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Abstract—It is known that some fuzzy predicate logics, such
as Łukasiewicz predicate logic, are not complete with respect
to the standard real-valued semantics. In the present paper
we focus upon a typed version of first-order MTL (Monoidal
T-norm Logic), which gives a unified framework for different
fuzzy logics including, inter alia, Hajek’s basic logic, Łukasiewicz
logic, and Gödel logic. And we show that any extension of
first-order typed MTL, including Łukasiewicz predicate logic, is
sound and complete with respect to the corresponding categorical
semantics in the style of Lawvere’s hyperdoctrine, and that the
so-called Baaz delta translation can be given in the first-order
setting in terms of Lawvere’s hyperdoctrine. A hyperdoctrine
may be seen as a fibred algebra, and the first-order completeness,
then, is a fibred extension of the algebraic completeness of
propositional logic. While the standard real-valued semantics for
Łukasiewicz predicate logic is not complete, the hyperdoctrine,
or fibred algebraic, semantics is complete because it encompasses
a broader class of models that is sufficient to prove completeness;
in this context, incompleteness may be understood as telling
that completeness does not hold when the class of models is
restricted to the standard class of real-valued hyperdoctrine
models. We expect that this finally leads to a unified categorical
understanding of Takeuti-Titani’s fuzzy models of set theory.

Index Terms—first-order typed fuzzy logic, categorical seman-
tics, completeness, Baaz translation, Lawvere hyperdoctrine

I. INTRODUCTION

Monoidal T-norm Logic, denoted MTL, gives a unified
framework for different fuzzy logics including, inter alia,
Hajek’s basic logic, Łukasiewicz logic, and Gödel logic (see,
e.g., Esteva-Godo [4] and Hájek-Cintula [7]). MTL is sound
and complete with respect to its algebraic semantics in terms
of MTL algebras (see, e.g., Hájek [6] and Jenei-Montagna
[10]). In this paper we give a first-order typed extension of
MTL, and prove its (linear) completeness with respect to
categorical semantics in terms of Lawvere hyperdoctrines (to
be precise, its MTL extensions; see, e.g., Lawvere [13] and
Pitts [20]); the (linear) completeness can be applied to any
axiomatic extension of MTL. We also show that an analogue
of the so-called Baaz delta translation can be given in the
first-order setting in terms of Lawvere’s hyperdoctrine. The
methodology of the present paper builds upon our previous
work [15], [16]; although the technical machinery we employ
in this paper is basically the same as the one in there, we
nonetheless emphasize fuzzy logical aspects here, such as
linear completeness, which is a striking characteristic of fuzzy

logic in general, and as the Baaz delta translation, which
allows us to bridge between the fuzzy and the classical worlds.
The general framework as developed in [?], [16], presumably,
works for almost all kinds of logical systems; the present
paper demonstrates this for fuzzy logical systems in particular,
allowing for nuanced treatment of special characteristics of
fuzzy systems as well.

Hyperdoctrines are category-theoretical concepts, and yet
their essence is closer to the idea of algebraic logic. They
basically give algebraic semantics for predicate logic, both
first-order and higher-order. We call it fibred algebraic logic
or fibred algebraic semantics; let us elaborate more on this
idea. In general, hyperdoctrines are fibred algebras

(AC)C∈C

where C is a category for the underlying type theory (or many-
sorted structure); MTL hyperdoctrines are (AC)C∈C such that
every fibre AC is an MTL algebra. Hyperdoctrine semantics
extends not only algebraic semantics, but also set-theoretical
semantics, which corresponds to interpreting logic within a
special class of set-theoretical hyperdoctrines; we shall explain
more about this in subsequent sections.

It is known that some fuzzy predicate logics, such as
Łukasiewicz predicate logic, are not complete with respect
to the standard real-valued semantics. While the standard
real-valued semantics for Łukasiewicz predicate logic is not
complete, the hyperdoctrine (or fibred algebraic) semantics is
complete because it encompasses a broader class of models
that is sufficient to prove completeness; in this context, in-
completeness may be understood as telling that completeness
does not hold when the class of models is restricted to
the standard class of real-valued hyperdoctrine models. The
algebraic completeness of first-order fuzzy logics is usually
shown via so-called safe valuations on algebras involved (see,
e.g., Ono [18] and Ono [19]); yet safety is an ad hoc condition
to guarantee the interpetability of quantifiers. In hyperdoctrinal
or fibred algebraic semantics, there is no such ad hoc condition
to ensure the interpretability of quantifiers. This gives us
a particular rationale for the categorical approach to fuzzy
predicate logic.

The rest of the present paper is organized as follows. In
Section 2, we present the syntax of first-order typed MTL.
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In Section 3, we give categorical semantics for first-order
typed MTL, which is shown to be sound and complete as
desired. Note that linear completeness obtains as well as
ordinary completeness. In Section 4, we prove a hyperdoctrinal
analogue of the Baaz translation theorem in the first-order
setting.

II. TYPED MONOIDAL T-NORM LOGIC

Let us introduce a typed, or many-sorted, version MTLq
t

of quantified MTL on the basis of the unifying framework of
substructural logics over full Lambek calculus as developed
in Galatos et al. [5] and Ono [19]. The type theory of MTLq

t

follows the type theory of Pitts [20]. In categorical logic,
typed or many-sorted logic is more popular than single-sorted
one (Pitts [20], Lambek-Scott [12], Jacobs [9], and Johnstone
[11]); this is because category theory itself is some sort of
algebraic type theory. Yet at the same time, it is possible
to reduce typed logic into single-sorted logic by considering
one type or one sort only. From a different angle, typed logic
is the integration of logic and type theory; a logic structure
is coexistent with a type structure, both being able to be
equipped with different additional structures such as different
type constructors. The integrated nature of type logic is crucial
in our construction of syntactic hyperdoctrines below; they
are integrations of syntactic categories on the type theory side
and Lindenbaum-Tarski algebras on the logic side. To put it
succinctly, they are fibred Lindenbaum-Tarski algebras

(AC)C∈C,

each fibre AC being a single algebra of propositions on a given
type. Typed logic has different merits such as the resolution
of the empty domain issue addressed below.

MTLq
t has the following logical connectives:

⊗,∧,∨,→, 1, 0,∀,∃.

In MTLq
t , any variable x has its type σ. Note that basic types

are denoted by letters like σ and τ .

x : σ

is the formal statement that a variable x is of type σ. A type
context is defined as a finite list of type declarations:

x1 : σ1, ..., xn : σn.

We usually denote a context by Γ. In MTLq
t we have typed

predicate symbols (or predicates in context) and typed function
symbols (or function symbols in context) as follows:

R(x1, ..., xn) [x1 : σ1, ..., xn : σn]

is the formal statement that R is a predicate with n variables
x1, ..., xn of types σ1, ..., σn respectively;

f : τ [x1 : σ1, ..., xn : σn]

is the formal statement that f is a function symbol with n
variables x1, ..., xn of types σ1, ..., σn and with its values
in τ . Formulae (or formulae-in-context) ϕ [Γ] and terms (or

terms-in-context) t : τ [Γ] are inductively defined in the usual
manner. Sequents (or sequents-in-contexts) are defined as:

Φ ` ϕ [Γ]

where Γ is a context, and Φ is a finitary list of formulae
ϕ1, ..., ϕn. Our notation and terminology basically follows
those of Pitts [20], our system MTLq

t being an adaptation
of Pitts’ typed intuitionistic logic to monoidal t-norm logic.
There are several syntactic rules on the type theory of MTLq

t ,
but they are the same as those of Pitts [20], and so we do not
repeat them. Note that it is permitted to add a new variable
x : σ to a given context Γ: for instance, we can derive the
following from Φ ` ϕ [Γ]:

Φ ` ϕ [Γ, x : σ].

Nevertheless, it is not allowed to delete existing variables,
and we shall use this property below. Note also that we can
change the ordering of contexts; for instance, it does not matter
whether we write [Γ,Γ′] or [Γ′,Γ]. Let us present the logical
inference rules of MTLq

t in the following. MTLq
t has several

structural rules. The identity and cut rules are as follows:

ϕ ` ϕ [Γ]
(id.)

Φ1 ` ϕ [Γ] Φ2, ϕ,Φ3 ` ψ [Γ]

Φ2,Φ1,Φ3 ` ψ [Γ]
(cut)

where ψ may be empty; this applies to the following L (left)
rules as well. MTLq

t has the exchange and weakening rules:

Φ1, ψ, ϕ,Φ2 ` ψ [Γ]

Φ1, ϕ, ψ,Φ2 ` ψ [Γ]
(ex.)

Φ1, ϕ, ϕ,Φ2 ` ψ [Γ]

Φ1, ϕ,Φ2 ` ψ [Γ]
(weak.)

In the following, we list the rules of inference for the logical
connectives. There are two kinds of conjunction:

Φ, ϕ, ψ,Ψ ` χ [Γ]

Φ, ϕ⊗ ψ,Ψ ` χ [Γ]
(⊗L)

Φ ` ϕ [Γ] Ψ ` ψ [Γ]

Φ,Ψ ` ϕ⊗ ψ [Γ]
(⊗R)

Φ, ϕ,Ψ ` χ [Γ]

Φ, ϕ ∧ ψ,Ψ ` χ [Γ]
(∧L)

Φ ` ϕ [Γ] Φ ` ψ [Γ]

Φ ` ϕ ∧ ψ [Γ]
(∧R)

There is only one disjunction with the following rules:

Φ, ϕ,Ψ ` χ [Γ] Φ, ψ,Ψ ` χ [Γ]

Φ, ϕ ∨ ψ,Ψ ` χ [Γ]
(∨L)

Φ ` ϕ [Γ]

Φ ` ϕ ∨ ψ [Γ]
(∨R)

The rules for implication are as follows:

Φ ` ϕ [Γ] Ψ1, ψ,Ψ2 ` χ [Γ]

Ψ1,Φ, ϕ→ ψ,Ψ2 ` χ [Γ]
(→ L)

ϕ,Φ ` ψ [Γ]

Φ ` ϕ→ ψ [Γ]
(→ R)

The rules for truth and falsity constants are as follows:

Φ ` 1 [Γ]
(1R)

Φ1, 0,Φ2 ` ϕ [Γ]
(0L)



Finally, we have the following rules for quantifiers ∀ and ∃, in
which type contexts explicitly change; notice that type contexts
do not change in the rest of the rules presented above.

Φ1, ϕ,Φ2 ` ψ [x : σ,Γ]

Φ1,∀xϕ,Φ2 ` ψ [x : σ,Γ]
(∀L)

Φ ` ϕ [x : σ,Γ]

Φ ` ∀xϕ [Γ]
(∀R)

Φ1, ϕ,Φ2 ` ψ [x : σ,Γ]

Φ1,∃xϕ,Φ2 ` ψ [Γ]
(∃L)

Φ ` ϕ [x : σ,Γ]

Φ ` ∃xϕ [x : σ,Γ]
(∃R)

Note that there are eigenvariable conditions on the rules above:
x does not appear as a free variable in the bottom sequents
of Rule ∀R and of Rule ∃L. The deducibility of sequents in
MTLqt is defined in the usual manner. As is well known, the
following logics can be represented as axiomatic extensions
of MTLqt : Hajek’s basic logic, Łukasiewicz logic, and Gödel
logic (see, e.g., Hájek [6]). Given a set of axioms (to be
precise, axiom schemata), say X , we denote by XMTLqt the
corresponding extension of MTLqt via X .

It is immediate to see the following:

Lemma 1. The following are deducible in MTLqt :
(i) ϕ⊗(∃xψ) ` ∃x(ϕ⊗ψ) [Γ] and its converse ∃x(ϕ⊗ψ) `

ϕ⊗ (∃xψ) [Γ];
(ii) (∃xψ)⊗ϕ ` ∃x(ψ⊗ϕ) [Γ] and its converse ∃x(ψ⊗ϕ) `

(∃xψ)⊗ ϕ [Γ],
where it is assumed that ϕ does not contain x as a free
variable, and that Γ contains type declarations on those free
variables that appear in ϕ and ∃xψ.

In typed predicate logic, domains of discourse can be empty.
Notice that they must be be non-empty in the standard Tarskian
semantics. This is an interesting feature of typed logic, al-
lowing us to remove the ad hoc, non-emptiness condition on
domains of discourse (see, e.g., Marquis-Reyes [14]). This
matters proof-theoretically as well as semantically. On one
hand, the following sequent is not necessarily deducible in
MTLqt :

∀xϕ ` ∃xϕ [ ].

On the other, the following sequent is deducible in MTLqt :

∀xϕ ` ∃xϕ [x : σ,Γ].

The sequent above is thus provable if a type σ is inhabited.
Note that deleting free variables is not allowed even if they
do not appear in formulae concerned.

III. HYPERDOCTRINE: FIBRED ALGEBRAIC SEMANTICS

MTL algebras give complete semantics for propositional
MTL (see, e.g., Hájek [6]). What we show here is the first-
order extension of this: i.e., fibred MTL algebras, or MTL
hyperdoctrines, give complete semantics for first-order typed
MTLqt . Extending the logic to the first-order type setting
amounts to extending a single algebra A to a fibred algebra
(AC)C∈C indexed by a category C. In the following we first
define MTL algebras and then fibred MTL algebras or MTL
hyperdoctrines.

Definition 2. (A,⊗,∧,∨,→, 1, 0,>,⊥) is called an MTL
algebra iff
• (A,⊗, 1) is a monoid; (A,∧,∨, 1, 0) is a bounded lattice,

which induces a partial order ≤ on A;
• for any a ∈ A, a → (-) : A → A is a right adjoint of
a ⊗ (-) : A → A: i.e., a ⊗ b ≤ c iff b ≤ a → c for any
a, b, c ∈ A; For any a, b ∈ A, (a→ b) ∨ (b→ a) = 1.

A homomorphism of MTL algebras is a map preserving the
MTL operations (⊗,∧,∨,→, 1, 0,>,⊥). Let MTL denote
the category of MTL algebras and their homomorphisms.

MTL is an algebraic category (or variety in universal
algebra); an axiomatic extension XMTL of MTL corresponds
to an algebraic full subcategory (or subvariety) of MTL,
denoted XMTL (algebraicity follows from definability by
axioms).

Definition 3 ( [15], [16]). An MTL hyperdoctrine is defined
as an MTL-valued functor (or equivalently, presheaf)

P : Cop →MTL

such that C is a category with finite products, and the
following conditions hold (which come from Lawvere’s idea
of quantifiers as adjoints):
• For any projection π : X×Y → Y in C, P (π) : P (Y )→
P (X × Y ) has a right adjoint

∀π : P (X × Y )→ P (Y ).

Moreover, the Beck-Chevalley condition for ∀ holds, i.e.,
the diagram below commutes for any arrow f : Z → Y in
C (in the following π′ : X×Z → Z denotes a projection
as usual):

P (X × Y ) P (Y )

P (X × Z) P (Z)
?

P (X×f)

-∀π

?
P (f)

-
∀π′

• For any projection π : X×Y → Y in C, P (π) : P (Y )→
P (X × Y ) has a left adjoint

∃π : P (X × Y )→ P (Y ).

The Beck-Chevalley condition for ∃ holds:

P (X × Y ) P (Y )

P (X × Z) P (Z)
?

P (X×f)

-∃π

?
P (f)

-
∃π′

In addition, the following Frobenius Reciprocity condi-
tions hold: for any projection π : X ×Y → Y in C, any
a ∈ P (Y ), and any b ∈ P (X × Y ),

a⊗ (∃πb) = ∃π(P (π)(a)⊗ b).

Given an axiomatic extension XMTL of MTL, we define
an XMTL hyperdoctrine to be such that the value category



MTL is replaced by XMTL. We also call an MTL (resp.
XMTL) hyperdoctrine a fibred MTL (resp. XMTL) algebra.

We call the underlying category C the base category or
type category, and P the predicate functor, since P (C) is
regarded as the algebra of predicates on a given type (or
domain of discourse) C. We also call P (C) a fibre of P
(technically, an MTL hyperdoctrine is an indexed category,
and the Grothendieck construction yields the corresponding
fibration). We may intuitively regard an arrow f in C as a term,
and P (f) as a substitution operation. In this understanding, the
Beck-Chevalley conditions and functoriality of P state that
substitution commutes with the logical operations. In particu-
lar, the Beck-Chevalley conditions state that substitution after
quantification is equivalent to quantification after substitution.
All this is literally true in syntactic hyperdoctrines as we
shall discuss below. Now, let us introduce the hyperdoctrine
semantics for MTLqt .

Definition 4 ( [15], [17]). Given an MTL hyperdoctrine P :
Cop → MTL, an interpretation J-K of MTLqt in P consists
of the following data:
• assignment of an object JσK in C to a basic type σ in

MTLqt ;
• assignment of an arrow Jf : τ [Γ]K : Jσ1K× ...× JσnK→

JσK in C to a typed function symbol f : τ [Γ] in MTLqt
where Γ is x1 : σ1, ..., xn : σn;

• assignment of an element JR [Γ]K in P (JΓK)to each typed
predicate symbol R [Γ] in MTLqt ; if the context Γ is
x1 : σ1, ..., xn : σn, JΓK denotes Jσ1K× ...× JσnK.

Terms are inductively interpreted as follows:
• Jx : σ [Γ1, x : σ,Γ2]K is defined as:

π : JΓ1K× JσK× JΓ2K→ JσK.

• Jf(t1, ..., tn) : τ [Γ]K is defined as:

JfK ◦ 〈Jt1 : σ1 [Γ]K, ..., Jtn : σn [Γ]K〉

where f : τ [x1 : σ1, ..., xn : σn], and t1 : σ1 [Γ], ..., tn :
σn [Γ]. In the above, 〈Jt1 : σ1 [Γ]K, ..., Jtn : σn [Γ]K〉 is
the product of arrows in C (which has finite products).

Formulae are inductively interpreted as follows:
• JR(t1, ..., tn) [Γ]K is defined as:

P (〈Jt1 : σ1[Γ]K, ..., Jtn : σn[Γ]K〉)(JR [x : σ1, ..., xn : σn]K)

for a predicate symbol R in context x1 : σ1, ..., xn : σn.
• Jϕ⊗ψ [Γ]K is defined as Jϕ [Γ]K⊗Jψ [Γ]K. The rest of the

binary connectives ∧,∨,→ are interpreted in the same
manner. J1 [Γ]K is defined as the monoidal unit element of
P (JΓK). The rest of the constants 0,>,⊥ are interpreted
in the same manner.

• J∀xϕ [Γ]K is defined as

∀π(Jϕ [x : σ,Γ]K)

where π : JσK × JΓK → JΓK is a projection, and ϕ is
a formula in context [x : σ,Γ]. Likewise, J∃xϕ [Γ]K is
defined as:

∃π(Jϕ [x : σ,Γ]K).

Satisfaction of sequents is defined as follows:
• ϕ1, ..., ϕn ` ψ [Γ] is satisfied in an interpretation J-K in
P iff the following holds in P (JΓK):

Jϕ1 [Γ]K⊗ ...⊗ Jϕn [Γ]K ≤ Jψ [Γ]K.

If the right-hand side of a sequent is empty, ϕ1, ..., ϕn `
[Γ] is satisfied in J-K iff Jϕ1 [Γ]K ⊗ ... ⊗ Jϕn [Γ]K ≤ 0
in P (JΓK). If the left-hand side of a sequent is empty,
` ϕ [Γ] is satisfied in J-K iff 1 ≤ Jϕ[Γ]K in P (JΓK).

An interpretation of XMTLqt in an XMTL hyperdoctrine is
defined by replacing MTL with XMTL and MTLqt with
XMTLqt .

In the following we prove the soundness and completeness
of this hyperdoctrine semantics. We prepare some notation:
when Φ is ϕ1, ..., ϕn, JΦ [Γ]K denotes Jϕ1 [Γ]K⊗...⊗Jϕn [Γ]K.

Proposition 5. Assume that Φ ` ψ [Γ] is deducible in
MTLqt (resp. XMTLqt ). Then, Φ ` ψ [Γ] is satisfied in any
interpretation in any MTL (resp. XMTL) hyperdoctrine.

Proof. Let us consider an MTL or XMTL hyperdoctrine P
and an interpretation J-K in P . Note that initial sequents are
necessarily satisfied, since a ≤ a in any fibre P (C). Since
⊗ preserves ≤ and ≤ is transitive, the cut rule is valid (i.e.,
preserve satisfcation). It can be easily verified that all of the
rules for the logical connectives are valid. So let us discuss
the case of universal quantifier. We fist consider Rule ∀R. Let
us assume that

JΦ [x : σ,Γ]K ≤ Jϕ [x : σ,Γ]K

in P (JσK× JΓK). We then have the following:

JΦ [x : σ,Γ]K = P (π : JσK× JΓK→ JΓK)(JΦ [Γ]K)

where π is a projection. It then holds that:

P (π)(JΦ [Γ]K) ≤ Jϕ [x : σ,Γ]K.

By definition,

∀π : P (JσK× JΓK)→ P (JΓK)

is a right adjoint of P (π), and so it holds that

JΦ [Γ]K ≤ ∀π(Jϕ [x : σ,Γ]K) = J∀xϕ [Γ]K.

We then consider Rule ∀L. So let us assume that

JΦ1 [x : σ,Γ]K⊗Jϕ [x : σ,Γ]K⊗JΦ2 [x : σ,Γ]K ≤ Jψ [x : σ,Γ]K.

Since universal quantifier is an adjoint functor, it holds that

P (π)(∀π(Jϕ [x : σ,Γ]K)) ≤ Jϕ [x : σ,Γ]K

where π : JσK× JΓK→ JΓK is a projection. At the same time
we have the following:

P (π)(∀π(Jϕ [x : σ,Γ]K)) = P (π)(J∀xϕ [Γ]K)
= J∀xϕ [x : σ,Γ]K.

Note that ⊗ respects ≤. We have thus shown that

JΦ1 [x : σ,Γ]K⊗ J∀xϕ [x : σ,Γ]K⊗ JΦ2 [x : σ,Γ]K



is less than or equal to

Jψ [x : σ,Γ]K.

Much the same argument allows us to prove the required
properties for the case of existential quantifier ∃.

We define syntactic hyperdoctrines in the following. Note
that they are type-fibred Lindenbaum-Tarski algebras.

Definition 6 ( [15], [17]). The syntactic hyperdoctrine of
MTLqt is defined as follows. Note that the syntactic hyperdoc-
trine of XMTLqt is defined by replacing MTL with XMTL
and MTLqt with XMTLqt .

The base category C is defined as follows; it is analogous to
syntactic categories as in categorical semantics of type theory.
An object in C is a context Γ up to α-equivalence (i.e., modulo
the renaming of variables). An arrow in C from an object Γ to
another Γ′ is a list of terms [t1, ..., tn] (up to equivalence) such
that t1 : σ1 [Γ], ..., tn : σn [Γ] where Γ′ is x1 : σ1, ..., xn : σn.

We now define the syntactic hyperdoctrine

P : Cop →MTL

as follows. Given an object Γ in C, let

FormΓ = {ϕ | ϕ is a formula in context Γ}.

And we define an equivalence relation ∼ on FormΓ: given
ϕ,ψ ∈ FormΓ, ϕ ∼ ψ iff both ϕ ` ψ [Γ] and ψ ` ϕ [Γ] are
deducible in MTLqt . We now define

P (Γ) = FormΓ/ ∼

where an MTL algebra structure is given by the logical
connectives.

The arrow part of the functor P is defined as follows. Given
[t1, ..., tn] : Γ → Γ′ be an arrow in C where Γ′ is x1 :
σ1, ..., xn : σn, we then define

P ([t1, ..., tn]) : P (Γ′)→ P (Γ)

by
P ([t1, ..., tn])(ϕ) = ϕ[t1/x1, ..., tn/xn]

where t1 : σ1 [Γ], ..., tn : σn [Γ], and ϕ is a formula in context
x1 : σ1, ..., xn : σn.

Each fibre P (Γ) is a Lindenbaum-Tarski algebra with re-
spect to a context Γ, and the syntactic hyperdoctrine P , as a
whole, is a bundle of them over all contexts Γ.

It is immediate to see that the operations of P (Γ) are well
defined on equivalence classes involved, and thus P (Γ) is
indeed an MTL algebra. It then remains to verify that P is
well defined as a hyperdoctrine, which can be done in the
following manner (note that the proof is mostly the same as
the one given in [15]; yet we repeat it here, since it is the
crucial part of our technical development).

Lemma 7. The syntactic hyperdoctrine P : Cop → MTL
(resp. XMTL) defined above is an MTL (resp. XMTL)
hyperdoctrine; amongst other things, it has both universal and
existential quantifiers as the adjoints that additionally satisfy

the Beck-Chevalley and Frobenius Reciprocity conditions as
specified above.

Proof. Substitution and any of the logical connectives com-
mute with each other; this tells us that P ([t1, ..., tn]) is actually
a homomorphism of MTL algebras. This, in turn, tells that P
is a contravariant functor. Let us show that the base category
C of the hyperdoctrine P has finite products; it is enough to
show that it has binary products. Given objects Γ,Γ′ in C,
Γ×Γ′ is defined in the following manner. Let us assume that
Γ is x1 : σ1, ..., xn : σn, and that Γ′ is y1 : τ1, ..., ym : τm.
We can now define Γ× Γ′ as follows:

x1 : σ1, ..., xn : σn, y1 : τ1, ..., ym : τm.

It comes equipped with a projection morphism π : Γ×Γ′ → Γ′

defined as
[y1, ..., ym] : Γ× Γ′ → Γ′

where the context of each yi is supposed to be x1 : σ1, ..., xn :
σn, y1 : τ1, ..., ym : τm; it is not just y1 : τ1, ..., ym : τm. We
can define the other projection in the same manner. Thus, C
has binary products.

What remains to show is that P has universal and existential
quantifiers. We denote by π : Γ×Γ′ → Γ′ the projection in C
defined above. Let us prove that P (π) has both right and left
adjoints, which give the categorical structure of quantifiers. We
can give those adjoint functors in the following manner. Firstly,
note that Γ is x : σ1, ..., xn : σn. Let then ϕ ∈ P (Γ×Γ′). Note
that we can identify ϕ with the equivalence class containing
ϕ, and that the following argument certainly respects the
equivalence. Now let us define

∀π : P (Γ× Γ′)→ P (Γ′)

by
∀π(ϕ) = ∀x1...∀xnϕ.

Likewise we can define

∃π : P (Γ× Γ′)→ P (Γ′)

by
∃π(ϕ) = ∃x1...∃xnϕ.

Let us verify that ∀π is indeed the right adjoint of P (π).
To this end, let us assume that

P (π)(ψ) ≤ ϕ

in P (Γ × Γ′) for ψ ∈ P (Γ′) and ϕ ∈ P (Γ × Γ′). By the
definition of P and π, it holds that

P (π)(ψ [Γ]) = ψ [Γ,Γ′].

The ordering of P (Γ× Γ′) is given through the lattice reduct
of it, and thus it holds that ϕ ∧ ψ = ψ. By the definition of
P (Γ× Γ′), the following hold:

ϕ ∧ ψ ` ψ [Γ,Γ′]

and
ψ ` ϕ ∧ ψ [Γ,Γ′]



are deducible in MTLqt (resp. XMTLqt ). Thus, ψ ` ϕ [Γ,Γ′],
too, is deducible. Applying Rule ∀R several times, we can
verify that

ψ ` ∀x1...∀xnϕ [Γ′]

is deducible. It thus holds that both

ψ ` ψ ∧ ∀x1...∀xnϕ [Γ′]

and
ψ ∧ ∀x1...∀xnϕ ` ψ [Γ′]

are deducible. We thus have the following:

ψ ≤ ∀x1...∀xnϕ

in P (Γ′).
The converse can be shown in the following manner. Let us

assume that
ψ ≤ ∀x1...∀xnϕ

in P (Γ′). The same argument as above allows us to show that

ψ ` ∀x1...∀xnϕ [Γ′]

is deducible. Manipulating the context, we can further prove
that

ψ ` ∀x1...∀xnϕ [Γ,Γ′]

is deducible. Now,

∀x1...∀xnϕ ` ϕ [Γ,Γ′]

is deducible thanks to Rule ∀L, and the cut rule tells that
ψ ` ϕ [Γ,Γ′] is deducible. We thus obtain the following:

P (π)(ψ) ≤ ϕ

in P (Γ×Γ′). We have now verified that ∀π is the right adjoint
of P (π). In a similar way, ∃π can be shown to be the left
adjoint of P (π).

We still have to verify the Beck-Chevalley conditions. Let
us prove the Beck-Chevalley condition for ∀. Suppose that
ϕ ∈ P (Γ × Γ′), π : Γ × Γ′ → Γ′ is a projection in C, and
π′ : Γ × Γ′′ → Γ′′ is another projection in C for objects
Γ,Γ′,Γ′′ in C. The following then holds:

P ([t1, ..., tn]) ◦ ∀π(ϕ) = (∀x1...∀xnϕ)[t1/y1, ..., tn/ym]

where note that Γ is x1 : σ1, ..., xn : σn, Γ′ is y1 : τ1, ..., ym :
τm, and t1 : τ1 [Γ′′], ..., tm : τm [Γ′′]. We also have the
following

∀π′ ◦ P ([t1, ..., tn])(ϕ) = ∀x1...∀xn(ϕ[t1/y1, ..., tn/ym]).

The Beck-Chevalley condition for ∀ thus follows. The Beck-
Chevalley condition for ∃ can be verified in a similar way. The
Frobenius Reciprocity condition for ∃ follows immediately
from Lemma 1.

As usual, we have the obvious, canonical interpretation of
MTLqt (resp. XMTLqt ) within the syntactic hyperdoctrine of
MTLqt (resp. XMTLqt ). And we can verify the following
lemma by straightforward computation:

Lemma 8. Assume that Φ ` ψ [Γ] is satisfied in the canonical
interpretation in the syntactic hyperdoctrine of MTLqt (resp.
XMTLqt ). Then Φ ` ψ [Γ] is deducible in MTLqt (resp.
XMTLqt ).

Combining the above lemmas, we obtain the completeness
theorem. That is, if Φ ` ψ [Γ] is satisfied in any interpretation
in any MTL (resp. XMTL) hyperdoctrine, then Φ ` ψ [Γ] is
deducible in MTLqt (resp. XMTLqt ). So we finally have the
following:

Theorem 9. The following are equivalent:

• Φ ` ψ [Γ] is deducible in MTLqt (resp. XMTLqt );
• Φ ` ψ [Γ] is satisfied in any interpretation in any MTL

(resp. XMTL) hyperdoctrine.

The completeness result above can be instantiated for a vari-
ety of fuzzy logics, including Łukasiewicz logic, Hájek’s basic
logic, and Gödel logic, by specifying axioms X in suitable
ways; for example, Łukasiewicz logic is MTL extended with
the following axiom:

((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ).

Łukasiewicz predicate logic is known to be incomplete, and
yet the hyperdosctrine semantics accommodate sufficiently
many models to restore completeness.

We can refine the completeness result by restricting the
class of models involved; it is actually sufficient to think of
those MTL hyperdoctrines P that have all the fibres P (C)
linearly ordered. We call this strengthened property linear
completeness, and call such MTL hyperdoctrines linear MTL
hyperdoctrines. In order to show the linear completeness, we
have to make the syntactic hyperdoctrine P defined above a
linear MTL hyperdoctrine; this can be done by taking the
quotient of each fibre P (C) with respect to a prime filter
that excludes the formula we want to refute (note that the
so-called local deduction theorem tells that there is a formula
ϕ such that Φ ` ψ [Γ] iff ` ϕ → ψ [Γ]; for this, see, e.g.,
[7]). The quotient of an MTL algebra with respect to a prime
filter is totally ordered. We thus obtain the following linear
completeness theorem:

Theorem 10. The following are equivalent:

• Φ ` ψ [Γ] is deducible in MTLqt (resp. XMTLqt );
• Φ ` ψ [Γ] is satisfied in any interpretation in any linear

MTL (resp. XMTL) hyperdoctrine P : Cop → MTL
(i.e., P (C) is linearly ordered for any C ∈ C).

Set-theoretical semantics of logic corresponds to interpret-
ing logic within set-theoretical hyperdoctrines as follows:

Proposition 11. Let Ω ∈MTL with Ω complete. Then,

HomSet(-,Ω) : Setop →MTL

is an MTL hyperdoctrine. The same holds for XMTL as
well.



Proof. Let π : X×Y → Y be a projection in Set. We define
∀π and ∃π as follows: given v ∈ Hom(X × Y,Ω) and y ∈ Y ,
let

∀π(v)(y) :=
∧
{v(x, y) | x ∈ X}

and
∃π(v)(y) :=

∨
{v(x, y) | x ∈ X}.

These yield the required quantifier structures satisfying the
Beck-Chevalley and Frobenius Reciprocity conditions.

Tarski semantics amounts to interpreting logic within the
two-valued hyperdoctrine

HomSet(-,2).

It is straightforward to check this by spelling out the definition
of interpretation. Set-theoretical semantics of Ω-valued fuzzy
logic amounts to interpreting logic within

HomSet(-,Ω).

In this way, categorical semantics may be regarded as an
extension of set-theoretical semantics.

IV. HYPERDOCTRINAL BAAZ TRANSLATION

In the following we show the hyperdoctrinal version of
Baaz’ delta translation from MTL to classical logic CL. The
Baaz delta ∆ allows us to embed classical logic into fuzzy
logic. If ϕ is true (i.e., its truth value is 1), ∆ϕ is true (i.e.,
its truth value is 1); otherwise, ∆ϕ is false (i.e., its truth value
is 0). And thus ∆ϕ is bivalent; the Baaz delta operator makes
the fuzzy world bivalent. Formally, the axioms for ∆ are as
follows:
• (i) 1→ ∆1; (ii) ∆ϕ→ ϕ; (iii) ∆ϕ→ ∆∆ϕ;
• (iv) ∆(ϕ ∨ ψ)→ (∆ϕ ∨∆ψ);
• (v) ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ);
• (vi) ∆ϕ→ (∆ϕ⊗∆ϕ); (vii) ∆ϕ ∨ (∆ϕ→ 0).

∆MTL denotes MTL with ∆ satisfying these axioms, and
∆MTL the corresponding algebraic category. It is immediate
to see that

∆∀x∆ϕ ` ∀x∆ϕ.

The converse also holds as follows.

Lemma 12. ∀x∆ϕ ` ∆∀x∆ϕ [Γ] holds in ∆MTL.

Proof. Omitting the context, ∆ϕ ` ∆ϕ allows us to derive

∆ϕ ` ∀x∆ϕ,

which in turn implies

∆∆ϕ ` ∆∀x∆ϕ.

Since ∆ is idempotent, we have

∆ϕ ` ∆∀x∆ϕ,

from which we can derive

∀x∆ϕ ` ∆∀x∆ϕ.

Baaz’ ∆ translation in fuzzy logic may be compared with
Gödel’s doubly negative translation ¬¬ in intuitionistic logic.
Algebraically, the fixpoints of ¬¬ in a given Heyting algebra,
i.e., those elements ϕ of the algebra that satisfy

¬¬ϕ = ϕ,

form a Boolean algebra, and this is the algebraic version of the
Gödel translation. Likewise, the fixpoints of ∆ form a Boolean
algebra; this is logically clear because ∆ϕ satisfies both
contraction and the excluded middle; MTL plus contraction
and the excluded middle is classical logic. In the following we
show that the quantifier structure is preserved in this process.
Formally, we regard ∆ as a functor Fix∆ from ∆MTL to
BA, which denotes the category Boolean algebras and their
homomorphisms. We define

Fix∆(A) = {a ∈ A | ∆a = a};

the arrow part is defined by restriction.
Replacing MTL by ∆MTL and by BA, we can define

∆MTL hyperdoctrines and CL hyperdoctrines. Now we have
the hyperdoctrinal Baaz translation theorem as follows.

Theorem 13. Let

P : Cop → ∆MTL

be an ∆MTL hyperdoctrine. Then, the following composed
functor

Fix∆ ◦ P : Cop → BA

forms a CL hyperdoctrine.

Proof. When ϕ ∈ ∆ ◦ P (X × Y ) (i.e., ∆ϕ = ϕ), the above
lemma tells us

∆∀πϕ = ∀πϕ

in P (Y ) where π : X × Y → Y . The quantifier structure of
Fix∆ ◦P , therefore, can be given by ∆∀π , which satisfies the
adjointness condition (because ∆∀πϕ = ∀πϕ and ∀π satisfies
the adjointness condition). The same applies to ∃ as well.

We note that the hyperdoctrinal translation theorem above
is more general than the syntactic translation theorem, in
the sense that the latter corresponds to the case of syntactic
hyperdoctrines in the former. Note also that proofs in the last
section apply to ∆MTLqt , and (linear) completeness holds for
∆MTLqt .

V. CONCLUDING REMARKS

Categorical fuzzy logic (or categorical many-valued logic)
has been limited in its applicability; in the present paper, we
have taken first steps in developing a categorical approach
to fuzzy predicate logic in typed form (rather than in single-
sorted form, which is more limited). The striking feature of
our theory lies in its modularity and broad applicability; it
basically work for any first-order fuzzy logic extending the
base system MTL.

The method developed in this paper is actually applicable
for an even broader variety of fuzzy logics beyond MTL,



including both first-order and higher-order (set-theoretical)
versions, and we shall demonstrate this in future work. It is
even applicable to fuzzy modal logic, which has been studied
extensively in the fuzzy logic community in the last decade,
yielding several applications in logic for artificial intelligence,
including, inter alia, fuzzy description logic, fuzzy common
knowledge logic, and fuzzy knowledge representation in gen-
eral.

The so-called tripos-to-topos construction allows us to con-
struct Heyting-valued models of set theory from Ω-valued
hyperdoctrines HomSet(-,Ω) where Ω is a locale or complete
Heyting algebra (see Hyland-Johnstone-Pitts [8]); in our future
work we plan to do the same for Takeuti-Titani’s fuzzy set
theory by extending the tripos-to-topos construction as in
[15], [16]. Note that higher-order hyperdoctrines are basically
equivalent to what are called triposes (to be precise, there are
different definitions of triposes, yet one of them is equivalent
to the concept of higher-order hyperdoctrines for intuitionistic
logic).
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