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Abstract—In kernel non-parametric two-sample test, we aim to
determine whether two sets of precise observations (i.e., samples)
are from the same distribution based on a selected kernel.
However, in real world, precise observations may be unavailable.
For example, readings on an analogue measurement equipment
are not precise numbers but intervals since there is only a
finite number of decimals available. Hence, we consider a new
and more realistic problem setting—two-sample test on imprecise
observations. We show that the test power of existing kernel two-
sample tests will drop significantly if they do not take care of
the vagueness of the imprecise observations, and to this end, we
propose a fuzzy-based maximum mean discrepancy (F-MMD), a
powerful two-sample test on imprecise observations. F-MMD is
based on a novel fuzzy-based kernel function that can measure
the discrepancy between two imprecise observations. This novel
kernel function takes care of the vagueness of the imprecise
observations and its parameters are optimized to maximize the
approximate test power of F-MMD. Experiments demonstrate
that F-MMD significantly outperforms competitive two-sample
test methods when facing imprecise observations.

Index Terms—Hypothesis test, kernel, imprecise observations

I. INTRODUCTION

Two-sample test methods aim to determine whether two
sets of samples are drawn from the same distribution [1]–
[8]. Traditional parametric two-sample test methods such as t-
tests are mainstays of statistical applications, but require strong
parametric assumptions about the distributions being studied
and/or are only effective on data in extremely low-dimensional
spaces [9]. By contrast, non-parametric test methods [10]–[13]
make only mild assumptions about distributions, and thus are
far more broadly applicable. For this reason, non-parametric
test methods exhibit the greatest potential in real world [3].

Kernel-based two-sample test methods [2]–[5], as well-
known non-parametric two-sample tests, have been well stud-
ied in the last decade. Researchers constructed representative
features of two distributions using kernel mean embeddings
(ME) [2], [3] and smooth characteristic functions (SCF) [3],
[4]. The discrepancy between two distributions can be ascer-
tained by comparing these features [3], [14], [15]. Maximum
mean discrepancy (MMD) is the most common statistic used
to compare two distributions. Its contribution in such fields
as domain adaptation [16]–[18], concept drift [19], [20] and
generative adversarial networks [21], [22] is significant.
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Fig. 1. Average test power of the MMD test when facing precise observations
(red line) and imprecise observations (green dash line). Clearly, the test power
of MMD will drop significantly if we do not take care of vagueness of the
imprecise observations.

However, existing kernel two-sample test methods all share
the assumption that observations from distributions are precise,
which is not realistic in the real world. For example, read-
ings on an analogue measurement equipment are not precise
numbers but intervals since there is only a finite number of
decimals available [23], [24]. This motivates us to consider a
more realistic problem, named as two-sample test on imprecise
observations. In this problem, we can only obtain imprecise
observations (the precise observations are unavailable) and
have to determine if two sets of imprecise observations are
from the same distribution.

To validate the effects brought from such imprecise ob-
servations, in Figure 1, we show the test power of MMD
when facing precise and imprecise observations. Following [5],
MMD used in this figure has been optimized (i.e., MMD with
the best kernel) and has the highest approximate test power.
Clearly, the test power of MMD drops significantly when we
can only obtain the imprecise observations. Namely, MMD, as
a most common two-sample test method, cannot handle this
new problem well even when we feed the best kernel to it.

To address this new problem, we propose a fuzzy-based
maximum mean discrepancy (F-MMD), a powerful two-
sample test on imprecise observations. F-MMD is based on
a novel fuzzy-based kernel function that can measure the
discrepancy between two imprecise observations (modeled by
the fuzzy vector). This novel kernel function takes care of the

978-1-7281-6932-3/20/$31.00 ©2020 IEEE



vagueness of the imprecise observations and its parameters are
optimized to maximize the approximate test power of F-MMD.

The main contributions of this paper is listed as follows.
• This paper presents a new problem setting in the field

of two-sample test and empirically shows existing kernel
two-sample test methods cannot handle this problem well;

• We propose a novel two-sample test method, called fuzzy-
based maximum mean discrepancy (F-MMD), which can
take care of the vagueness of the imprecise observations
and have a higher test power than existing methods.

We test our method on the Blob dataset that is commonly
used in the field of two-sample test [2], [3], [5]. We find
that our method has higher average test power compared to
competitive baselines.

II. PRELIMINARY

In this section, we introduce five concepts related to kernel
two-sample test, which includes two-sample test problem, def-
inition of maximum mean discrepancy (MMD), Asymptotics
of MMD, test power of MMD and how to maximize test power
of MMD.

A. Two-sample test

Let X be a subset of Rd and P , Q be Borel probability mea-
sures on X . Given independent identically distributed (i.i.d.)
samples SX = {xi}ni=1 ∼ Pn and SY = {yj}mj=1 ∼ Qm, in
two-sample test problem, we aim to determine if SX and SY
come from the same distribution, i.e., if P = Q.

In two-sample test problem, we consider two hypothesis,
where the null hypothesis H0 : P = Q is tested against the
alternative hypothesis H1 : P 6= Q. Generally, a two-sample
test method is performed in four steps: 1) confirm a signifi-
cance level α ∈ [0, 1]; 2) calculate a test statistic t̂(SX , SY );
3) calculate the p-value p̂ = PrH0

(T > t̂(SX , SY )), the
probability of the two-sample test method returning a T as
large as t̂(SX , SY ) when H0 is true; 4) reject H0 if p̂ < α.

B. Maximum mean discrepancy

MMD is an estimator of a distance between distributions,
which is called integral probability metrics:

Definition 1 (Integral Probability Metrics [25]). Let F be a
class of functions f : X → R. The integral probability metric
based on F is

D(P,Q;F) = sup
f∈F
|EX∼P [f(X)]− EY∼Q[f(Y )]|, (1)

where X ∼ P and Y ∼ Q are random variables on X .

This class of metrics has been well studied in probability
theory [26], [27]. A simple (but biased) estimator of Eq. (1)
based on samples SX and SY is

D̂(SX , SY ;F) = sup
f∈F

∣∣∣ 1
n

∑
i

f(xi)−
1

m

∑
j

f(yj)
∣∣∣.

However, the sup can not be well estimated, i.e., we cannot
directly use this biased estimation to calculate the distance

between P and Q through samples (i.e., SP and SQ) drawn
from them. To overcome this issue, taking the advantage of
reproducing kernel Hilbert space (RKHS), maxiximum mean
discrepancy (MMD) is proposed by taking F to be a unit ball
of a RKHS, which allows for efficient estimation of the IPM.

Definition 2 (MMD [2]). Let k : X × X → R be a bounded
kernel of a RKHS Hk (i.e., |k(·, ·)| < +∞). Let X,X ′ ∼ P
and Y, Y ′ ∼ Q be random variables on X , MMD is defined
as follows.

MMD(P,Q;Hk) := sup
f∈H,‖f‖Hk

≤1
|E[f(X)]− E[f(Y )]|

=‖µP − µQ‖Hk
=
√
E [k(X,X ′) + k(Y, Y ′)− 2k(X,Y )].

where µP := E[k(·, X)] and µQ := E[k(·, Y )] are meaning
embeddings of P and Q, respectively. If k is a characteristic
kernel and µP = µQ, we have MMD(P,Q;Hk) = 0 if and
only if P = Q.

We can estimate MMD using the U -statistic estimator,
which is unbiased for MMD2 and has nearly minimal variance
among unbiased estimators [2]:

M̂MD
2

u(SX , SY ; k) =
1

n(n− 1)

∑
i6=j

Hij (2)

Hij = k(xi, xj) + k(yi, yj)− k(xi, yj)− k(yi, xj).

Based on Hij , the biased estimator of the squared MMD is

M̂MD
2

b := 1
n2

∑
ij Hij . Compared to M̂MDu, M̂MDb allows

m 6= n but is not convenient for analysis and to efficiently
implement permutations.

C. Asymptotics of the MMD

Based on the unbiased estimator of MMD, we can analyze
the asymptotics of the MMD under H0 and H1 as follows.

Proposition 1 (Asymptotics of M̂MD
2

u). Under the null

hypothesis, H0 : P = Q, M̂MD
2

u is OP (1/n2), with

nM̂MD
2

u
d→
∑
i

λi(Z
2
i − 2);

here λi are the eigenvalues of the covariance operator under
P of the centered kernel, and the Zi are i.i.d. Gaussian with
mean 0 and variance 2 [2, Theorem 12].

Under the alternative, H1 : P 6= Q, M̂MD
2

u is OP (1/n),
and in particular [28, Section 5.5.1]

√
n(M̂MD

2

u −MMD2)
d→ N (0, σ2

H1
),

where σ2
H1

= 4(Ez[(Ez′ h(z, z′))2] − [(Ez,z′ h(z, z′))2]) =
4
(
E[H12H13]− E[H12]2

)
, h(z, z′) = k(x, x′) + k(y, y′) −

k(x, y′)− k(x′, y) and z := (x, y).

Based on this Proposition (especially on asymptotics under
H1), we can analyze the test power of MMD (next subsection).
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(a) Precise observations from P (left) and Q (right).
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(b) Imprecise observations from P (left) and Q (right).

Fig. 2. Blob dataset with precise observations (a) and imprecise observations (b).

D. Test power of MMD

The main criterion of efficacy of a two-sample test method
is its power: the probability that, for a particular P 6= Q and
n, we correctly reject H0. Using Proposition 1, we have that

PrH1

(
nM̂MD

2

u > r
)
→ Φ

(√
nMMD2

σH1

− r√
nσH1

)
,

where Φ is the standard normal CDF. Via Proposition 1,
We know that this r will not increase as increasing n, and
MMD(P,Q), σH1 are also constants. Thus, for reasonably
large n, the test power of MMD is dominated by the first
term (inside Φ), and the kernel yielding the most powerful
test will approximately maximize [5]

J(P,Q; k) := MMD2(P,Q; k)/σH1
(P,Q; k). (3)

E. Maximizing Test Power

Although the higher value of criterion J(P,Q; k) means
higher test power of MMD, we cannot directly maximize
J(P,Q; k) since MMD2(P,Q; k) and σH1

(P,Q; k) depends
on the particular P and Q that are unknown. However, We
can estimate it with

Ĵλ(SX , SY ; k) :=
M̂MD

2

u(SX , SY ; k)

σ̂H1,λ(SX , SY ; k)
, (4)

where σ̂2
H1,λ

is a regularized estimator of σ2
H1

given by1

4

n3

n∑
i=1

 n∑
j=1

Hij

2

− 4

n4

 n∑
i=1

n∑
j=1

Hij

2

+ λ, (5)

where SX and SY are observations from P andQ. Researchers
can construct a test by choosing k to maximize Ĵλ(SX , SY ; k),
then using the chosen k to calculate Ĵλ(SX , SY ; k).

III. TWO-SAMPLE TEST VIA IMPRECISE OBSERVATIONS

Although existing kernel two-sample test methods have
been well developed (e.g., MMD mentioned above), they
all share the assumption that observations from distributions
are precise, which is not realistic in the real world. For
example, readings on an analogue measurement equipment are

1This estimator, as a V -statistic, is biased even when λ = 0. Although
[5], [29] give a quadratic-time estimator unbiased for σ2

H1
, it is much more

complicated to implement and analyze, likely has higher variance, and is often
negative.

not precise numbers but intervals since there is only a finite
number of decimals available. This motivates us to consider a
more realistic problem, named as two-sample test on imprecise
observations.

Problem 1 (Two-sample test on imprecise observations). Let
X be a subset of Rd and P , Q be Borel probability measures
on X , and SX = {xi}ni=1 ∼ Pn and SY = {yj}mj=1 ∼ Qm be
precise independent identically distributed (i.i.d.) observations
from P and Q, and T : X → X be the imprecise-observation
function. We aim to determine if SX and SY come from the
same distribution through the imprecise observations S̃X =
{x̃i := T (xi)}ni=1 and S̃Y = {ỹj : T (yj)}mi=1.

In Problem 1, SX and SY are unknown, and T is not a
bijective function in general. Namely, we cannot find a T−1

to recover SX and SY from S̃X and S̃Y . In this paper, we
consider the following T .

x̃ := Tv(x) = bx ∗ vc/v, (6)

where the higher v ∈ Z+ means that the imprecise observa-
tions are closer to the precise observations. If v = 2, the deci-
mal places of Tv(x) can only be 0 or 5 (e.g., 0.5, 1.0, 1.5, 2.0).
Clearly, we cannot obtain T−1 to recover x.

In Figure 2, we show the difference between precise ob-
servations and imprecise observations in the Blob example.
Moreover, we show that the test power of MMD drops signif-
icantly when we can only obtain the imprecise observations
(see Figure 1), which motivates us to propose a novel two-
sample test method to address this new problem.

IV. FUZZY-BASED MMD TEST

To handle such imprecise observations in two-sample test
problem, in this paper, we first model Tv(x) using fuzzy
geometry and then propose a fuzzy-based kernel function.
Finally, we can optimize parameters of the fuzzy-based kernel
function by maximizing the test power. Based on the optimized
fuzzy-based kernel, we can perform the two-sample test on the
imprecise observations.

A. n-D Fuzzy Geometry

The geometric properties of fuzzy sets have been studied
from various aspects such as fuzzy point, fuzzy line and
fuzzy circle [30]–[34]. The n-D fuzzy geometry (n-D FG)
theory provides an effective way to analyze and compute fuzzy



information in a geometric form [35]. This subsection presents
the definition of fuzzy vector, which is the key to the n-D
FG. Without loss of generality, this paper uses capital or small
letters with a bar to represent the fuzzy subsets or fuzzy points
of Rn. The membership function of a fuzzy set Ā is expressed
by µ(x|Ā), x ∈ Rn, with µ(x|Ā) ⊆ [0,1]. The definition of
fuzzy vector at the n-D real valued vector A is presented as
follows.

Definition 1 (Fuzzy vector [36]). A fuzzy set Ā(a1, a2, ..., an)
of Rn is called a fuzzy vector at A = (a1, a2, ..., an) ∈ Rn if
its membership function µ satisfies the following properties.

1. µ((x1, x2, ..., xn)|Ā(a1, a2, ..., an)) = 1 is upper semi-
continuous in x = (x1, x2, ..., xn) ∈ Rn.

2. µ((x1, x2, ..., xn)|Ā(a1, a2, ..., an)) = 1 if and only if
(x1, x2, ..., xn) = (a1, a2, ..., an).

3. Ā(α) = {x|µ(x|Ā(a1, a2, ..., an)) = α, x ∈ Rn} is a
compact convex subset of Rn for all α in [0, 1].

The fuzzy vector is the elementary concept to study prop-
erties of the n-D FG and the set of all n-D fuzzy vectors is
denoted by F (Rn). The third property of n-D fuzzy vectors
means that F (Rn) can be connected with Rn using the
membership α. In this paper, we use the triangular membership
function to construct the membership function of each n-D
fuzzy vector in F (Rn) (see details in the next subsection).

B. Distance between Fuzzy Vectors

In [37], a new metric between two n-D fuzzy vectors was
proposed to construct the similarity between two fuzzy vectors.
This subsection briefly presents the metric, which is a key
component of the proposed fuzzy-based kernel function. First,
the detailed expression of a fuzzy vector Āi(ai1, ai2, ..., ain)
(with the triangular membership function) is expressed in the
following formula: for each āij ∈ F (R), its membership
function is

µij(x|āij) =


0, ∀x < aij − ρi
1− |x−aij |ρi

, ∀|x− aij | ≤ ρi
0, ∀x > aij + ρi

, x ∈ R, (7)

Based on the µij(x|āij), µi(x|Āi) is expressed by the follow-
ing term.

µi(x|Āi) =


0, ∃xj , xj < aij − ρi
1− ‖x−aij‖1nρi

, ∀xj , |xj − aij | ≤ ρi
0, ∃xj , xj > aij + ρi

, (8)

where x = (x1, x2, ..., xn) ∈ Rn and ρi > 0. Then, we define
a metric to measure the distance between two fuzzy vectors.

Definition 2. Given two fuzzy vectors Āi ∈ F (Rn) and Āj ∈
F (Rn), the metric between Āi and Āj is defined by the map
D : F (Rn)× F (Rn)→ [0,+∞):

D(Āi, Āj) =
1

n

∫ 1

0

sup{Dλ(u, v) : Dλ(u, v) ∈ Ω(λ)}dλ,

where

Ω(λ) = {d(u, Āj(λ))} ∪ {d(v, Āi(λ))},

u ∈ Āi(λ), v ∈ Āj(λ) and the first part of Ω(λ) collects
L1 distances between each u and Āj(λ) (d(u, Āj(λ)) =
min{d(u, v), v ∈ Āj(λ)} means the minimum L1 distances
between u and all elements in Āj(λ)), and the second
part of Ω(λ) collects L1 distances between v and Āi(λ)
(d(v, Āi(λ)) = min{d(v, u), u ∈ Āi(λ)} means the minimum
L1 distances between v and all elements in Āi(λ)), and
d(u, v) represents the L1 distance (`1−norm) between two
n-dimension vector (u and v).

Then, the following equation is obtained to calculate D [37].

D(Āi, Āj) =
1

n
d(Ai, Aj) +

1

4
|ρi − ρj |. (9)

Moreover, (F (Rn),D) is a metric space [37].

C. Fuzzy-based Kernel Function

Since we can only access the imprecise observations S̃X
and S̃Y , we regard each observation in S̃X as a fuzzy vector.
Thus, for each observation (e.g., x̃1 = T (x1)), it consists of
d fuzzy numbers:

¯̃xi = [(x̃i1 − ρi, x̃i1, x̃i1 + ρi), . . . , (x̃id − ρi, x̃id, x̃id + ρi)]

and (x̃ij−ρi, x̃ij , x̃ij+ρi) is a fuzzy number with a triangular
membership function, where j = 1, . . . d. Then, based on the
metric D, we define the fuzzy-based kernel function as

kθ′(x̃i, x̃j) = exp

(
−D(¯̃xi, ¯̃xj)

2σ2

)
= exp

(
−

1
d‖x̃i − x̃j‖1 + 1

4 |ρ
x
i − ρxj |

2σ2

)
, (10)

where θ′ = {ρxi }ni=1 ∪{ρ
y
j}mj=1 ∪σ is the parameter set of the

function kθ′(·, ·) associated to S̃X and S̃Y . However, since the
number of parameters of kθ′ will grow when increasing the
number of samples, it is not practical to optimize θ′. To address
this issue, we assume that there is a real-valued function f
that can map each x̃i to its ρxi . Based on this assumption,
the fuzzy-based kernel function kθ can be expressed in the
following.

kθ(x̃i, x̃j) = exp

(
−

1
d‖x̃i − x̃j‖1 + 1

4 |ρ
x
i − ρxj |

2σ2

)

= exp

(
−

1
d‖x̃i − x̃j‖1 + 1

4 |f(x̃i)− f(x̃j)|
2σ2

)
,

(11)

where θ is the set containing σ and parameters of f .



Algorithm 1 Learning fuzzy-based kernel function

1: Input S̃X , S̃Y , learning rate η, θ0, σ0, epoch Tk and Tmax;
2: Initial θ = θ0, σ = σ0 and λ = 10−8;
3: Split S̃X = S̃trX ∪ S̃teX and S̃Y = S̃trY ∪ S̃teY ;
for T = 1, 2, . . . , Tmax do

4: Obtain kθ(·, ·) using θ in (11); // update kernel
5: Compute M(θ, σ) = M̂MD

2

u(S̃trX , S̃
tr
Y ; kθ) via (2);

6: Compute Vλ(θ, σ) = σ̂2
H1,λ

(S̃trX , S̃
tr
Y ; kθ) via (5);

7: Compute Jλ(θ, σ) = M(θ, σ)/
√
Vλ(θ, σ);

8: Update θ = θ + η∇AdamJ(θ, σ); // maximize J(θ, σ)
9: Update σ = σ + η∇AdamJ(θ, σ); // maximize J(θ, σ)

end
9: Output kω , SteP and SteQ

D. Fuzzy-based MMD

To find the best parameter set θ for the two-sample test
problem, we adopt the strategy of maximizing test power (as
introduced in Section II-E). Namely, we want to maximize the
following function with respective to θ.

Ĵλ(S̃X , S̃Y ; kθ) :=
M̂MD

2

u(S̃X , S̃Y ; kθ)

σ̂H1,λ(S̃X , S̃Y ; kθ)
, (12)

where all notations are introduced in Section II. Algorithm 1
shows detailed procedures to learn the fuzzy-based kernel
function kθ. Since ¯̃xi can be regarded as a fuzzy representation
of x̃i, we also call this optimization procedure as finding the
best fuzzy representations for S̃X and S̃Y .

E. Fuzzy-based MMD for Two-sample Test

To use the learned fuzzy-based kernel k∗θ to address two-
sample test problem, we proceed in three steps.

First, compute t̂ = M̂MD
2

u(S̃teX , S̃
te
Y ; k∗θ) via Eq. (2).

Second, we use permutation test to compute the test thresh-
old rα. Let S̃te = S̃teX ∪ S̃teY . At the ith permutation, we
randomly take |S̃teX | samples out from S̃te to form S̃tei,X′ and
regard remaining samples in S̃te as S̃tei,Y ′ . Then, compute the
test statistic

t̂null
i = M̂MD

2

u(S̃tei,X′ , S̃tei,Y ′ ; k∗θ)

via Eq. (2). So, after Nperm permutations, we can obtain
{t̂null
i }

Nperm
i=1 . The test threshold rα will be the (1−α)−quantile

of {t̂null
i }

Nperm
i=1 .

Third, reject H0 if t̂ > rα, and accept it otherwise.

V. EXPERIMENT EVALUATION

We compare our test method against four state-of-the-art
two-sample tests in this section.

A. Baselines

We compare the following tests on several datasets:
• F-MMD: Fuzzy-based MMD with maximum test power.
• MMD-O: MMD with a Gaussian kernel whose length-

scale is optimized to maximize the test power.

• Mean embedding (ME): a state-of-the-art test [3], [4]
based on differences in Gaussian kernel mean embed-
dings at a set of optimized points.

• Smooth characteristic functions (SCF): a state-of-the-
art test [3], [4] based on differences in Gaussian mean
embeddings at a set of optimized frequencies.

B. Experiments Setup

We take a single sample set as S̃trX and S̃teX and learn a
kernel or test locations once for each method on S̃trX . We then
evaluate its test power on 100 new sample sets S̃teX , S̃teY from
the same distribution. We repeat each experiment 10 times,
and report the mean test power.

We implement all methods on Python 3.7 (Pytorch 1.1) with
an NIVIDIA Titan V GPU. We run ME and SCF using the
official code [3] (we select the number of test locations of
ME and SCF as 15 to ensure they have enough test power),
and implement MMD-D and MMD-O by ourselves. We use
permutation test to compute p-values of F-MMD, MMD-O.
We set α = 0.05 for all experiments.

To ensure that f can learn the best mapping between the
imprecise observation and its membership function’s param-
eter (i.e., ρi), we let f be a four-layer neural network with
softplus activation function. The number of neurons in the two
hidden layers is set to 20. The Adam optimizer [38] is used to
optimize the θ (for F-MMD) and the bandwidth of Gaussian
kernel function (for MMD-O) to maximum the approximate
test power, and the learning rate of the Adam optimizer is set
to 0.0005 for F-MMD and MMD-O.

C. Evaluation on Blob Dataset

Blob-D is the dataset shown in Figure 2; Blob-S has both P
also equal to the distribution shown in Figure 2a, so that the
null hypothesis holds. Results are shown in Tabel II. F-MMD
has the highest average test power among all considered test
methods, as well as generally consistent power (low variance).
All methods have appropriate Type I error rates.

VI. CONCLUSION

This paper considers a new problem called two-sample test
using imprecise observations. Although existing two-sample
test methods can directly handle such imprecise observations,
the test power of them will drop significantly. To address this
new problem, we first propose a fuzzy-based kernel function
to reveal the relation between two imprecise observations.
Parameters of the fuzzy-based kernel function are optimized
by maximizing the approximate test power. Eventually, based
on the optimized fuzzy-based kernel function, we propose
the fuzzy-based maximum mean discrepancy to handle the
imprecise observations in two-sample test problem. Empirical
results demonstrate that the test power of our test method is
higher than that of existing two-sample test methods when
facing imprecise observations.
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TABLE I
SPECIFICATIONS OF P AND Q OF THE BLOB DATASET. µb1 = [0, 0], µb2 = [0, 1], µb3 = [0, 2], . . . , µb8 = [2, 1], µb9 = [2, 2] (SAME WITH FIGURE 2A).

∆b
i = −0.02− 0.002× (i− 1) IF i < 5 AND ∆b

i = 0.02 + 0.002× (i− 6) IF i > 5. IF i = 5, ∆b
i = 0 (SAME WITH FIGURE 2A).

Datasets P Q

Blob-S
∑9

i=1
1
9
N (µbi , 0.03× I2)

∑9
i=1

1
9
N (µbi , 0.03× I2)

Blob-D
∑9

i=1
1
9
N (µbi , 0.03× I2)

∑9
i=1

1
9
N
(
µbi ,

[
0.03 ∆b

i
∆b

i 0.03

])

TABLE II
RESULTS ON Blob (α = 0.05): AVERAGE TEST POWER±STANDARD

ERRORS FOR INCREASING NUMBERS OF SAMPLES PER MODE (N ). IN Blob,
EACH SET OF SAMPLES HAS 9 MODES (SEE TABLE I).

N F-MMD MMD-O ME SCF

10 0.164±0.011 0.148±0.015 0.092±0.012 0.114±0.007
20 0.268±0.019 0.272±0.08 0.135±0.021 0.134±0.008
40 0.716±0.009 0.523±0.10 0.177±0.044 0.253±0.04
60 0.950±0.002 0.949±0.003 0.149±0.065 0.349±0.041
80 0.979±0.001 0.929±0.085 0.584±0.117 0.537±0.471

100 1.000±0.000 0.907±0.087 0.637±0.098 0.723±0.053

Avg. 0.679 0.621 0.296 0.352
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