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Abstract—Fuzzy set theory has found increasing interest in
the geosciences, geographic information systems, and spatial
database systems to represent geometric objects in the two-
dimensional space that reveal an intrinsically vague or fuzzy
nature. A spatial object is fuzzy if it contains locations that cannot
be assigned completely to the object or to its complement. From a
conceptual perspective, fuzzy spatial data types for 0-dimensional
fuzzy points, 1-dimensional fuzzy lines, and 2-dimensional fuzzy
regions in the plane have been introduced, e.g., by the authors
formal Fuzzy Spatial Algebra (FUSA). But the limitation of fuzzy
spatial objects to a fixed geometric dimension turns out to be
sometimes too restrictive since such objects could benefit from
a characterization in terms of several fuzzy spatial sub-objects
of different dimensions. An example is a river that consists
of 1-dimensional linear parts and 2-dimensional areal parts.
For this purpose, this paper introduces a new fuzzy spatial
composition type with corresponding operations. It allows one to
accommodate fuzzy spatial sub-objects that are either adjacent
or disjoint. As a generalization of this type, this paper provides a
fuzzy spatial collection type with corresponding operations. Fuzzy
collection objects allow one to keep an arbitrary, finite number of
fuzzy spatial objects of possibly different dimensions without any
topological constraints in a single object. Application examples
show how these new data types can be deployed.

Index Terms—Fuzzy spatial data types, heterogeneous spatial
data, fuzzy spatial collection, fuzzy spatial composition

I. INTRODUCTION

Geographical Information Systems (GIS) and spatial
database systems are sophisticated tools to represent, manage,
and query crisp spatial objects that are characterized by an
exact location and a precisely defined extent, shape, and
boundary in space. Examples are the positions of lighthouses
and countries with their political boundaries. Spatial data types
for crisp points, lines, and regions have been introduced for
their representation, including geometric operations such as
topological relationships (e.g., overlap), geometric set opera-
tions (e.g., union), and numerical operations (e.g., distance).

But increasingly, geoscientists have shown interest in mod-
eling spatial phenomena characterized by spatial fuzziness.
It captures the inherent property of many spatial objects in
reality that have inexact locations, vague boundaries, and/or
blurred interiors, and hence cannot be adequately represented
by crisp spatial objects. Examples are air polluted areas,
temperature zones, soil strata, oceans, agricultural cultivation
areas, and habitats of species. In the geosciences, GIS, and

spatial database systems, fuzzy set theory has become a pop-
ular formal tool for modeling such fuzzy spatial objects. For
representing them, the authors’ Fuzzy Spatial Algebra (FUSA)
provides a formal definition of the fuzzy spatial data types
fpoint for 0-dimensional fuzzy points, fline for 1-dimensional
fuzzy lines, and fregion for 2-dimensional fuzzy regions. It
relaxes the strict decision of belonging (membership degree
1) or non-belonging (membership degree 0) of a point to an
object. Instead, partial membership is allowed and expressed
by a membership degree in the interval [0, 1]. Further, multiple
belonging to several spatial objects is possible with different
membership degrees. A number of fuzzy spatial operations
has been formally defined like fuzzy geometric set operations
(e.g., fuzzy geometric union), fuzzy numerical operations (e.g.,
fuzzy length, fuzzy area), and fuzzy topological relationships
(e.g., fuzzy overlap, fuzzy inside).

Despite this progress, it turns out that the limitation of fuzzy
spatial objects to a single and fixed geometric dimension is
sometimes too restrictive conceptually since many fuzzy real-
world phenomena could be better characterized by several
fuzzy sub-objects of different geometric dimension. An ex-
ample is a fuzzy spatial object that represents the pollution
of a river whose geometry consists of 1-dimensional linear
parts and 2-dimensional areal parts. For this purpose, the
first goal of this paper is to introduce a new fuzzy spatial
composition type as a heterogeneous fuzzy spatial data type.
A fuzzy spatial composition object contains one fuzzy point
sub-object, one fuzzy line sub-object, and one fuzzy region
sub-object to represent spatial components of each of the three
geometric dimensions. Each pair of fuzzy sub-objects has to
fulfill the topological constraint that its two sub-objects are
either disjoint or adjacent.

The second goal is a generalization of this data type to a
fuzzy spatial collection type. This type abandons any kind of
constraints on its sub-objects. For instance, it allows several
fuzzy spatial sub-objects of the same and/or different fuzzy
spatial data types (fpoint, fline, fregion) as well as overlapping
sub-objects. Further, it permits other fuzzy spatial collection
objects and fuzzy spatial composition objects as sub-objects.

The third goal of this paper consists in the definition of
a selected set of operations on the two new data types.
Examples are aggregation operations (collect, fuzzy union) on
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fuzzy spatial collection objects as well as fuzzy geometric set
operations (union, intersection, and difference) on fuzzy spatial
collection objects and fuzzy spatial composition objects.

The fourth goal is to show how the new data types can be
used in applications. For this purpose, we specify a simple
application scenario and pose some SQL queries that apply
some of the operations introduced in this paper.

Section II discusses related work. Section III provides a
brief overview of the fuzzy spatial data types fpoint, fline,
fregion and their operations in FUSA. Section IV formally
defines the data type fcomposition for fuzzy spatial com-
position objects. Section V extends the fuzzy geometric set
operations that are currently defined on two objects of the same
fuzzy spatial data type to two objects of different fuzzy spatial
data types. This enables the definition of fuzzy geometric set
operations on two fuzzy spatial composition objects in Sec-
tion VI. Section VII formally defines the data type fcollection
for fuzzy spatial collection objects. Operations on two fuzzy
spatial collection objects are provided in Section VIII. Spatial
SQL queries that illustrate the new concepts are shown in
Section IX. Finally, Section X draws some conclusions and
discusses future work.

II. RELATED WORK

In this section we discuss related work that refers to the
handling of collections of heterogeneous spatial objects. We
characterize it according to the following criteria: (i) underly-
ing approach, (ii) flexibility, and (iii) applicability.

As for the underlying approach, we distinguish three ap-
proaches. The first approach exclusively deals with crisp
spatial objects. It provides a spatial collection type called
GEOMETRYCOLLECTION specified by OGC [1] and im-
plemented in many spatial database systems and GIS such as
PostGIS and QGIS. But this data type is unable to represent
vague spatial phenomena. The second approach models vague
spatial objects on the basis of a three-valued logic with the
truth values true, false, and maybe. The Qualitative Min-Max
Model (QMM) [2] represents a fuzzy spatial object as a pair of
crisp spatial objects that represent the minimum and maximum
extents of the fuzzy spatial object. The QMM allows the
specification of a fuzzy line as a pair of mixed-dimensional
spatial entities (i.e., all binary combinations of points, lines,
and regions). However, this model does not leverage a many-
valued logic and hence limits the representation of spatial
fuzziness. The third approach employs fuzzy set theory to
assign membership degrees to each point of a fuzzy spatial
object. The fuzzy approach in [3], [4] defines two fuzzy spatial
data types for handling heterogeneous spatial objects, called
VExt and VLDim (for details see below).

As for the flexibility, we discuss how the aforementioned
references represent heterogeneous data types. A GEOME-
TRYCOLLECTION object may contain any list of spatial
objects of all crisp spatial data types (i.e., crisp points, lines,
and regions) without any restrictions. The QMM characterizes
the interior and the boundary of a fuzzy line object by
using the four adverbs “weakly”, “fairly”, “strongly”, and

“completely”. However, if both the interior and the boundary
are completely vague, then a fuzzy line object is represented by
a simple region. We consider this as a “break of dimensional
abstraction”. Finally, the fuzzy approach specifies a VExt
object as a collection of fuzzy lines and fuzzy regions, and
a VLDim object as a collection of fuzzy points and fuzzy
lines. A data type that includes collections of objects of all
three fuzzy spatial data types together is not available.

As for the applicability, we point out how heterogeneous
data types can be used in spatial operations. The main
operations on two GEOMETRYCOLLECTION objects are
collect, which gathers the components of both objects, and
union, which geometrically merges the components of both
objects. The QMM specifies topological relationships (e.g.,
disjoint, meet) between fuzzy spatial objects by extending the
9-Intersection model [5] on crisp spatial objects. Essentially,
a topological relationship is determined by using the minimal
and maximal extents of the fuzzy spatial objects as indepen-
dent crisp spatial objects in the intersection matrix. Similar
configurations of the matrix are clustered and then associated
to the four adverbs. Finally, the fuzzy approach does not define
spatial operations for handling VExt and VLDim objects. A
VExt object is obtained when extracting the fuzzy boundary
of a fuzzy region object, while a VLDim object is the result
of the fuzzy boundary of a fuzzy line object.

Our approach distinguishes itself because of the following
characteristics. First, it is based on FUSA [6], which lever-
ages a many-valued logic for representing spatial fuzziness.
Second, our two heterogeneous data types, fcollection and
fcomposition, are flexible and expressive to represent several
spatial phenomena that cannot be well represented by available
approaches. Third, these data types can be handled by fuzzy
spatial operations and integrated into database systems by
extending the SPA [7].

III. FUZZY SPATIAL DATA TYPES AND THEIR OPERATIONS

This section gives a brief overview of FUSA and outlines
its fuzzy spatial data types (Section III-A) and its fuzzy spatial
operations (Section III-B).

A. Fuzzy Points, Fuzzy Lines, and Fuzzy Regions

The fuzzy spatial data types fpoint for fuzzy points, fline
for fuzzy lines, and fregion for fuzzy regions in FUSA build
the foundation of the data types fcomposition and fcollection
in this paper. Their formal definitions, special properties, and
constraints leverage concepts from fuzzy set theory and fuzzy
topology [8], [9] and are presented in [6], [7].

Intuitively, fuzzy spatial objects have the same geometric
structure as crisp spatial objects. But, in addition, each of
their points is associated with a membership degree in ]0, 1]
indicating to which extent a point belongs to the spatial object.
A fuzzy point object of type fpoint is a set of disjoint simple
fuzzy points. A simple fuzzy point p̃ at (a, b) in R2, written
p̃(a, b), is a fuzzy singleton in R2 defined by the membership
function µp̃(a,b)(x, y) = m ∈ ]0, 1] if (x, y) = (a, b), and
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Fig. 1. A fpoint object (a), a fline object (b), a fregion object (c), the
fuzzy boundary of the fline object (d), and the fuzzy boundary of the fregion
object (e). Darker areas indicate higher membership degrees than lighter areas.

µp̃(a,b)(x, y) = 0 otherwise. Figure 1a shows a fpoint object
composed of six simple fuzzy points.

A fuzzy line object of type fline is a set of adjacent or
disjoint simple fuzzy lines, with special properties. A simple
fuzzy line object l̃ is given as the fuzzy point set l̃ =
{(q, µl̃(q)) | q ∈ fl̃([0, 1])}, where fl̃ is a continuous function
that models a simple crisp line and µl̃ is a (semi-)continuous
function that enforces a smooth transition of membership
values with possibly finitely many discontinuities. Figure 1b
shows a fline object composed of five simple fuzzy lines.

A fuzzy region object of type fregion is defined as a set
of disjoint simple fuzzy regions. A simple fuzzy region r̃ is a
bounded, connected, and regular closed fuzzy set with a mem-
bership function µr̃ : R2 →]0, 1] that assigns a membership
degree to each point in r̃, that is, r̃ = {(q, µr̃(q)) | q ∈ R2}.
Regularity avoids that r̃ has geometric anomalies like isolated
or dangling line and point features as well as missing lines
and points in the form of cuts and punctures [5]. Figure 1c
shows a fregion object composed of two simple fuzzy regions.

The two operations core and support map fuzzy sets to
crisp sets. Let Ã ∈ {fpoint ,fline, fregion}. The core com-
prises all points with membership degree 1, i.e., core(Ã) =
{q ∈ R2 |µÃ(q) = 1}. The support contains all points with
membership degree greater than 0, i.e., supp(Ã) = {q ∈
R2|µÃ(q) > 0}.

The fuzzy boundary of fline and fregion objects result in
heterogeneous data types. Let S̃ ∈ {fline, fregion}. The fuzzy
boundary of S̃, denoted by ∂S̃, is the union of the crisp
boundary of the core of S̃, denoted by ∂cS̃ = {(q, 1) ∈
S̃ | q ∈ ∂(core(S̃))}, and the fuzzy non-core part of S̃, denoted
by ∂f S̃ = {(q, µS̃(q)) ∈ S̃ | 0 < µS̃(q) < 1}. That is,
∂S̃ = ∂cS̃ ∪ ∂f S̃. Further, ∂cS̃ ∈ fline if S̃ ∈ fregion and
∂cS̃ ∈ fpoint otherwise; and ∂f S̃ ∈ fregion if S̃ ∈ fregion
and ∂cS̃ ∈ fline otherwise. Figure 1d shows the fuzzy
boundary of the fline object depicted in Figure 1b. It is formed
by a fpoint object and a fline object. Figure 1e shows the
fuzzy boundary of the fregion object depicted in Figure 1c. It
is formed by a fline object and a fregion object.

B. Fuzzy Spatial Operations

For handling heterogeneous data types, we make use of
the fuzzy geometric set operations of two fuzzy spatial ob-
jects [6], such as fuzzy geometric intersection, union, and
difference. They have the signature α × α → α with
α ∈ {fpoint ,fline, fregion}, that is, their arguments are of
the same fuzzy spatial data type. Let Ã, B̃ ∈ α, and let

Fig. 2. Example of modeling the pollution of a river as a fuzzy spatial
composition object consisting of a fuzzy line sub-object (all linear parts) and
a fuzzy region object (all areal parts).

reg be a regularization function that corrects any kind of
arising geometric anomaly (see Section V, [6]). The fuzzy
geometric intersection of Ã and B̃ is defined as Ã ⊗ B̃ =
{(q, µÃ⊗B̃(q)) | q ∈ R2 ∧ µÃ⊗B̃(q) = min(µÃ(q), µB̃(q))}.
The fuzzy geometric union of Ã and B̃ is defined as Ã⊕ B̃ =
{(q, µÃ⊕B̃(q)) | q ∈ R2 ∧ µÃ⊕B̃(q) = max(µÃ(q), µB̃(q))}.
The fuzzy bounded difference of Ã and B̃ is defined as Ã−̇B̃ =
{(q, µÃ−̇B̃(q)) | q ∈ R2 ∧ µÃ−̇B̃(q) = max(0, µÃ(q) −
µB̃(q))}. The fuzzy symmetric difference of Ã and B̃ is
defined as Ã∆B̃ = {(q, µÃ∆B̃(q)) | q ∈ R2 ∧ µÃ∆B̃(q) =
|µÃ(q)− µB̃(q)|}.

IV. DEFINITION OF A FUZZY SPATIAL DATA TYPE FOR
FUZZY SPATIAL COMPOSITIONS

The fuzzy spatial data types fpoint, fline, and fregion in
FUSA provide fuzzy spatial objects whose components are
all of the same dimension 0, 1, or 2, respectively. From
a modeling perspective, this often limits the expressiveness
of spatial reality since many real-world phenomena could
be better characterized by a fuzzy spatial composition object
consisting of fuzzy spatial sub-objects of different geometric
dimension that fulfill the topological constraints of pairwise
disjointedness or adjacency. For example, if we plan to model
the pollution of a river as a fuzzy spatial composition object,
we can distinguish narrow 1-dimensional linear parts of the
river and broader 2-dimensional areal parts possibly with holes
(islands) of the river (Figure 2). An assembly of a fuzzy line
sub-object and a fuzzy region sub-object, which meet each
other in common points of equal membership degree, to a
fuzzy spatial composition object would sufficiently capture
spatial reality. Formally, we define the fuzzy spatial data type
fcomposition for fuzzy spatial composition objects as follows:

fcomposition =

{(p̃, l̃, r̃) |
(i) p̃ ∈ fpoint , l̃ ∈ fline, r̃ ∈ fregion

(ii) ∀ o1, o2 ∈ {supp(p̃), supp(l̃), supp(r̃)}, o1 6= o2 :
meetc(o1, o2) ∨ disjointc(o1, o2)

(iii) ∀ õ1 ∈ {p̃, l̃} ∀ õ2 ∈ {l̃, r̃}, õ1 6= õ2,
∀ q ∈ supp(õ1) ∩ ∂supp(õ2) : µõ1(q) = µõ2(q)}

Each fuzzy spatial composition object is represented as a
triple that contains a fuzzy point object, a fuzzy line object, and
a fuzzy region object (Condition (i)). Condition (ii) requires
that any pair of supports of these three fuzzy spatial objects
may only be either adjacent or disjoint. The reason is that a
point of a fuzzy spatial composition object should not belong
to the interiors of more than one fuzzy sub-object since this



would contradict the composition idea. However, common
boundary points are allowed since they serve as “connection
points” between the fuzzy sub-objects. The topological rela-
tionships are expressed by the well-defined topological cluster
predicates meetc and disjointc [5] on complex crisp spatial
objects. In the case of common boundary points between the
three fuzzy sub-objects, in order to ensure semantic consis-
tency, Condition (iii) requires that the membership degree of
each intersection point must be the same in each intersecting
sub-object. One or more intersection points are given if the
support of the fuzzy point sub-object intersects the boundary
of the support of the fuzzy line sub-object or fuzzy region sub-
object, or if the support of the fuzzy line sub-object intersects
the boundary of the support of the fuzzy region sub-object.

The fact that each data type α is a subtype of the data
type fcomposition is given by the following equivalences:
(i) p̃ ∈ fpoint ⇔ (p̃,∅,∅) ∈ fcomposition , (ii) l̃ ∈ fline ⇔
(∅, l̃,∅) ∈ fcomposition , and (iii) r̃ ∈ fregion ⇔ (∅,∅, r̃) ∈
fcomposition .

V. EXTENDING THE FUZZY GEOMETRIC SET OPERATIONS
TO OPERANDS OF DIFFERENT FUZZY SPATIAL DATA TYPES

The fuzzy geometric set operations on fuzzy spatial com-
positions in Section VI will require an extension of the fuzzy
geometric set operations (Section III-B) on two objects of the
same fuzzy spatial data type (Section III-A) to two objects
of different fuzzy spatial data types. Since this can produce
fuzzy spatial objects with sub-objects of different geometric
dimensions, that is, fuzzy spatial composition objects, the re-
sult type of the extended operations is the type fcomposition .
Formally, the signature α×α→ α is modified to the signature
α × β → fcomposition with α, β ∈ {fpoint ,fline, fregion}.
This implies that also for α = β we obtain an object of type
fcomposition now.

First we define some needed auxiliary operations. The first
operation is extract : X → point× line×region , where X is
any point set in R2. This function extracts three crisp spatial
objects from a given point set as follows. Let A ⊆ X and
extract(A) = (p, l, r). First, we identify the set Aregion ⊆ A
such that holds Aregion ∈ region and ∀Aregion ⊂ B ⊆ A :
B 6∈ region . This means that Aregion can be either an empty
region object or the largest region object that exists in A. We
identify the set Apoint = {q ∈ A | ∀ ε > 0 : N(q, ε) − {q} =
∅} such that holds Apoint ∈ point . That is, each point q
of Apoint is an isolated point of A since its neighborhood
does not contain any other points of A. We can conclude that
B = A − A◦region − Apoint ∈ line . The components of B
are non-self-intersecting lines [5] that possibly share boundary
points. Let P = {q ∈ B | degree(q) ≥ 3} where the function
degree returns the number of line components that contain
a given point. Thus, P contains boundary points that are
shared by at least three line components. Points with a degree
equal to 2 denote the end of closed lines representing the
boundaries of the components of Aregion . We are not interested
in them since we aim to form a crisp line object that possibly
shares boundary points with the crisp region object. This crisp

line object is given as Aline = B − Aregion ∪ P ∈ line .
This means that Aline can be either an empty crisp line
object or a crisp line object that shares single boundary points
with the boundary of Aregion . Finally we make the following
assignments: p = Apoint , l = Aline , and r = Aregion .

Other auxiliary functions are typeid , type , project , and reg .
Let õ ∈ {p̃, l̃, r̃}. The auxiliary function typeid , with the
signature ω → text with ω ∈ {point , line, region}, receives
a crisp spatial object as input and yields the name of its crisp
spatial data type as a string value. Similarly, the auxiliary
function type yields the crisp spatial data type of a given input.
For instance, if õ ∈ fpoint , then typeid(supp(õ)) = “point”
and type(supp(õ)) = point . The auxiliary function project
has the signature point× line×region×text → ω. It retrieves
one of the three components of a triple (p, l, r) according to the
specified data type given as the last parameter. For instance,
project((p, r, l),“point”) = p.

The last auxiliary function reg aims at avoiding isolated
discontinuities in the transitions of the membership degrees of
fuzzy spatial objects. Hence, it assumes that the underlying
geometric structure of the input point set is a valid crisp
spatial object without geometric anomalies (e.g., cuts and
punctures) and yields a valid fuzzy spatial object. The function
reg does not modify membership degrees if the geometric
structure consists of single points since they do not have
a smooth transition of their membership degrees. Thus, if
supp(õ) ∈ point then reg(õ) = õ ∈ fpoint . For linear and
areal objects, the function reg fixes removable discontinuities
in their membership functions.

A removable discontinuity exists at a point q0 ∈ supp(õ)
if both µõ(q0) and limq→q0 µõ(q) = L < ∞ exist while
µõ(q0) 6= L. This means that the function is not continuous
at that point. This discontinuity can be removed to make µõ

continuous at q0. For this, we define an almost everywhere
identical function named fix such that fix (µõ(q)) is µõ(q) for
q 6= q0 and L for q = q0. If supp(õ) ∈ line or supp(õ) ∈
region , then reg(õ) = {(q,fix (µõ(q))) | q ∈ supp(õ)}. As a
result, we obtain fuzzy line objects and fuzzy region objects
with smooth transitions of their membership degrees possibly
with a finite number of jump discontinuities. Further, such
objects are free of geometric anomalies because of their valid
underlying geometric structures.

Let Ã ∈ α and B̃ ∈ β. Let I be the point set intersection
of the supports of Ã and B̃, i.e., I = supp(Ã) ∩ supp(B̃).
The fuzzy geometric intersection of Ã and B̃ is defined as
Ã⊗ B̃ = (p̃, l̃, r̃) such that
∀ õ ∈ {p̃, l̃, r̃} : õ = reg({(q, µõ(q)) |

q ∈ project(extract(I), typeid(supp(õ))) ∧
µõ(q) = min(µÃ(q), µB̃(q))})

The key strategy is to separately compute each fuzzy spatial
sub-object of the yielded fcomposition object. In a first step,
we retrieve the crisp spatial object that has the same spatial
data type as the support of the fuzzy spatial object õ to
be determined from the triple returned by extract(I). For
instance, in the first iteration, õ is equal to p̃ and we retrieve the
crisp point object from I , i.e., project(extract(I),“point”).



TABLE I
POSSIBLE CONFIGURATIONS OF FUZZY GEOMETRIC SET OPERATIONS.

Fuzzy Geometric Set Operation Operands Possible Results

Fuzzy geometric intersection

fpoint × α (p̃,∅,∅), (∅,∅,∅)

fline × fline (p̃, l̃,∅), (p̃,∅,∅), (∅, l̃,∅), (∅,∅,∅)

fline × fregion (p̃, l̃,∅), (p̃,∅,∅), (∅, l̃,∅), (∅,∅,∅)

fregion × fregion (p̃, l̃, r̃), (p̃, l̃,∅), (p̃,∅, r̃), (p̃,∅,∅), (∅, l̃,∅), (∅,∅, r̃), (∅,∅,∅)

Fuzzy geometric union

fpoint × fpoint (p̃,∅,∅)

fpoint × fline (p̃, l̃,∅), (∅, l̃,∅)
fpoint × fregion (p̃,∅, r̃), (∅,∅, r̃)
fline × fline (∅, l̃,∅)

fline × fregion (∅, l̃, r̃), (∅,∅, r̃)
fregion × fregion (∅,∅, r̃)

Fuzzy bounded difference and
fuzzy symmetric difference

fpoint × α (p̃,∅,∅), (∅,∅,∅)

fline × α (∅, l̃,∅), (∅,∅,∅)
fregion × α (∅,∅, r̃), (∅,∅,∅)

Then, in a second step, each point of the retrieved crisp spatial
object is associated with a membership degree calculated by
the minimum function applied to the corresponding member-
ship degrees of Ã and B̃. Unfortunately, this can introduce
isolated removable discontinuities along the distribution of
the membership degrees. The execution of the function reg
corrects this problem.

The fuzzy geometric union is defined in a similar way. Let
U be the point set union of the supports of Ã and B̃, i.e.,
U = supp(Ã) ∪ supp(B̃). Then this operation is defined as
Ã⊕ B̃ = (p̃, l̃, r̃) such that

∀ õ ∈ {p̃, l̃, r̃} : õ = reg({(q, µõ(q)) |
q ∈ project(extract(U), typeid(supp(õ))) ∧
µõ(q) = max(µÃ(q), µB̃(q))})

The operations for the fuzzy bounded difference and fuzzy
symmetric difference of Ã and B̃ employ the same principle.
The fuzzy bounded difference of Ã and B̃ is defined as
Ã−̇B̃ = (p̃, l̃, r̃) such that

∀ õ ∈ {p̃, l̃, r̃} : õ = reg({(q, µõ(q)) |
q ∈ supp(Ã) ∈ type(supp(õ)) ∧
µõ(p) = max(0, µÃ(q)− µB̃(q))})

The fuzzy symmetric difference of Ã and B̃ is defined as
Ã∆B̃ = (p̃, l̃, r̃) such that

∀ õ ∈ {p̃, l̃, r̃} : õ = reg({(q, µõ(q)) |
q ∈ supp(Ã) ∈ type(supp(õ)) ∧
µõ(q) = |µÃ(q)− µB̃(q)|})

Table I depicts the possible operand combinations of each
fuzzy geometric set operation together with the possible triple
arrangements of the resulting fcomposition object for each
operand combination. Only one possible triple arrangement
can be returned by a fuzzy geometric set operation. For
instance, the fuzzy geometric intersection of a fline object
and a fregion object can only yield one of the following
four fcomposition objects: (p̃, l̃,∅), (p̃,∅,∅), (∅, l̃,∅), and
(∅,∅,∅). Figure 3 shows some examples of fuzzy geometric
set operations where the rows represent the following combi-
nations of operands: fpoint×fline (C̃ and D̃), fpoint×fregion
(Ẽ and F̃ ), and fline × fregion (G̃ and H̃).

Union =
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b. difference =

a. difference =

fpoint X fregion
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Intersection =

b. Difference =
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Fig. 3. Fuzzy geometric set operations on different fuzzy spatial data types.

Table I also reveals some important properties. First, if
a fuzzy geometric set operation is processed on operands
of the same fuzzy spatial data type, there exists a possible
resulting fcomposition object that only contains one non-empty
fuzzy spatial object that corresponds to the result of the fuzzy
geometric set operation defined on operands of equal data
types (Section III-B). Second, Table I only lists a specific set
of triple arrangements for each fuzzy geometric set operation
and a given combination of operands. This is based on the
following dimension argument. Let m be the dimension of
Ã and n be the dimension of B̃, where m,n ∈ {0, 1, 2}. The
fuzzy spatial sub-objects obtained from the fuzzy geometric set
intersection of Ã and B̃ can have all dimensions ≤ min(m,n).
The sub-objects obtained from the fuzzy geometric set union
of Ã and B̃ can have all dimensions in {m,n}. Finally,
the fuzzy bounded difference and fuzzy symmetric difference
yield a fcomposition object that can only contain one non-
empty fuzzy spatial sub-object which is of the same data type
as the first operand.

VI. OPERATIONS ON FUZZY SPATIAL COMPOSITIONS

In this section we define a few type-specific operations
(Section VI-A) and several fuzzy geometric set operations



(Section VIII-B) on fuzzy spatial composition objects. Other
possible operations are beyond the scope of this paper.

A. Type-Specific Operations

The operation fboundary yields the fuzzy boundary of a
fuzzy spatial object as a fuzzy spatial composition object.
As defined in Section III-A, the fuzzy boundaries of fuzzy
line objects and fuzzy region objects consist of sub-objects
of heterogeneous data types (Figures 1d and e). The fuzzy
boundary of a fuzzy point object is an empty fuzzy spatial
composition object. We now are able to define the operation
fboundary : α→ fcomposition with Ã ∈ α as

fboundary(Ã) =


(∅,∅,∅) if Ã ∈ fpoint

(∂cÃ, ∂f Ã,∅) if Ã ∈ fline

(∅, ∂cÃ, ∂f Ã) if Ã ∈ fregion

We overload the type-specific operation project from Sec-
tion V and allow it to retrieve a particular fuzzy spa-
tial sub-object from a fcomposition object. Its signature
is fpoint × fline × fregion × text → α. For instance,
project((p̃, l̃, r̃),“fpoint”) = p̃.

B. Fuzzy Geometric Set Operations

We overload the fuzzy geometric set operations union,
intersection, bounded difference, and absolute difference (Sec-
tion V) to handle two fcomposition objects as operands.
Thus, the signature α × β → fcomposition is overloaded
by fcomposition × fcomposition → fcomposition . Let X̃ =
(p̃1, l̃1, r̃1), Ỹ = (p̃2, l̃2, r̃2) ∈ fcomposition . To compute a
fuzzy geometric set operation on X̃ and Ỹ we take into
account all nine possible combinations among the fuzzy spatial
objects of both operands. For each combination we process the
corresponding fuzzy geometric set operation. For this purpose,
we introduce the 9-combination matrix (9CM) as

9CM (X̃, Ỹ , σ) =

p̃1 σ p̃2 p̃1 σ l̃2 p̃1 σ r̃2

l̃1 σ p̃2 l̃1 σ l̃2 l̃1 σ r̃2

r̃1 σ p̃2 r̃1 σ l̃2 r̃1 σ r̃2


where σ ∈ {⊗,⊕, −̇,∆} and each cell of this matrix is an

fcomposition object.
Using a similar strategy as in Section V, we build the

fuzzy spatial sub-objects of the fcomposition object returned
by a fuzzy geometric set operation one by one. Each fuzzy
spatial sub-object is created from the aggregation of all fuzzy
spatial sub-objects of the same data type disposed in the 9-
combination matrix. For instance, to compute the fuzzy point
sub-object p̃ of the resulting fcomposition object, we aggregate
all fuzzy point sub-objects of the cells of the 9-combination
matrix. This aggregation iteratively calls the fuzzy geometric
union on 9 fuzzy spatial objects. However, after computing
the first fuzzy geometric union, an fcomposition object is
obtained (Section V), which in turn is the operand of the
next iterative fuzzy geometric union. Because of this, we need
to define the fuzzy geometric union between a fuzzy spatial
object and a fuzzy spatial composition object. Let Ã ∈ α.
We overload the signature of the fuzzy geometric union to
α× fcomposition → fcomposition by defining it as

Ã⊕ X̃ =
(project(p̃1 ⊕ Ã,“fpoint”), l̃1, r̃1) if Ã ∈ fpoint

(p̃1, project(l̃1 ⊕ Ã,“fline”), r̃1) if Ã ∈ fline

(p̃1, l̃1, project(r̃1 ⊕ Ã,“fregion”)) if Ã ∈ fregion

Essentially, this definition uses the fact that the fuzzy
geometric union between two operands of the same fuzzy
spatial data type results in a fuzzy spatial composition object
accommodating only one non-empty fuzzy spatial sub-object
that has the same data type as the operands (Table I).

Let M = 9CM (X̃, Ỹ , σ) where Mi,j denotes the
i-th row and the j-th column of the 9-combination ma-
trix M . Hence, we are able to aggregate all values of
a 9-combination matrix as

⊕3
i=1

⊕3
j=1 project(Mi,j , γ) =

project(M1,1, γ) ⊕ project(M1,2, γ) ⊕ project(M1,3, γ) ⊕
project(M2,1, γ) ⊕ project(M2,2, γ) ⊕ project(M2,3, γ) ⊕
project(M3,1, γ) ⊕ project(M3,2, γ) ⊕ project(M3,3, γ) with
γ ∈ {“fpoint”,“fline”,“fregion”}.

We overload the auxiliary function typeid (Section V) so
that it yields the name of the fuzzy spatial data type for a
given fuzzy spatial object as input. Let M I = 9CM (X̃, Ỹ ,⊗).
We define the fuzzy geometric set operation intersection as
X̃ ⊗ Ỹ = (p̃, l̃, r̃) such that

∀ õ ∈ {p̃, l̃, r̃} : õ =
3⊕

i=1

3⊕
j=1

project(M I
i,j , typeid(õ))

Let MU = 9CM (X̃, Ỹ ,⊕), MB = 9CM (X̃, Ỹ , −̇), and
MA = 9CM (X̃, Ỹ ,∆). The operations for fuzzy geometric
union, fuzzy bounded difference, and fuzzy symmetric differ-
ence are defined in a similar form as follows.
X̃ ⊕ Ỹ = (p̃, l̃, r̃) such that ∀ õ ∈ {p̃, l̃, r̃} :

õ =
3⊕

i=1

3⊕
j=1

project(MU
i,j , typeid(õ))

X̃−̇Ỹ = (p̃, l̃, r̃) such that ∀ õ ∈ {p̃, l̃, r̃} :

õ =
3⊕

i=1

3⊕
j=1

project(MB
i,j , typeid(õ))

X̃∆Ỹ = (p̃, l̃, r̃) such that ∀ õ ∈ {p̃, l̃, r̃} :

õ =
3⊕

i=1

3⊕
j=1

project(MA
i,j , typeid(õ))

The definitions show that our approach is very generic in
the sense that we are able to define all fuzzy geometric set
operations on fuzzy spatial composition objects as
X̃ σ Ỹ = (p̃, l̃, r̃) such that ∀ õ ∈ {p̃, l̃, r̃} :

õ =
3⊕

i=1

3⊕
j=1

project(9CM (X̃, Ỹ , σ)i,j , typeid(õ))

VII. DEFINITION OF A FUZZY SPATIAL DATA TYPE FOR
FUZZY SPATIAL COLLECTIONS

Fuzzy spatial collection objects are a generalization of fuzzy
spatial composition objects and abandon any kind of topologi-
cal and non-topological constraints on their sub-objects. They
are the values of the new fuzzy spatial data type fcollection.
This data type allows that several fuzzy spatial sub-objects
may be of the same and/or different fuzzy spatial data types
comprising the types fpoint, fline, fregion, fcomposition, and



fcollection. That is, in particular, it permits other fuzzy spatial
collection objects and fuzzy spatial composition objects as
sub-objects. Therefore, this data type enables a user to store
fuzzy geometries in a single object with largest flexibility and
expressiveness.

For a set X let Pfin(X) be the powerset of all finite subsets
of X , that is, Pfin(X) = {Y ⊆ X | |Y | is finite}. We then
define the fuzzy spatial data type fcollection as follows:

fcollection = {(P,L,R,C,D) |P ∈ Pfin(fpoint),
L ∈ Pfin(fline), R ∈ Pfin(fregion),
C ∈ Pfin(fcomposition),
D ∈ Pfin(fcollection)}

A fuzzy spatial collection object is defined as a quintuple
whose components comprise arbitrary (and possibly empty) fi-
nite sets of fuzzy point objects, fuzzy line objects, fuzzy region
objects, fuzzy spatial composition objects, and, recursively,
fuzzy spatial collection objects. In particular, overlapping of
arbitrary fuzzy spatial objects is allowed. The fifth component
allows the creation of a recursive and hierarchical structure
of a fuzzy spatial collection object. The recursive definition
terminates if the leaf nodes of all branches of the recursion
contain the empty set as a fifth component of a quintuple, that
is, at some branch with recursion depth k we specify the fuzzy
spatial collection object (Pk, Lk, Rk, Ck,∅).

The fact that the data type fcomposition is a subtype of the
data type fcollection is given by the implication that (p̃, l̃, r̃) ∈
fcomposition ⇒ ({p̃}, {l̃}, {r̃},∅,∅) ∈ fcollection .

VIII. OPERATIONS ON FUZZY SPATIAL COLLECTIONS

In this section we define a few type-specific operations
(Section VIII-A) and some fuzzy geometric set operations
(Section VIII-B) on fuzzy spatial collection objects. Other
possible operations are beyond the scope of this paper.

A. Type-Specific Operations

The operation collect : fcollection × fcollection →
fcollection gathers the fuzzy spatial objects of the com-
ponents of two fuzzy spatial collection objects in a set-
theoretic sense into a single fuzzy spatial collection object.
Let A = (P1, L1, R1, C1, D1), B = (P2, L2, R2, C2, D2) ∈
fcollection . We define

collect(A,B) = (P1 ∪ P2, L1 ∪ L2, R1 ∪R2,
C1 ∪ C2, D1 ∪D2)

The operation flatten : fcollection → fcollection resolves
the hierarchical structure of a fuzzy spatial collection object by
gathering all fuzzy spatial objects of the whole hierarchy and
rearranging them into a single “flat” fuzzy spatial collection
object of the kind (P,L,R,C,∅) that preserves the identity of
sub-objects. In this sense, it is a generalization of the operation
collect. The operation flatten is recursively defined as follows:

(i) flatten((P,L,R,C,∅)) = (P,L,R,C,∅)
(ii) flatten((P,L,R,C, {(P1, L1, R1, C1,∅), . . . ,

(Pk, Lk, Rk, Ck,∅)})) =

(P ∪
k⋃

i=1

Pi, L ∪
k⋃

i=1

Li, R ∪
k⋃

i=1

Ri, C ∪
k⋃

i=1

Ci,∅)

(iii) flatten((P ,L,R,C , {D1 , . . . ,Dk})) =
flatten((P ,L,R,C , {flatten(D1 ), . . . ,flatten(Dk )}))

Definition part (i) returns a fuzzy spatial collection object as
it is if there is no set of fuzzy spatial collection sub-objects as
a fifth component that would define a sub-hierarchy. Part (ii)
deals with the case of a two-level hierarchy that at the lower
level only contains fuzzy spatial collection sub-objects with
no sub-hierarchies. In this case, the lower level is resolved
by adding all fuzzy spatial sub-objects according to their
fuzzy spatial data types to the corresponding sets of fuzzy
spatial objects of the higher level. Part (iii) specifies the actual
recursion by applying the operation flatten recursively to all
fuzzy spatial collection sub-objects in the fifth component of
a fuzzy spatial collection object.

B. Fuzzy Geometric Set Operations

Each fuzzy geometric set operation σ ∈ {⊗,⊕, −̇,∆} with
σ : fcollection × fcollection → fcollection is performed on
all fuzzy sub-objects kept in the hierarchies of two fuzzy
spatial collection objects. Let X̃ = (P1, L1, R1, C1, D1), Ỹ =
(P2, L2, R2, C2, D2) ∈ fcollection . Then the operation σ on
X̃ and Ỹ is defined as X̃σỸ = ({p̃}, {l̃}, {r̃},∅,∅) such that

(i) ∀ i ∈ {1, 2} : (P f
i , L

f
i , R

f
i , C

f
i ,∅) =

flatten((Pi, Li, Ri, Ci, Di)

(ii) ∀ i ∈ {1, 2} : ({p̃i}, {l̃i}, {r̃i},∅,∅) =
(
⊕

q̃∈P f
i

q̃ ⊕
⊕

c̃∈Cf
i

project(c̃,“fpoint”),⊕
l̃∈Lf

i

l̃ ⊕
⊕

c̃∈Cf
i

project(c̃,“fline”),⊕
r̃∈Rf

i

r̃ ⊕
⊕

c̃∈Cf
i

project(c̃,“fregion”),

∅,∅)

(iii) ∀ i ∈ {1, 2} : ({p̃ci}, {l̃ci}, {r̃ci },∅,∅) =

({q̃ | q̃ = project(project(p̃i ⊕ l̃i,“fpoint”)⊕ r̃i,
“fpoint”)},

{q̃ | q̃ = project(l̃i ⊕ r̃i,“fline”)}, {r̃i},∅,∅)

(iv) (p̃, l̃, r̃) = (p̃1, l̃1, r̃1) σ (p̃2, l̃2, r̃2)

Since we intend to provide the result of the fuzzy geometric
set operations as fuzzy spatial collection objects on the basis
of the fuzzy spatial data types fpoint, fline, and fregion only,
definition part (i) removes the hierarchies of the two operand
objects and flattens them. But this still leads to fuzzy spatial
composition objects as sub-objects. Hence, to resolve them,
in part (ii) we form the fuzzy geometric union of all fuzzy
point objects, fuzzy line objects, and fuzzy region objects
respectively that can be found in each of the two flattened
fuzzy spatial collection objects and store them in the first
three sets of the two resulting fuzzy spatial collection objects.
Part (iii) takes these two objects and transforms each of
them into another fuzzy spatial collection object. Their single



fuzzy point, single fuzzy line, and single fuzzy region sub-
objects fulfill the topological constraints of disjointedness
or adjacency required in the definition of the data type
fcomposition . Note that the fuzzy union operation has the
effect of only preserving those lower-dimensional objects that
are not located in higher-dimensional objects. For instance, this
refers to points that are located outside of lines and regions
(see Figure 3). Part (iv) computes the final result by applying
the corresponding fuzzy geometric set operation on two fuzzy
spatial composition objects. This means that ultimately the
result is always a fuzzy spatial composition object represented
as a fuzzy spatial collection object.

IX. SPATIAL QUERIES ON FUZZY SPATIAL COLLECTIONS
AND COMPOSITIONS

In this section, we show how fuzzy spatial collections
and compositions can be integrated into a relational database
system and its query language. For demonstration purposes,
we make use of an ecological application about the presence
of animals in a natural environment, air and water polluted
areas, and forests. We assume that they are represented by
the relational table schemas animal, pollution, and forest
respectively as follows:

animal(species:varchar[50], loc:fcomposition)
pollution(id:int, extent:fcollection)
forest(id:int, type:varchar[30], area:fregion)

Each table schema has an attribute representing the respec-
tive geographic information as a fuzzy spatial object. The
fuzzy spatial data types are used in the same manner as
standard data types such as int or date. In particular, the table
schemas animal and pollution make use of the data types
fcomposition and fcollection, respectively. By using these data
types, we can represent the geographic information as a single
object, instead of scattering the information over a collection
of relational tables. This concept is possible due to the use of
extensible relational database systems that allow us to define
abstract data types (ADTs). An ADT hides the complexity
of the object structure and executes the operations as abstract
methods whose internal specifications are invisible to users.

By employing such concepts, we are able to pose SQL
queries such as the ones presented below. The first query asks
for the locations (e.g., points, lines, and regions) of forests
with animal population. For this, we compute the union of
all forests by using the aggregate function aggr union that
yields a fuzzy spatial composition object. Then we perform
the operation intersection (⊗) of this result and the locations
with presence of animals as follows:

SELECT A.species, intersection(F.a, A.loc)
FROM (SELECT aggr_union(area) a FROM forest) F,

animal A

The next query aims to find out the forest areas that are
not affected by any pollution. To this end, we process the
operation fbounded difference (−̇) of each forest area and
the aggregation of all polluted areas given by the aggregate
function aggr collect as follows:

SELECT F.type, fbounded_difference(P.c, F.area)
FROM (SELECT aggr_collect(extent) c

FROM pollution) P, forest F

The final query asks for all non-empty and empty areal
intersection parts of the presence of animals and the pollution
areas. Hence, we use the operation project to retrieve the
intersected fuzzy region objects as follows:

SELECT P.id, A.species, project(
intersection(P.extent, A.loc), "fregion")

FROM animal A, pollution P

X. CONCLUSIONS AND FUTURE WORK

In this paper we have provided the formal definitions of two
new fuzzy spatial data types named fcomposition for fuzzy
spatial composition objects and fcollection for fuzzy spatial
collection objects. For processing them, we have defined a
number of fuzzy geometric set operations and type-specific
operations. In contrast to the well-known fuzzy spatial data
types for fuzzy point, fuzzy line, and fuzzy region objects, the
new data types allow heterogeneous fuzzy spatial objects as
sub-objects and may have a highly complex structure in terms
of sets and hierarchies of sub-objects.

Future work will deal with (i) the definition of other useful
operations and predicates on both types, (ii) the implemen-
tation of these types and their operations in the context
of our Spatial Plateau Algebra [7], (iii) the construction of
such objects from real world data by deploying algorithms
proposed in [10], and (iv) the study of optimization methods
for processing fuzzy geometric set operations on fuzzy spatial
composition objects since the evaluation of the 9-combination
matrix is costly.
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