stable performance of the closed-loop
system is guaranteed, while the delay and packet loss caused
by communication burden between the master and slave side
are reduced by employing the event-triggered mechanism.

3) Time-varying state constraint requirement can be effec-
tively handled by the proposed controller, incorporating EBLF
in stability analysis and control synthesis, which achieves that
the tracking errors never exceed the preassigned range.

The remainder of this paper is organized as follows. Sec. II
introduces the dynamics model of space teleoperation systems
and necessary lemmas. Event-triggered fuzzy control strategy
is proposed in Sec. III. In Sec. IV simulation results show
the effectiveness of the proposed controller, followed by the
conclusion in Sec. V.

Notation. The subscript i = m, s represents the master
and slave manipulator, respectively. For ∀A ∈ Rn×n, ‖A‖
is the Euclidean 2-norm of A; λmin(A) and λmax(A) denote
the minimum and maximum eigenvalue of A, respectively;
diag{aj} stands for a diagonal matrix with aj as the j-th
element; col{aj} stands for a column vector with aj as the
j-th element.

II. PROBLEM FORMULATION

A. Dynamics of Space Teleoperation Systems

The space teleoperation system can be formulated as n
degree-of-freedom (DOF) Euler-Lagrange model with gravity
term omitted

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + fci(q̇i) + di = ui + JT
i (qi)Fi (1)

where the subscript i = m, s represents the master and
slave manipulator, respectively. qi, q̇i, q̈i ∈ Rn stand for the
position, velocity, and acceleration signals defined in joint
space, respectively. Mi(qi) ∈ Rn×n is the positive-definite
inertia matrix. Ci(qi, q̇i) ∈ Rn×n is the matrix denoting
Centripetal and Coriolis torques. fci(q̇i) ∈ Rn and di ∈ Rn
represent the Coulomb friction and external non-homogeneous
disturbance, respectively. ui ∈ Rn is the control input. The
forces generated by human operator and environments are
denoted as Fi=m ∈ Rm and Fi=s ∈ Rm, respectively. JT

i (qi)
is the force Jacobian matrix such that ẋi = Ji(qi)q̇i, in
which xi ∈ Rm contains the position and orientation of end-
effector for robots. Thus, the teleoperation system (1) can be
transformed into

Miẍi + Ciẋi + Fi = Ui + Fi, (2)

in whichMi = J‡i (qi)Mi(qi)J
†
i (qi), Ci = J‡i (qi)(Ci(qi, q̇i)−

Mi(qi)J
†
i (qi)J̇i(qi))J

†
i (qi), Fi = J‡i (qi)(fci(q̇i) + di), Ui =

J‡i (qi)ui, J
‡
i (qi) = (J†i (qi))

T with J†i (qi) being the Moore-
Penrose inverse of Ji(qi).

B. Ground Operator and Environmental Model

The interaction with operator and environment subject to
time-varying parameters can be formulated as an inferred p-
rule IT2 T-S fuzzy model (states of all variables will be omitted
for brevity)

Rule l : IF G1(xi) is Ql1 and...and Ga(xi) is Qla
THEN Fi = fil −Milẍi −Bilẋi −Kilxi,

(3)

where Qlν is an IT2 fuzzy set of rule l corresponding to the
function Gν(xi), l = 1, 2, ..., p, ν = 1, 2, ..., a; a is a positive
integer representing the number of fuzzy sets; Mi ∈ Rm×m,
Bil ∈ Rm×m, and Kil ∈ Rm×m are the equivalent positive-
definite inertia, damping and stiffness of human arm and
environments, respectively; fil is the bounded exogenous force
inserted at the corresponding side. Then combining (3) with
(2) yields

Rule l : IF G1(xi) is Ql1 and...and Ga(xi) is Qla
THEN Milẍi + Cilẋi +Kilxi = Ui + Fil,

(4)

where Mil =Mi +Mil, Cil = Ci +Bil, and Fil = fil −Fi.
The firing strength of the Rule l is of the following interval
set

Wil(xi) = [ωil(xi), ω̄il(xi)],

where ωil(xi) =
∏a
ν=1 µQlν

Gν(xi), ω̄il(xi) =∏a
ν=1 µ̄QlνGν(xi), in which µQlν

Gν(xi) and µ̄QlνGν(xi)

denote the lower and upper membership function such that



µ̄QlνGν(xi) ≥ µQlν
Gν(xi) ≥ 0; ωil(xi) and ω̄il(xi) are the

lower and upper grade of membership, respectively, satisfying
ω̄il(xi) ≥ ωil(xi) ≥ 0. Consequently, the inferred IT2 T-S
fuzzy model is defined as

ẍi =

p∑
l=1

ω̃il(xi)M
−1
il

(
Ui + Fil − Cilẋi −Kilxi

)
, (5)

ω̃il(xi) = ωil(xi)α(xi) + ω̄il(xi)ᾱ(xi), (6)

in which α(xi), ᾱ(xi) ∈ [0, 1] such that α(xi) + ᾱ(xi) = 1.
The IT2 T-S fuzzy model (5) in Cartesian space shows the

structural properties as follows [19], [20]
Property 1: Mil is symmetric and positive-definite such that

λmin{Mil}I ≤Mil ≤ λmax{Mil}I .
Property 2: For ∀y ∈ Rm, the dynamics can be written in

linearly parameterizable form

Milẏ + Cily = Ψil(qi, q̇i, y, ẏ)%il (7)

where Ψil(qi, q̇i, ẏ, ẏ) ∈ Rm×mo is a regressor matrix of
known functions and %il ∈ Rmo is a vector of unknown
parameters.

Property 3: ‖Cil‖ ≤ cmax ‖q̇i‖ with cmax being a positive
scalar.

III. CONTROL LAW DESIGN

Define the synchronization tracking errors in Cartesian
space as em(t) = xm(t) − xs(t − Ts) and es(t) = xs(t) −
xm(t−Tm), where Tm and Ts stand for the bounded forward
and backward time-varying delay between the ground station
and space robot, respectively.

Design the IT2 fuzzy control input with q rules as

Rule r : IF D1(x̂i) is N r
1 and...and Dc(x̂i) is N r

c

THEN Ui = Uir,
(8)

where x̂i = [xT
i , x

T
j (t− Tj)]T, j = m, s(i 6= j); N l

w is an IT2
fuzzy set of rule r corresponding to the function Dw(x̂i), r =
1, 2, ..., q, w = 1, 2, ..., c; c is a positive integer representing
the number of fuzzy sets. The firing strength of the Rule r is
of the following interval set

Mir(x̂i) = [mir(x̂i), m̄ir(x̂i)],

where mir(x̂i) =
∏c
w=1 µN rw

Dw(x̂i), m̄ir(x̂i) =∏c
w=1 µ̄N rwDw(x̂i), in which µN rw

Dw(x̂i) and µ̄N rwDw(x̂i)

denote the lower and upper membership function such that
µ̄N rwDw(x̂i) ≥ µN rw

Dw(x̂i) ≥ 0; mir(x̂i) and m̄ir(x̂i) are
the lower and upper grade of membership, respectively,
satisfying m̄ir(x̂i) ≥ mir(x̂i) ≥ 0. Then the inferred IT2
fuzzy controller is represented by

Ui =

q∑
r=1

m̃ir(x̂i)Uir, (9)

where

m̃ir(x̂i) =
θir(x̂i)mir(x̂i) + θ̄ir(x̂i)m̄ir(x̂i)∑q

r=1

(
θir(x̂i)mir(x̂i) + θ̄ir(x̂i)m̄ir(x̂i)

) ,

with m̃ir(x̂i) is the grade of the embedded membership
function such that

∑q
r=1 m̃ir(x̂i) = 1. θir(x̂i), θ̄ir(x̂i) ∈ [0, 1]

are predefined functions satisfying θir(x̂i) + θ̄ir(x̂i) = 1.
In order to reduce computing burden induced by long-

distance signal transmission, we need to design a mechanism
to determine whether to send updated status information to
the slave manipulator. Thus, a time-varying threshold event-
triggered control scheme is developed as follows

U jir(t) = τ jir(tk),∀t ∈ [tk, tk+1), k ∈ Z+ (10)

tk+1 = inf
{
t > tk|

∣∣∣τ jir(t)− U jir(t)∣∣∣ ≥ $i

∣∣∣U jir(t)∣∣∣+ ηi

}
(11)

where $i ∈ (0, 1) and ηi ∈ (0, 1) are positive design
parameters; tk is the update time; U jir(t) and τ jir(tk) are the jth
element of Uir(t) and τir(tk), respectively, for j = 1, 2, ..., n.
Once the mechanism (11) is triggered, the control input Uir(t)
will be updated by the intermediate control τir(tk+1). Thus,
for t ∈ [tk, tk+1), Uir(t) remains at τir(t) updated at the last
moment such that∣∣∣τ jir(t)− U jir(t)∣∣∣ ≤ $i

∣∣∣U jir(t)∣∣∣+ ηi, (12)

which further indicates

U jir(t) =
τ jir(t)

1 + %̄j1ir(t)$i

− %̄j2ir(t)ηi

1 + %̄j1ir(t)$i

(13)

where %̄j1ir(t) ∈ [−1, 1] and %̄j2ir(t) ∈ [−1, 1] are time-varying
parameters. Denote Γir = diag{1/1 + %̄j1ir(t)$i} and Ωir =
col{%̄j2ir(t)ηi/1 + %̄j1ir(t)$i}, one has a more compact form
of (13) as

Uir(t) = Γirτir(t)− Ωir. (14)

Combining (5), (9), and (14), we can obtain the IT2 T-S
FMB control system

ẍi =

p∑
l=1

ω̃il(xi)M
−1
il

( q∑
r=1

m̃ir(x̂i)Uir + Fil − Cilẋi −Kilxi

)

=

p∑
l=1

q∑
r=1

h̃ilrM
−1
il

(
Γirτir − Ωir + Fil − Cilẋi −Kilxi

)
(15)

where h̃ilr , h̃ilr(x̂i) = ω̃il(xi)m̃ir(x̂i) and the property∑p
l=1 ω̃il(xi) =

∑q
r=1 m̃ir(x̂i) =

∑p
l=1

∑q
r=1 h̃ilr(x̂i) = 1

is utilized.
Define the following auxiliary variable

Si = ėi + κ1iei (16)

where κ1i is a positive constant. With Property 2 and vi =
ẋi − Si, we can obtain from (2) that

Ṡi =

p∑
l=1

q∑
r=1

h̃ilrM
−1
il

(
Γirτir − Ωir + Fil − CilSi −Kilxi

−Ψil(qi, q̇i, vi, v̇i)%il

)
.

(17)



Design the intermediate bilateral control input as

τilr = −(1 +$i)
MilSiτ̄

T
ilr τ̄ilr√

ST
i Siτ̄

T
ilr τ̄ilr + ε2

, (18)

and τ̄ilr is designed as

τ̄ilr =
(
µ̄i + κ3i ‖q̇i‖

)
Si −KilM

−1
il xi − τ̄

?
ilr, (19)

in which µ̄i = µi + κ4i/ξi +
(k2i−S

T
iSi)

2

2k2i ‖Si‖
2 + ξi

2‖Si‖2
, and

τ̄?ilr = M−1
il Ψi(qi, q̇i, vi, v̇i)%̂il −

ξiψ̂ilr√
ξ2
i S

T
i Si + ε2

Si

− κ2i

ξi
ei,

(20)

with the following adaptive update laws

˙̂%ilr = −h̃ilrδ1ilrξiΨT
il(qi, q̇i, vi, v̇i)M

−T
il Si − h̃ilrδ3ilr%̂ilr,

(21)
˙̂
ψilr = h̃ilrδ2ilr

ξ2
i S

T
i Si√

ξ2
i S

T
i Si + ε2

− h̃ilrδ4ilrψ̂ilr, (22)

where κ3i is a positive tuning parameter such that κ3i >
cmax

λmin{Mi} ; δ1ilr and δ2ilr are positive scalars; κ2i, κ4i, δ3ilr
and δ4ilr are positive scalars to be designed; ξi will be defined

later; µi = sup
√

( k̇iki )
2 + ε with ε being a positive constant;

ki ∈ R+ denoting the prescribed n-order differentiable time-
varying constraint function such that ki(t0) > ‖Si(t0)‖; %̂ilr
and ψ̂ilr are the estimations of %ilr and ψilr, respectively; ψilr
will be defined later.

Theorem 1: For the nonlinear space teleoperation system
(15), if the bilateral control input (18) triggered by (10)-
(11) and adaptive laws (21)-(22) are adopted, the following
properties will hold.

1) All signals of the closed-loop teleoperation system are
bounded.

2) The constraint requirement on the synchronization track-
ing errors is satisfied. That is, the preassigned constraint will
never be violated.

3) The exponential convergence performance of the tracking
errors can be guaranteed.

Proof. Choose the following Lyapunov-Krasovskii func-
tional

V = V1 + V2 + V3, (23)

V1 =
∑
i=m,s

1

2
k2
i

(
exp(ki ◦ Si)− 1

)
, (24)

V2 =
∑
i=m,s

p∑
l=1

q∑
r=1

1

2δ1ilr
%̃T
ilr%̃ilr +

1

2δ2ilr
ψ̃2
ilr, (25)

V3 =
∑
i=m,s

κ2i

2

(∫ t

t−T̄i
tanh

(
α(τ − t+ T̄i)

)
X T
i (τ)

×RiXi(τ)dτ + eT
i ei

)
,

(26)

where ki ◦ Si = ST
i Si/(k

2
i − ST

i Si). In general, the constraint
function ki is set to be monotonically decreasing for the sake
of transient-state convergence performance. %̃ilr = %̂ilr − %ilr
denotes the estimation error of %ilr. ψ̃ilr = ψilr − ψ̂ilr repre-
sents the estimation error of ψilr; Xi = [ST

i , %̃
T
ilr, ψ̃

T
ilr, e

T
i ]

T;
Ri is a symmetric positive-definite matrix of appropriate
dimension; α ∈ R+ is a tunable parameter; tanh(·) denotes
the hyperbolic tangent function; T̄i is the upper boundary of
Ti. Then taking time derivative of V1 gives

V̇1 =
∑
i=m,s

k̇iki
(
exp(ki ◦ Si)− 1

)
+ k2

i exp(ki ◦ Si)

× ST
i Ṡik

2
i − ST

i Sik̇iki
(k2
i − ST

i Si)
2

≤
∑
i=m,s

−k̇iki −
k̇ik

3
i S

T
i Si

(k2
i − ST

i Si)
2

exp(ki ◦ Si)

+ k4
i exp(ki ◦ Si)

ST
i Ṡi

(k2
i − ST

i Si)
2
.

(27)

Recalling µi = sup
√

( k̇iki )
2 + ε, then (27) can be rewritten

as

V̇1 ≤
∑
i=m,s

µik
2
i + µiξiS

T
i Si + ξiS

T
i Ṡi (28)

where ξi = k4
i exp(ki ◦ Si)/(k2

i − ST
i Si)

2. Substituting (17)
into (28) yields

V̇1 ≤
∑
i=m,s

µik
2
i + µiξiS

T
i Si + ξiS

T
i

(
p∑
l=1

q∑
r=1

h̃ilrM
−1
il

×
(

Γirτir − Ωir + Fil − CilSi −Kilxi

−Ψil(qi, q̇i, vi, v̇i)%il

))
.

(29)
Note that we can obtain from (29) that

ξiS
T
iM
−1
il (Fil − Ωir) ≤ ξi ‖Si‖

∥∥M−1
il

∥∥ (F̄il + Ω̄ir)

≤ ψilrε+ ψilr
ξ2
i S

T
i Si√

ξ2
i S

T
i Si + ε2

,
(30)

in which ψilr = F̄il + Ω̄ir/λmin{Mil} is an unknown scalar
to be estimated; F̄il and Ω̄ir stand for unknown upper bounds
of Fil and Ωir, respectively.

Similarly with (30), according to Property 1 and Property
3, one can derive that

−ξiST
iM
−1
il CilSi ≤

ξicmax
λmin{Mil}

‖q̇i‖ST
i Si. (31)



Then substituting (30) and (31) into (29) and further sim-
plifying yield

V̇1 ≤
∑
i=m,s

µik
2
i + µiξiS

T
i Si +

∑
i=m,s

p∑
l=1

q∑
r=1

h̃ilr

(
ξi

× ST
iM
−1
il Γirτilr + ψilrε+ ψilr

ξ2
i S

T
i Si√

ξ2
i S

T
i Si + ε2

+
ξicmax

λmin{Mil}
‖q̇i‖ST

i Si

− ξiST
iM
−1
il

(
Kilxi + Ψil(qi, q̇i, vi, v̇i)%il

))
,

(32)

which further indicates

ξiS
T
iM
−1
il Γirτilr ≤ −

ξiS
T
i Siτ̄

T
ilr τ̄ilr√

ST
i Siτ̄

T
ilr τ̄ilr + ε2

≤ ξiε− ξiST
i τ̄ilr

≤ ξ2
i

2
+
ε2

2
− ξiST

i τ̄ilr.

(33)

Combining (32)-(33) with (18)-(19), we have

V̇1 ≤
∑
i=m,s

p∑
l=1

q∑
r=1

h̃ilr

(
µik

2
i + ψilrε−

(k2
i − ST

i Si)
2

2k2
i

ξi

+
ξ2
i S

T
i Si√

ξ2
i S

T
i Si + ε2

ψ̃ilr + ξiS
T
iM
−1
il Ψil(qi, q̇i, vi, v̇i)%̃il

− κ2iS
T
i ei − κ4iS

T
i Si +

ε2

2

)
.

(34)
Note that the time-derivative of V2 gives

V̇2 =
∑
i=m,s

p∑
l=1

q∑
r=1

1

δ1ilr
%̃T
ilr

˙̃%ilr +
1

δ2ilr
ψ̃ilr

˙̃
ψilr. (35)

Then substituting (21) and (22) into (35) and (34), we have

V̇1 + V̇2 ≤
∑
i=m,s

p∑
l=1

q∑
r=1

h̃ilr

(
µik

2
i + ψilrε−

k2
i

2
exp(ki ◦ Si)

+
ξ2
i S

T
i Siψ̃ilr√

ξ2
i S

T
i Si + ε2

+ ξiS
T
iM
−1
il Ψil(qi, q̇i, vi, v̇i)%̃il

− κ2iS
T
i ei − κ4iS

T
i Si +

ε2

2

)
−
∑
i=m,s

p∑
l=1

q∑
r=1

h̃ilr

×

(
ξi%̃

T
ilΨ

T
il(qi, q̇i, vi, v̇i)M

−T
il Si +

δ3ilr
δ1ilr

%̃T
ilr%̂ilr

+
ξ2
i S

T
i Si√

ξ2
i S

T
i Si + ε2

ψ̃ilr −
δ4ilr
δ2ilr

ψ̃ilrψ̂ilr

)
,

(36)

which can be further simplified as

V̇1 + V̇2 ≤
∑
i=m,s

p∑
l=1

q∑
r=1

h̃ilr

(
µik

2
i + ψilrε+

ε2

2

− k2
i

2
exp(ki ◦ Si)− κ2iS

T
i ei

− κ4iS
T
i Si −

δ3ilr
δ1ilr

%̃T
ilr%̂ilr +

δ4ilr
δ2ilr

ψ̃ilrψ̂ilr

)
(37)

where the last two terms of the right hand of (37) follow

−δ3ilr
δ1ilr

%̃T
ilr%̂ilr = −δ3ilr

δ1ilr
%̃T
ilr(%̃ilr + %ilr)

≤ − δ3ilr
2δ1ilr

%̃T
ilr%̃ilr +

δ3ilr
2δ1ilr

%T
ilr%ilr.

(38)

Similarly, we have δ4ilr
δ2ilr

ψ̃ilrψ̂ilr ≤ − δ4ilr
2δ2ilr

ψ̃2
ilr + δ4ilr

2δ2ilr
ψ2
ilr,

which indicates the time-derivative of V is given by

V̇ =V̇1 + V̇2 + V̇3

≤
∑
i=m,s

p∑
l=1

q∑
r=1

h̃ilr

(
− δ3ilr

2δ1ilr
%̃T
ilr%̃ilr −

δ4ilr
2δ2ilr

ψ̃2
ilr −

k2
i

2

× exp(ki ◦ Si) + κ2ie
T
i ėi − κ2iS

T
i ei − κ4iS

T
i Si

+
κ2i

2
tanh(αT̄i)X T

i RiXi −
κ2i

2

∫ t

t−T̄i

(
α− αtanh

(
α

× (τ − t+ T̄i)
)2)X T

i (t)RiXi(t)dτ + γilr

)
(39)

where γilr = µik
2
i + ψilrε + ε2

2 + δ3ilr
2δ1ilr

%T
ilr%ilr + δ4ilr

2δ2ilr
ψ2
ilr.

Recalling Si = ėi + κ1iei, (39) can be further simplified as

V̇ ≤
∑
i=m,s

p∑
l=1

q∑
r=1

−h̃ilr

((
δ3ilr
2δ1ilr

− κ2i

2
R̄i

)
%̃T
ilr%̃ilr

+

(
δ4ilr
2δ2ilr

− κ2i

2
R̄i

)
ψ̃2
ilr +

(
κ1iκ2i −

κ2i

2
R̄i

)
eT
i ei

+

(
κ4i −

κ2i

2
R̄i

)
ST
i Si +

k2
i

2
exp(ki ◦ Si) +

κ2i

2

∫ t

t−T̄i(
α− αtanh

(
α(τ − t+ T̄i)

)2)X T
i (t)RiXi(t)dτ − γil

)

≤
∑
i=m,s

p∑
l=1

q∑
r=1

−h̃ilr

((
δ3ilr
2δ1ilr

− κ2i

2
R̄i

)
%̃T
ilr%̃ilr

+

(
δ4ilr
2δ2ilr

− κ2i

2
R̄i

)
ψ̃2
ilr +

(
κ1iκ2i −

κ2i

2
R̄i

)
eT
i ei

+

(
κ4i −

κ2i

2
R̄i

)
ST
i Si +

k2
i

2

(
exp(ki ◦ Si)− 1

)
+
κ2i

2

×
∫ t

t−T̄i
tanh

(
α(τ − t+ T̄i)

)
X T
i (t)RiXi(t)dτ − γilr

)
≤− βV + γ

(40)
where R̄i = λmax{Ri}; γ =

∑
i=m,s

∑p
l=1

∑q
r=1 h̃ilrγilr;

κ5i = min{δ3ilr/2δ1ilr − κ2iR̄i/2, δ4ilr/2δ2ilr −



κ2iR̄i/2, κ1iκ2i − κ2iR̄i/2, κ4i − κ2iR̄i/2, 1};
β =

∑p
l=1

∑q
r=1 h̃ilrκ5i × min{1, 2δ1ilr, 2δ2ilr}. Then

it follows from (40) that

V1 ≤ V ≤ e−βtV (0) +
γ

β
(1− e−βt), (41)

which indicates the uniformly ultimately boundedness of the
space teleoperation system can be guaranteed such that Si, ei,
%̃il, ψ̃il ∈ L∞. Since Si = ėi + κ1iei, the boundedness of
ėi is ensured. Then all signals of the closed-loop system are
bounded. That completes the proof.

Remark 1: The hyperbolic tangent function with a tunable
parameter used in the integral quadratic term, as stated in
(26), plays an important role in stability analysis, where the
saturation characteristic of the hyperbolic tangent function
reduces the delay dependence of the stability condition. It
further implies that extra estimate of the upper bound of delay
is not required in the proposed scheme.

Remark 2: The parameter α in the designed Lyapunov-
Krasovskii functional (26) shows the flexible application to
teleoperation systems with different upper bounds of time-
delays. For the derivation of (40) to hold, the inequality
α − αtanh

(
α(τ − t + T̄i)

)2 ≥ tanh
(
α(τ − t + T̄i)

)
needs

to be satisfied for ∀τ ∈ [t− T̄i, t], which is equivalent to

α ≥
tanh

(
αT̄i
)

1− tanh
(
αT̄i
)2

≥
tanh

(
α(τ − t+ T̄i)

)
1− tanh

(
α(τ − t+ T̄i)

)2 , (42)

in which the monotonically increasing nature of the hyperbolic
tangent function is used. It means that, with appropriate
selection of α satisfying (42), the proposed control structure is
unified with respect to multiple delay scenarios. For example,
the measured round-trip delay in FORROST-ASTRA W3L
space mission implemented by German Aerospace Center
(DLR) is on average 570 ms [21]. Then α can be set as 1
for this geostationary teleoperation.

Remark 3: For ∀t ∈ [tk, tk+1), we have
d
dt

∣∣∣τ jir(t)− U jir(t)∣∣∣ = d
dt ((τ

j
ir(t) − U jir(t)) × (τ jir(t) −

U jir(t)))
1
2 = sign(τ jir(t)− U

j
ir(t))(τ̇

j
ir(t)− U̇

j
ir(t)) ≤

∣∣∣τ̇ jir(t)∣∣∣.
It follows from (18) that τ jir(t) is bounded and
continuously differentiable such that

∣∣∣τ̇ jir(t)∣∣∣ ≤ χjir.

In view of the fact that τ jir(tk) − U jir(tk) = 0 and
limt→tk+1

τ jir(t)− U
j
ir(t) = ηjir, there exists a positive scalar

t? such that {tk+1 − tk} ≥ t? ≥ ηjir/χ
j
ir. Hence Zeno

behaviour can be effectively eliminated in the proposed
scheme.

Remark 4: It is worth mentioning that, when ki → +∞,
according to L’Hopital rule, the EBLF (24) will degenerate
into a commonly used quadratic form

lim
ki→+∞

V1 = lim
ki→+∞

1

2

k2
i S

T
i Si

k2
i − ST

i Si
=

1

2
ST
i Si. (43)

The EBLF (24) can be still used for stability analysis
and control synthesis in the case of no constraint, which
is essentially different from conventional BLF approaches
[22], [23]. Therefore, compared with log-type BLF [22] and
tangent-type BLF [23], the exponential-type BLF (24) is a
more generalized form used in a unified framework to handle
nonlinear systems with and without constraint requirements
simultaneously.

IV. SIMULATION RESULTS

To validate the effectiveness of the developed adaptive
event-triggered control strategy, two identical 2-DOF manip-
ulators are set as the master and slave part, respectively. The
body parameters of the space teleoperation system are given
as mm1 = 1.5kg, mm2 = 0.5kg, ms1 = 1.5kg, ms2 = 0.5kg,
lm1 = 1.0m, lm2 = 0.8m, ls1 = 1.0m, ls2 = 0.8m.
The initial states are set as qm(0) = [0.4π 0.3π]T(rad),
qs(0) = [0.2π 0.05π]T(rad), q̇m(0) = [0 0]T(rad/s), q̇s(0) =
[0 0]T(rad/s). dm and ds are external disturbances with
di = [di1 di2]T, where di1 and di2 are random numbers in
the range of [−0.2, 0.2]. The control parameters are chosen
as κ1m = κ1s = 0.5, $m = $s = 0.2, ηm = ηs = 1,
ε = 0.1, κ2m = κ2s = 2, κ3m = κ3s = 4, κ4m = κ4s = 5,
δ1m = δ2m = 1, δ1s = δ2s = 1, δ3m = δ3s = 4,
δ4m = δ4s = 4. The time-varying constraint function is
designed as km = ks = 1.6exp(−t) + 0.25. The time
delays are composed of jittering delays and constant Earth-
Space delay measured by DLR in the FORROST-ASTRA
W3L mission [21], as shown in Fig. 1. A 4-rule IT2 T-S
fuzzy model is developed to describe the force interaction (3)

with Ki1 = Ki3 =
[
0.01 0

0 0.01

]
, Ki2 = Ki4 =

[
1 0
0 1

]
,

Bi1 = Bi2 =
[0.01 0

0 0.01

]
, Bi3 = Bi4 =

[0.1 0
0 0.1

]
,

Mi1 = Mi2 =
[0.01 0

0 0.01

]
, Mi3 = Mi4 =

[0.1 0
0 0.1

]
,

where the operating domain is characterized by xji ∈ [−2, 2]
and ẋji ∈ [−5, 5] for i ∈ {m, s}, j ∈ {1, 2}. A 2-rule IT2
fuzzy controller is designed with

mi1(x) = µN 1
1

(x) = m̄i1(x) = µ̄N 1
1
(x) = exp(−‖x‖

2

3.5
)

mi2(x) = µN 2
1

(x) = m̄i2(x) = µ̄N 2
1
(x) = 1− µ̄N 1

1
(x)

θi1(x) = θ̄i1(x) =
1

2
, θi2(x) = θ̄i2(x) =

1

2
.

The synchronization position errors are illustrated in Fig. 2,
where xij denotes the position response in Cartesian space
for i manipulator with respect to j direction. j = 1 and
j = 2 represent the x and y direction in Cartesian space,
respectively. It can be seen that the tracking performance can
be guaranteed despite the existence of time-varying delay,
uncertain external disturbance and force interaction, and the
prescribed constraint requirement is satisfied. Thus, We can
indirectly obtain the constraint on synchronization tracking
errors by constraining the sliding mode. Due to limited number
of pages, we have omitted the simulation results of the sliding
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Fig. 3. Released intervals of the proposed event-triggered controller for the
master manipulator with respect to Joint 1.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
e
le

a
se

d
 i

n
te

rv
a
ls

0 5 10 15 20 25 30

Time (s)

Fig. 4. Released intervals of the proposed event-triggered controller for the
master manipulator with respect to Joint 2.
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Fig. 5. Released intervals of the proposed event-triggered controller for the
slave manipulator with respect to Joint 1.

mode. Figs. 3-6 show that the communication burden can be
effectively reduced by employing the proposed event-triggered
mechanism.

V. CONCLUSION

In this paper, an adaptive event-triggered fuzzy control
scheme is proposed for a class of uncertain space teleoperation
systems subject to time-varying delay, external disturbance,
and state constraint. With the help of interval type-2 fuzzy
model, we firstly address the uncertain dynamic parameters in
the process of force interaction in a unified control structure.
We rigorously show that, with the developed event-triggered
fuzzy controller incorporating the exponential-type barrier
Lyapunov function technique, the exponential convergence
performance of tracking errors is ensured while the state
constraint is never violated. Future works will aim at dealing
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with output feedback control issue in the current framework
of event-triggered fuzzy control.
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