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Abstract—Unmanned aerial vehicles provide a flexible solution
for emerging civilian applications such as last-mile delivery,
remote environmental monitoring or hazard detection. However,
since the demand for this type of applications is sparsely
distributed and comprises spatiotemporal uncertainty, prior to
the deployment of aerial means, the dimension and configuration
of multi-UAV systems has to be addressed. This paper proposes
a clustering-based dimensioning strategy for networks of aerial
vehicles, that incorporates heterogeneous vehicle characteristics
and energy-related autonomy constraints to determine the type
and number of vehicles required to meet a given demand. The
approach follows a fuzzy data-driven method which enables
generating coverage regions with elastic boundaries that allows
for cooperation between neighboring regions to manage high and
low demand scenarios, providing improved resilience to demand
fluctuations and guaranteeing a well-conditioned formulation for
the optimal resource allocation problem.

Index Terms—unmanned aerial vehicles, demand-driven sys-
tems, fleet management, decentralized networks, fuzzy clustering

I. INTRODUCTION

The pressing challenges faced in modern societies to ad-
dress emergency response operations, remote environmen-
tal monitoring or on-demand delivery are opening a broad
scope of novel civilian applications of unmanned aerial ve-
hicles (UAVs) [1]. For this reason, there has been increased
research interest in developing multi-UAV systems to perform
autonomous missions, providing a cost-efficient solution to
carry out valuable tasks. In that sense, the advances in robotics
are paving the way for future aerial networked systems that
comprise a resilient mobile infrastructure capable of adapting
to dynamic events in real-time.

In this context, the optimization of multi-UAV systems can
be casted as a combinatorial problem and several variations
of classical formulations have been proposed e.g. Traveling
Salesman Problem [2], [3], Vehicle Routing Problem [4],
or Orienteering Problem [5]. However, although extensive
research has been devoted to address this issue from a resource
allocation standpoint, in which a set of fixed resources has to
be assigned to tasks, these approaches formulate the problem
under the assumption that the resources of the system are able
to satisfy the tasks to be performed. In that sense, it is implied
that the endurance of the available vehicles is sufficient to
provide adequate coverage to a fixed area. In general, works
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Fig. 1: Demand-driven clustering for multi-UAV fleets.

do not delve into the question of how to dimension the system,
which is essential to ensure the problem is not ill-conditioned.

Hence, the problem of dimensioning multi-UAV systems
requires considering a wider scope, because the optimization
of resources in vehicle assignment scenarios encompasses a
chain of decisions on different levels and temporal scales:

i) strategic level: long-term design decisions related to the
dimension of the fleet, e.g., the number of vehicles in the
network, the type of vehicles and desired characteristics;

ii) tactical level: mid-term planning decisions regarding net-
work configurations for different demand scenarios and
deployment strategies, targeting availability and costs;

iii) operational level: short-term operational decisions con-
cerning vehicle routing, scheduling strategies and trajec-
tory optimization for mission-oriented performance.

These aspects are highly intertwined because flight time is
dependent on vehicle characteristics, as well as deployment
and demand locations. These parameters drive how the system
is able to respond to fluctuations in the stochastic demand, but
are rarely explicitly handled in resource optimization.

To bridge this gap, this paper focuses on strategic and
tactical levels, by addressing the dimensioning and design
of multi-UAV systems, focusing on demand-driven network
optimization based on fuzzy clustering, illustrated in Fig. 1.
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The proposed approach is threefold: i) it builds decentral-
ized networked systems based on cluster-based partitioning
using fuzzy clustering to ensure adequate area coverage in the
region of interest; ii) within each cluster, inner-clusters based
on hierarchical density structure are extracted to dimension
the multi-UAV fleets with adequate vehicle-types; and iii) the
fleet configurations are designed to satisfy the demand.

This work contributes to the state-of-the-art by proposing
fuzzy partitioning policies that incorporate heterogeneous ve-
hicle characteristics and energy constraints into the cluster
optimization process. The principal advantage of this method
is that its ability to cope with data uncertainty enables gener-
ating coverage regions with elastic boundaries which allows
cooperation between neighboring regions to manage high and
low demand scenarios. To explore this approach, this work
analyzes a case-study focused on area coverage in wildfire
detection and monitoring scenarios, namely in surveillance
missions and active fire monitoring. From a resource optimiza-
tion perspective, the proposed framework for dimensioning
and design of UAV fleets simplifies the problem formulation
stage, because by following a data-driven method it ensures
a well-dimensioned system. The outcomes produce improved
resilience to spatial variation in demand, as well as fluctuations
in the temporal intensity of the events.

In the sequence, this work is organized as follows: Sec-
tion II introduces the problem statement and demand modeling
approach. Section III presents clustering-based partitioning
methods. Section IV focuses on the optimization of the decen-
tralized network structure, followed by the analysis of results
in Section V. To conclude, Section VI overviews the core
takeaways and discusses possible directions of future research.

II. DEMAND-DRIVEN NETWORK OPTIMIZATION

Networked aerial systems can enable a mobile infrastructure
to support a multitude of applications involving the coverage
of extensive areas, by having the capability of adapting in
response to dynamic events. However, UAVs have stringent
energy constraints that limit flight endurance, imposing the
need to optimize the distribution of multi-UAV fleets.

Furthermore, considering missions are distributed over large
areas and have a great degree of uncertainty on spatial and tem-
poral levels, it is important to establish a priori demand models
in order to design systems with an adequate amount of vehicles
and deployment locations so as to avoid over-dimensioned
or under-dimensioned systems, and promote fault-tolerance in
dynamic scenarios. To that end, the following establishes the
problem statement, as well as the demand modeling approach.

A. Problem Statement
Consider a heterogeneous fleet, letting V = {1, . . . ,K}

represent the types of vehicles employed, and Vk, define the
subset of vehicles of type k. The fleet is composed of mk

vehicles of each k type, and the sum of the cardinality of
each subset Vk gives the total number of vehicles of the fleet.
In this work, two types of low-altitude UAVs are considered,
namely multi-rotors and fixed-wing drones.

The discrete domain of aerial services tasks can be described
using the mathematical formalism from graph theory, where in
a graph, G = (N , E), the locations are represented by a set of
nodes, N , and the paths between locations are denoted by a set
of edges, E . To formulate the network optimization problem in
a decentralized form, the set of locations N is partitioned into
clusters to build partial subgraphs. Let the objective function of
the global problem, FG, be defined by the cumulative sum of
the local problems Fi(xi). The problem can then be stated as:

min
x

F1(x1) + F2(x2) + · · ·+ Fc(xc) (1)

where x = [x1, x2, . . . , xc] and c denotes the number of
clusters. The core advantages of adopting a decentralized
approach consist of increased fault-tolerance and flexibility,
as well as reduced computational burden. The local cost
functions, which incorporate density-based and energy-related
components associated to the different vehicles, are formalized
further along in section IV.

The principal goal is to optimize the type and distribution of
UAVs in fleets able to perform on-demand missions that are
sparsely distributed over a geographical region, as exemplified
in Fig. 2a.
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(a) Spatiotemporal distribution
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Fig. 2: Example of demand forecasting for a 5-day time horizon: (a) distribution of aerial services according to homogeneous
Poisson point process; (b) demand profile for each time interval, T , considering each day with 12-hour operational time.



Considering that geographical administrative boundaries are
highly asymmetric, an unsupervised clustering approach is a
well-suited approach to derive the structure of the fleets based
on probabilistic demand. To that end, the following presents
the demand modeling approach for scenarios of interest.

B. Demand Modeling
The demand of aerial services can be modeled as a stochas-

tic process describing a spatiotemporal pattern. For that pur-
pose, this work employs a Poisson point process, which is
widely used to model random events. Applications include e.g.
modeling occurrences of natural hazards such as earthquakes
or wildfires, on spatial and/or temporal levels, or representing
the arrival of customer orders at a service provider [6].

In that sense, it is assumed that the requests, represented by
location and request time, L(x, y, tR), are independent random
variables, which for a given time interval, T , have constant
average spatial rates of occurrence for a bounded area, A, and
that the average rate (requests per time period) is constant.

The spatial demand is represented according to a discrete
Poisson distribution, fPois, that models the probability of a
discrete number of requests, n, occurring in a time interval
for a specific bounded area:

fPois(n;µs ∈ R+) = Pr(X = n) =
µs

ne−µs

n!
(2)

with the constant expected value, µs, depending on the spatial
intensity of the demand and area size, i.e., µs = λsA. The
spatial intensity, λs, is the expected average number of tasks
per unit area. The spatial locations can be described with e.g.,
longitude, latitude coordinates or transformed into cartesian
space. In this context, the sampling of the Poisson distribution
for several time intervals yields a demand profile for a time
horizon considered in the problem, for instance as is illustrated
in Fig. 2b, for a forecast with a 5-day time horizon.

The temporal uncertainty of the demand is described by the
variability in the interval of time between consecutive requests,
i.e. the interarrival times, T . In a Poisson point process these
time increments are independent and identically distributed
random variables that follow a continuous decaying exponen-
tial distribution. Then, the interarrival times, T , are obtained

using the inverse of the cumulative distribution function of the
exponential distribution, [FExp]

−1, as follows:

FExp(τ ;µt) = Pr(T ≤ τ) =

∫ τ

0

µte
−µttdt = 1− e−µtτ[

FExp(τ ;µt)
]−1

= − ln(1−τ)
µt

= T (3)

with µt denoting the average rate per time sampling, which
is a function of the temporal intensity, λt, and time window
size, τ . The temporal intensity, describes the average number
of tasks per unit time. For instance, taking the example
of Fig. 2b, a time interval of one day, T , with 8 mission
requests, can have a temporal intensity of 0.5 events per hour
for a time window, τ , of 12-hour period. In this way, by
finding the number of requests in each day according to the
Poisson distribution (2), for each event in that interval T , the
interarrival time is determined through (3) based on a random
uniform distribution, with τ ∼ Unif(0, 1). Note that the sum of
interarrival times can not exceed the defined time interval, T ,
so the values are sampled as to not exceed this upper bound.

1) Load Level: To establish different load levels, high and
low workload scenarios are modeled by selecting distinct spa-
tial and temporal intensities. The definition of these parameters
is intrinsically related to the process under study and the time
horizon considered. Herein, the process will be considered
stationary, i.e. the average spatial and temporal intensities do
not vary throughout the time-horizon (forecast window). This
premise is valid assuming demand scenarios that occur in short
periods in a specific region. Nevertheless, in reality, spatial
and temporal intensities are expected to vary depending on
the application, seasonality and geographic region.

Since aerial services are highly constrained by the limited
autonomy of UAVs, the way spatial intensity relates to the area
covered plays an important role in establishing decentralized
multi-UAV networks. Therefore, testing different workload
levels is essential for the analysis of the dimensioning problem
because it drives the total number of missions that have to be
performed and in result influences fleet size and the operation
area of the fleet. Fig. 3 depicts distributions with different
intensity levels used to simulate high and low workloads.
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Fig. 3: Demand modeling with Poisson point process: (a) spatial uncertainty modeled with Poisson distribution repre-
sents the variability of the number of requests occurring per time interval in a specific area; (b) temporal uncertainty
concerns the variability in the time between requests, modeled with a continuous decaying exponential distribution.



2) Process Type (homogeneous vs. nonhomogeneous):
The spatial structure of Poisson point processes can have
distinct distributions, which for this problem influences how
the mission requests are spread over the area of interest.
For the homogeneous case, the spatial coordinates (x, y) are
generated by a uniform distribution within the limits of the
specified bounded area A, defined as a polygon or a multi-
polygon. In turn, for the nonhomogeneous or inhomogeneous
case, the spatial coordinates can be generated by a spatially
varying deterministic intensity function Λ(x, y), through a
thinning procedure of a homogeneous point process of inten-
sity λmax, where points are eliminated or retained according
to a probability which depends on spatial location, p(x, y) [6].
An example of the difference between homogeneous and
nonhomogeneous processes is presented in Fig. 4 with the
following intensity function for the nonhomogeneous case:

Λ(x, y) = 2(x2 + y2) (4)
p(x, y) = Λ(x, y)/λmax (5)

In this context, these differences allow simulating in a
generic sense e.g. patrolling missions where a large area has
to be monitored periodically (homogeneous), or active fire
monitoring scenarios where mission requests are more likely to
be concentrated in a particular area (nonhomogeneous). Hence,
for comparison purposes the thinning process is implemented
with a stop criterium to halt when the number of requests
matches the load level from the Poisson distribution, enabling
the evaluation of different processes with the same load level.

In this way, the parametrization of the load level and
process type allows modeling the demand and generating
the mission requests for simulation. Considering different
vehicle types have distinct flight endurance characteristics,

the density of mission requests will impact the optimization
of the configuration of multi-UAV fleets. For instance, the
high maneuverability is one advantage of multi-rotor drones,
however this reduces the flight endurance, thus restricting
missions to a limited range. Conversely, fixed-wing drones
have the benefit of harnessing the aerodynamic lift, which
enables longer flights. Therefore, for short-range missions in
an area with higher number of missions multi-rotors are more
well-suited, whereas for performing long-range missions fixed-
wing drones are a better alternative. For these reasons, the way
the requests are spread has to be subsequently estimated.

3) Demand Density: To measure the density of requests per
unit area, i.e. an estimate of the spatial intensity function of the
point pattern, this work uses kernel density estimation (KDE)
based on the convolution of isotropic Gaussian kernels [7]–[9].

Let L = {ℓ1, . . . , ℓn} denote the request locations in
bidimensional (2D) space, belonging to a bounded area A. The
fixed-bandwidth kernel density estimate of the intensity func-
tion, i.e. the local intensity estimate at location pi, is given by:

λ̂(pi) =
1

nh2

n∑
i=1

κ

(
pi − ℓi

h

)
e(pi)

−1 pi ∈ A (6)

where κ denotes the 2D Gaussian smoothing kernel, h > 0
is the smoothing parameter (i.e. the bandwidth), and e(pi)
represents an edge-correction factor [10]. Note that herein the
temporal data is not considered for density estimation, as the
multi-UAV fleets are to be dimensioned for the period of the
time horizon, in this case based on a 5-day forecast. Recalling
Fig. 4 comparing variable spatial distribution and load levels,
the density estimation enables identifying zones with a higher
number of mission requests as described by the color schema.
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Fig. 4: Demand distribution comparison for a 5-day period: (a) and (b) homogeneous (uniform), with low and high
load, respectively; (c) and (d) nonhomogeneous, with low and high load, respectively;



Albeit having a greater computational cost than alternative
density estimation techniques, KDE has the benefit of con-
sidering the spatial distribution over complete neighborhoods
in the region of interest. Conversely, proximity-based core
measures tend to produce myopic density estimates, biased by
local information. The following sections delve deeper into
this issue, and outline the proposed demand-driven clustering
approach designed to: i) build decentralized multi-UAV net-
works and ii) design the configurations of multi-UAV fleets.

III. CLUSTERING-BASED GRAPH PARTITIONING

The problem of deploying UAVs to perform surveillance or
monitoring tasks over extensive areas lends itself to be easily
represented by a graph. However, if the problem has a high
number of aerial services to perform, the subsequent resource
allocation problem will become very complex, if feasible at all.
Indeed, due to the energy constraints of aerial platforms, the
universe of discourse of the entire problem results in many
unfeasible solutions in practice.

To handle this issue, a decentralized approach is proposed
based on clustering methods, which divides the problem
into multiple subgraphs, enabling solving simpler problems
in parallel by limiting the size of the search space. From
an optimization standpoint the main advantage is that the
search of feasible solutions is more effective at a reduced
computational burden. In addition, this approach increases
control over fleet dimensioning and design, whilst making the
decentralized system more flexible and fault-tolerant.

Clustering algorithms are generally unsupervised learning
techniques that allow grouping data according to different
objectives [11]. This allows dividing the problem space using
characteristics intrinsic to the data. Herein, based on the
demand-driven modeling approach adopted, the interest cen-
ters on centroid-based clustering and hierarchical clustering.

While centroid-based clustering methods, e.g. K-means
[12], [13] or Fuzzy C-Means [14]–[16], focus on partitioning
the space in a balanced volume per cluster in terms of area
coverage, this approach disregards cardinality, shape and den-
sity of each cluster, i.e. if there are many or few aerial tasks to
perform, how are these distributed and concentrated in space,
respectively. Conversely, clustering based on distance-based
density measures, such as DBSCAN [17], [18] or hierarchical
extensions HDBSCAN [19], concentrate on extracting cluster
structures without restricting the maximum cluster volume.

In the context of the problem, considering flight endurance
limitations, volume-constrained partitioning is critical to en-
sure adequate area coverage of the region of interest. In turn,
to determine the fleet configurations, proximity-based density
and hierarchical information are important to select suitable
vehicle types. Thus, combining both alternatives is essential,
but given the spatiotemporal uncertainty in the data, a soft
clustering approach is better suited to address this problem.

In that sense, this work proposes a decentralized distribution
framework based on fuzzy clustering, which incorporates den-
sity and hierarchical information, that enables dimensioning
and designing a flexible multi-UAV fleet system capable to

adapt to stochastic demand. More specifically, the first stage
consists in a fuzzy partitioning policy based on distance-
based fuzzy clustering that encompasses spatial and density
information, using the Gustafson-Kessel fuzzy clustering al-
gorithm [20]. Subsequently, the second stage concerns de-
riving clusters within each main subgraph using HDBSCAN
based on proximity-based density information, namely mutual
reachability distance and hierarchical structure. The following
describes the graph model and the main components of the
proposed three-stage clustering algorithm, and how these relate
to the proposed framework for dimensioning and design of
multi-UAV fleets.

A. Graph Model

The demand dataset is defined in the LLA (Latitude, Lon-
gitude, Altitude) referential and are subsequently converted to
the NED (North, East, Down) coordinate system. The demand
density at each location is estimated using the KDE method at
each service waypoint. Given a set of N samples, and a data
vector zk = [X,Y, Z, λ̂]T , defined by the NED coordinates
and KDE-based density, let Z = [z1, z2, . . . , zN ] define the
dataset of demand waypoints of the aerial services to be
performed. The proposed methodology employs a two-stage
clustering algorithm, thus the graph model undergoes trans-
formations throughout the algorithm. The following definitions
relate the key components in this demand-driven approach.

1) Distance Measures:
• Mahalanobis distance is employed in the GK algorithm to

allow for clusters with different shapes but identical area;
• Core distance based on the Euclidean distance to the n-

th neighbor, is used to compute the mutual reachability
distance (MRD), to retrieve proximity-based density es-
timates and hierarchical structure of the clusters.

2) Demand Density Estimates:
• KDE density conveys the number of missions in the

region of interest;
• MRD density translates the proximity of nearby missions;

Further vehicle-related aspects are presented in section IV.

B. Gustafson-Kessel Fuzzy Clustering

To derive fuzzy data partitions from a set of locations N ,
the Gustafson-Kessel (GK) fuzzy clustering algorithm clusters
each data point based on centroid-based distances, according
to a degree of membership, µik, forming the fuzzy partition
matrix, U = [µik]. This allows locations at the boundary of
each clustered region to belong to more than one fuzzy set.
The algorithm computes the clusters centers, vi, as:

vi =

∑N
k=1(µik)

mzk∑N
k=1(µik)m

, i = 1, 2, . . . , C (7)

defining the matrix of cluster centers V = [v1,v2, . . . ,vC ].
The overlap between clusters is given by the fuzziness param-
eter, m ∈ [1,∞), with the lower bound equal to 1 correspond-
ing to a hard partition. The number of clusters, C, is defined
heuristically as a function of the area to be covered, and the
fuzziness parameter m, through a grid search procedure.



The GK algorithm uses an adaptive distance measure based
on the Mahalanobis distance, a squared inner-norm, given by:

D2
ikAi

= (zk − vi)
TAi(zk − vi) (8)

where Ai = |Fi|
1
nF−1

i is a norm-inducing matrix based on
the fuzzy covariance matrix, Fi, given by:

Fi =

∑N
k=1(µik)

m(zk − vi)(zk − vi)
T∑N

k=1(µik)m
(9)

The GK algorithm, in addition to U and V, also uses the
matrices A = (A1, . . . ,AC) as optimization variables, to
allow varying the shape of each cluster while maintaining
a fixed volume, ensuring each multi-UAV fleet will cover
equivalent areas. Thus, the clustering criterion to minimize
is given by the objective function:

J(Z;U,V,A) =
C∑
i=1

N∑
k=1

(µik)
mD2

ikAi
(10)

The partition matrix U is updated in a iterative process, by
updating the membership degrees, computed as:

µik =
1∑C

j=1

(
DikAi

DjkAi

)2/(m−1)
(11)

halting if the improvement on the cost function satisfies a given
tolerance, or if the maximum number of iterations is reached.

By applying this technique it is possible to partition the
problem and build decentralized networks with fuzzy bound-
aries for increased flexibility. In the sequence, within each
cluster we aim to extract the demand structure so that multi-
UAV fleets are designed with suitable configurations, i.e. how
many drones and of which type, e.g. fixed-wing or multi-rotor.

C. Hierarchical Density-based Clustering

Considering that multi-rotors have limited flight endurance,
these are better suited for short-range missions, even if within
that range there exists a high number of service requests.
Conversely, fixed-wing drones can serve long-range missions
more effectively. In that sense, the nature of the demand
influences the selection of type of vehicles within each fleet.

To match the demand structure, i.e. if it is sparsely/densely
distributed, to better suited fleet configurations, this work
employs partly a density-based method, the HDBSCAN. The
following describes the central aspects of this method, while
subsequent sections focus on the algorithm proposed to ad-
dress this problem. First, the problem space is transformed
to represent density information, through a proximity measure
termed mutual reachability distance, dmreach. To that end, for
each zk ∈ Z a density estimate is computed, denominated
the core distance to the n-th nearest neighbor [21], which for
the sake of simplicity we represent as dcore, and without loss
of generality since n is an input parameter. With the mutual
reachability distance between sample j and k given by:

dmreach(zj , zk) = max
{
dcore(zj), dcore(zk), d(zj , zk)

}
(12)

a weighted graph based on the MRD is established for Z, from
which a minimum spanning tree (MST) is computed [22].

To extract the cluster structure, a dendrogram is constructed
from the MST of graph of the mutual reachability distance,
GR = (N ,A). Subsequently, based on a specified minimum
cluster size the cluster hierarchy is condensed to obtain a
locally aggregated version of the demand. However, the hi-
erarchical approach alone does not suit well this problem.

IV. DECENTRALIZED DISTRIBUTION OF m-UAV FLEETS

The first stage of the proposed algorithm (Algorithm 1)
consists of the partitioning of the problem space using fuzzy
clustering to create decentralized networks described by sub-
graphs. Secondly, following a decentralized approach, the
procedure to extract hierarchical structure of the inner-clusters
applies to the set corresponding to each fuzzy cluster, denoted
by Zi with i = 1, 2, . . . , C. Then, having density-based inner-
clusters, the main goal is to design the fleet configurations with
the appropriate characteristics to respond to demand. To that
end, recall the global objective function (1). For each operating
area, i.e. each fuzzy cluster, the local cost, Fi is evaluated by:

min
∑
k∈V

∑
m∈Vk

∑
(i,j)∈A

dijx
k,m
ij +

∑
k∈V

∑
m∈Vk

ekvk,m (13a)

s.t. xk,m
ij ∈ {0, 1} , ∀(i, j) ∈ A, ∀k ∈ V, ∀m ∈ Vk (13b)

vk,m ∈ {0, 1} , ∀k ∈ V, ∀m ∈ Vk (13c)

with the binary decision variables representing the allocation
of a vehicle in a inner-cluster, xk,m

i,k , that is 1 if vehicle m of
type k is allocated, or null otherwise, and the deployment of
vehicle m of type k, vk,m, that is 1 if a vehicle is deployed and
assigned a cluster, and zero otherwise. The objective function
balances two goals, namely the allocation of best suited vehi-
cles for each demand density structure based on distance, dij ,
and the minimization of energy expenditure, accounting for a
energy cost, ek, for each vehicle deployed, vk,m.

A. Cluster Optimization and Validity Conditions

Operational areas can not violate minimum service levels,
which relate to the maximum vehicle range and expected
demand, λ. Thus, the area of the region of interest, A,
has to be divided into equivalent-sized clusters, according
to the operational area ratio given by γ = A · λ/maxrange.
Thereby, the number of clusters can be computed heuristically,
as C = γ · ms, with m representing the overlap between
clusters, and where s denotes a safety/redundancy parameter.
This allows increasing the flexibility and fault-tolerance of the
networked system, depending on the application requirements.
Since m ∈ [1,∞) with 1 corresponding to a hard partition, for
s > 0 the redundancy of the system is increased, because the
number of clusters is overdimensioned. In turn, for s < 0 the
system will be less flexible as with constant overlap between
clusters, the number of clusters decreases, the cluster volume
increases. Since the areas to be covered expand, the number of
vehicles required to meet the minimum service level also



increases, but the ability to share resources does not, so the
system will be less capable of adapting to demand fluctuations.

B. Design of Fleet Configurations

With the minimum spanning tree of the mutual reachability
distance, this estimate of local density is leveraged to deter-
mine the type of vehicle that should be allocated to that aerial
service. As mentioned throughout this work, multi-rotors (MR)
are preferential for short-distance missions, whereas fixed-
wing (FW) drones will be preferentially allocated to long-
distance tasks. To build solutions for fleet configurations, the
average of the MTS weights allows assessing if the tasks are
in a dense/sparse area, which enables knowing if a MR or a
FW should be selected, respectively. When vehicle maximum
flight endurance is exceed, additional aerial vehicles are added.

Therefore, with this iterative process, solutions for each
cluster can be composed by a single type of vehicle, e.g. either
fixed-wing or multi-rotor drones, or result in heterogeneous
configurations with both types of vehicle in the same multi-
UAV fleet. By optimizing the types of vehicles deployed
according the to the nature of the demand, and by having fuzzy
overlap between clusters, the solutions will allow sharing of
resources between neighboring regions to manage fluctuations
over time in demand, and consequently in the fleet load level.

Algorithm 1: Demand-driven clustering for multi-UAV networks

data : Z = [z1, z2, . . . , zN ], dataset with k = 1, 2, . . . , N samples;
S, scenario parameter dictionary
zk = [X,Y, Z, λ̂]T in NED coord. and density estimate;

input : m, overlap degree between clusters; γ, operational area ratio;
n, core distance parameter, cmin, minimum cluster size

output: ZC , clusters, v, clusters centers, U, partition matrix;
1 initialization
2 stage 1. build decentralized networks with GK fuzzy clustering (III-B)
3 for Z do
4 compute fuzzy partition with C clusters and fuzziness m;
5 v, U,

6 stage 2. extract inner-cluster density structure with MST (III-C)
7 for Z do
8 dcore := distance to the n− th neighbor;
9 compute mutual reachability graph (12), and derive MST;

10 stage 3. design fleet configurations with available vehicle-types (IV-B)
11 foreach Zi ∈ Z = [Z1,Z2, . . . ,ZC ] do
12 build configuration solutions if feasible then
13 compute clusterCost

14 evaluate globalCost;

V. RESULTS

This section examines a proposed case-study based on real
locations from rural areas in the central region of Portugal,
where there is typically increased fire hazard. The demand
was modeled as outlined in section II. For assessment of
the proposed clustering framework, the scenarios presented
in Fig. 4 were tested, though special attention was given to
the analysis of a case resembling an active fire monitoring
mission (i.e., inhomogeneous with high workload). For this
approach to dimensioning and design of multi-UAV fleets, the
deployment/land points are not pre-established because in real
contexts these can be executed by mobile operational teams,

thereby assumed to be within the range of aerial services. In
reality, higher demand density for aerial services in fire mon-
itoring scenarios is mainly due to higher risks for populations
in wildland-urban interfaces, or because some areas are more
susceptible to phenomena of extreme fire behavior.

The stages of the proposed algorithm are illustrated in
Fig. 5, for an example of an inhomogeneous high workload
case. Observing Fig. 5b representing the GK fuzzy clusters
and the global mutual reachability graph, there is an higher
density in C1 in comparison to C2. This information is clearly
valuable to select the vehicles for each fleet.

Considering fire monitoring missions, a positive safety
parameter, s, is advisable, to provide the system additional
flexibility and redundancy in emergency operation scenarios
that are highly dynamic. With the overlap between clusters, the
fleets can share resources as the situation develops. For com-
parison, herein the situations analyzed consider two clusters.
Vehicle characteristics were defined generically with energy
costs for MR and FW as 1500 and 1000, respectively. The
maximum range was set for MR as 4000 and for FW as 8000.

Tables I and II present selected fleet design results, show-
casing the influence of varying the degree of overlap, i.e. the
redundancy in the system, for light and heavy load scenarios,
respectively. While cluster C1 has a low reachability level
(Fig. 5b), it has high cardinality, thus a combination of vehicles
achieves the best trade-off. In turn, the sparsity in cluster C2

leads to fleets with mostly fixed-wing drones. Attending to the
results in both scenarios, varying the degree of overlap does
not evidence particular improvement in light-load cases, but
can be beneficial if flexibility is desired. For heavy-load cases,
the results demonstrate that increasing redundancy (m = 1.2)
can create systems that are more efficient, but high fault-
tolerance (m = 1.5) implies a cost increase.
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Fig. 5: Example of the proposed framework: (a) demand
modeling simulation for fire monitoring scenario; (b) de-
centralized network with fuzzy partitioning.



TABLE I: Optimization results of selected network models for light-load scenarios (homogeneous case).
Clusters (C) m Aerial Vehicles C1 Cost C1 (F1) Aerial Vehicles C2 Cost C2 (F2) Global Solution (FG)

2
1.1
1.2
1.5

MR(1), FW(2)
MR(1), FW(2)
MR(0), FW(2)

20959

20959

17306

MR(0), FW(2)
MR(0), FW(2)
MR(0), FW(3)

17432

17432

23809

38391

38391

41115

TABLE II: Optimization results of selected network models for heavy-load scenarios (nonhomogeneous case).
Clusters (C) m Aerial Fleet C1 Cost C1 (F1) Aerial Fleet C2 Cost C2 (F2) Global Solution (FG)

2
1.1
1.2
1.5

MR(1), FW(4)
MR(1), FW(3)
MR(1), FW(2)

37872

24554

22794

MR(1), FW(1)
MR(1), FW(1)
MR(1), FW(4)

11127

9747

38152

48999

34301

60946

Without loss of generalization, this demand-driven approach
can be applied to a multitude of aerial services, by establishing
different parameters according to the application requirements.

VI. CONCLUSION

This paper proposes a framework for decentralized dis-
tribution of multi-UAV fleets for on-demand aerial services,
addressing strategic and tactical decision-making related to
dimensioning and design of aerial networks. The proposed
clustering-based approach is threefold: i) it derives decen-
tralized networked systems using fuzzy clustering to ensure
adequate area coverage in the region of interest; ii) within
each cluster, inner-clusters based on hierarchical density struc-
ture are extracted to dimension the multi-UAV systems with
adequate vehicle-types; iii) fleet configurations are designed
with the required number of UAVs to meet the demand. The
overarching benefit of handling data uncertainty using a soft
clustering approach is that it results in increasing the flexibility
and fault-tolerance of the networked system.

Following this dimensioning and design strategy, to delve
into actual operationalization of fleet management, multi-
UAV mission planning can be framed into well-conditioned
resource allocation and scheduling problems. The proposed
method with fuzzy boundaries opens opportunities to research
cooperative strategies, e.g. to balance workload between neigh-
boring regions. Future formulations of the mission planning of
multi-UAV fleets shall also evolve to include different priority
levels and time-windows constraints, to approximate the study
scenarios to decision-making problems faced in real contexts.
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