Bipolar Queries and Relative Object Qualification
in Scope of User-Assisted Database Querying

Mateusz Dziedzic*f, Guy De Tré*, Janusz Kacprzyk! and Stawomir Zadrozny®
*Dept. of Telecommunication and Information Processing
Ghent University, Ghent, Belgium
Email: {Mateusz.Dziedzic, Guy.Detre} @ugent.be
TSystems Research Institute
Polish Academy of Sciences, Warsaw, Poland
Email: {Mateusz.Dziedzic, Janusz.Kacprzyk, Slawomir.Zadrozny } @ibspan.waw.pl

Abstract—Two similar approaches to the modeling of bipolar
user preferences, namely bipolar queries (and their extension
to contextual bipolar queries) and queries with relative object
qualification, are presented from the point of view of a user-
assisted database querying. Their close relation is discussed, sim-
ilarities and differences highlighted and possible disadvantages
for the user studied. Then a direct, practical comparison of both
approaches supported by computational examples on a simplified,
yet realistic data set is presented and discussed and possible
implementation and usage recommendations are made.

Index Terms—Bipolar queries, Bipolar operators, Contextual
bipolar queries, Flexible queries, Fuzzy logic, Linguistic queries,
Relative object qualification

I. INTRODUCTION

A conventional database query (composed with e.g. an SQL
query language) against a conventional, relational database
specifies precise (crisp) values, intervals or inequalities for
properties of items sought, e.g. “find all ’semi-detached’
houses ’located in Greater Glasgow’ with ’2 to 4 bedrooms’
and ’price below £200k’ which can be expressed as:

SELECT x FROM houses

WHERE type = ’'semi-detached’

AND location = ’Greater Glasgow’
AND (bedrooms BETWEEN 2 AND 4)
AND price <= 200000.

However, many times our intentions are not that well
specified and a possibility to use an imprecise, more human-
centric approach expressed in natural language would be
welcomed. As an example, above SQL query could be restated
as:

”Find all ’semi-detached’ houses located ’close to
Glasgow’ with 'moderate number of bedrooms’
and ’affordable price’.

D

Such queries can be formulated using fuzzy sets theory leading
to introduction of fuzzy linguistic queries (dating back to late
1970s, see e.g. [1] for references).

The next step in our journey to the human-centric database
querying, bipolar queries, originates in a seminal work of
Lacroix and Lavency [2] and was formalized and further
extended, among others, by Yager [3], [4], Bordogna and Pasi
[5], Chomicki [6] (who proposed to name them as queries with

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

preferences) or Zadrozny and Kacprzyk [7]-[11]. The main
goal of such queries is to express the complex user preferences
modeled separately as positive and negative conditions (or
combinations of such conditions), with the complement of the
latter to be mandatory fulfilled and the former being of a sec-
ondary importance that can be treated as user’s preference (cf.
another approach to bipolarity adopted by Bosc, Pivert et al.
in e.g. [12], [13], where a lexicographic ordering is used).
For example, following our housing query (1), houses sought
might have to be located within the specified area due to e.g.
work commute, where ’'not within Greater Glasgow’ or ’far
from Glasgow’ becomes the mandatory negative condition,
and only then the preferred price is taken into consideration
forming the positive condition:

“Find all houses located ’close to Glasgow’ and 2
possibly ’inexpensive”.

The characteristic feature of our approach (see e.g. [7]-
[11]) to bipolar queries is the reference to the possibility or
impossibility (the "and possibly” operator above) of satisfying
the positive condition determined over the whole data under
consideration. For example, to evaluate the satisfaction degrees
of Equation 2 one has to determine first whether there are any
tuples in the whole data which satisfy both conditions simul-
taneously. Thus, for every tuple the possibility (impossibility)
condition gives the same intermediary result. However, it is not
hard to imagine situations in which one would like to assess
the possibility (impossibility) within some context of the
tuple, e.g., with respect to other tuples sharing some common
attribute with the one under consideration. Continuing our
housing example, such contextual bipolar query (as referred
to in e.g. [14]-[16]) can be formulated as follows:

”Find all houses that are not too small and
possibly, within the context of their ’location’,
‘affordable”,

where the affordability of each property is evaluated within its
own neighborhood, which could possibly lead to finding some
local market gems.

Another similar approach to database querying with roots in
the necessity of evaluating unequally important conditions was
introduced by Tudorie et al. [17], [18] as (queries with) relative

3)

object qualification, referred here as ROQ for brevity, and
later expanded to (queries with) relative object qualification
to group on another attribute (grouped ROQ) in [19], [20].
The main difference between these two and the (contextual)
bipolar queries lies within the way how the two conditions
are combined: Tudorie et al. proposed to use the results of the
primary condition to formulate a linguistic (sub)domain for
the secondary one. Translating (2) and (3) to this approach
one would obtain the following queries:

”Find all ’inexpensive’ houses among ones located
‘close to Glasgow™; and

“4)

”Find all ’not too small’ houses that are ’afford-

able’ among ones within ’similar location™,)
discussed and computationally evaluated later in this paper.
Please note the primary and secondary conditions corres-
pond to the negative and positive ones of aforementioned
bipolar queries with the among operator providing a different
formalization of the bipolar aggregation, hence following our
understanding of bipolarity.

To conclude this section we would like to advocate a user-
assisted, or interactive, approach to both database querying
and summarization, on which our research is based (see e.g.
[21], [22] for general introduction by Kacprzyk and Zadrozny
in the scope of data summarization, to which presented here
bipolar approach can also be applied [16], [23], or [24]-[26]
for some details of their FQUERY for Access package). Let us
bring back our natural language based housing query (1). The
fuzzy predicates used in it, i.e. 'close to Glasgow’, ‘moderate
number of bedrooms’ and ’affordable price’, can have very
different meanings for each individual user and assuming their
form without “consultation” with them feels impractical.

The rest of this paper is structured as follows: in section II
we introduce, briefly discuss and provide examples of bipolar
queries, including their contextual extension; in section III we
do the same for Tudorie et al’s queries with relative object
qualification; in section IV we discuss the relation between
these two approaches to bipolarity providing examples of
analogous queries; and in section V we discuss selected
characteristics and computational evaluation of three sample
groups of queries to support our observations. We conclude
the paper with a short general discussion and summary.

II. BIPOLAR QUERIES

As explained in section I, bipolar queries form a natural
extension of fuzzy linguistic queries and their role is to ex-
press the complex user preferences formulated as positive and
negative conditions. The crucial component of such queries
is the bipolar operator connecting both sets of conditions. In
our previous works (see e.g. [7]-[11], [14], [15]) two such
operators were introduced: the “and possibly” and or if
impossible” operators, along with an extension of the approach
itself, the contextual bipolar queries, which we will discuss
further in this section.

A. Bipolar ”And Possibly” Operator

Following aforementioned works of Yager [3], [4], Bor-
dogna and Pasi [5] or Zadrozny and Kacprzyk [7]-[11], we
model the required and desired conditions using the “and
possibly” operator, with the bipolar query taking the form of:

C' and possibly P, (6)
which may be exemplified, referring to our housing example,
by:

“located close to Glasgow and possibly affordable”. (7)

Following [2] we adopt a crisp interpretation of 6 as the
following logical formula:

C' and possibly P = C A (3s(Cs A Ps) = P) (8)
where, for brevity, C' and C; denotes C(¢) and C(s), respect-
ively (the same for P). Formula (8) can then be directly fuzzi-
fied (cf. Dubois and Prade [27] and Zadrozny and Kacprzyk

[7]1, [8] for studies on other concepts of fuzzification of bipolar
queries) as:

7T (C and possibly P) =

min(C, max(1 — max min(Cy, Py), P))
se

(€))

where, for brevity, R denotes the whole data (relation) and C'
and C; denotes pic(t) and pc(s), respectively (the same for
P).

An interpretation of the proposition (6) given by (8) makes
it true (to a high degree) for a tuple ¢ only if either of the two
conditions holds:

1) It satisfies (to a high degree) both conditions
C and P; or

2) It satisfies C' and there is no other tuple (10)
in the whole database which satisfies both
conditions simultaneously.

The value of:
max min(Cy, Ps) (11)

sER

from (9), expressing the fulfillment degree of Js(Cs A Ps)
(also denoted as 3C'P), may be interpreted as the measure of
interference between C' and P; the lower its value the harder
it is to simultaneously satisfy both conditions.

The general fuzzification approach adopted in (9) left open
the choice of representation of logical connectives and quan-
tifiers, which were later studied by Zadrozny and Kacprzyk
in [9], [11] (see also [28] for a brief overview in the scope
of bipolar linguistic summaries). In the above, the standard
minimum and maximum operators were employed along with
the related S-implication due to their distributivity and idem-
potency properties.

B. Bipolar ”Or if Impossible” Operator

In our subsequent works ([15], [16]) another bipolar
operator, “or if impossible” was introduced. Although our
further discussion in this paper will not be based on it, let
us introduce it here for completeness. The “or if impossible”
operator closely follows the approach of the “and possibly”
operator with its satisfaction degree being dependent on the
whole data under consideration, but this time it favors the
positive condition P:

P or if impossible C, (12)

which may be exemplified by:

993

affordable’ or if impossible ’'located close to Glasgow™ .

13)
and formalized in the crisp form following discussion from (8)
with:

P or if impossible C = PV (—=3sPs A C) (14)

where P, C' and P; denotes P(t), C(t) and P(s), respectively,
and further fuzzified (see (9) for reference) as:

T (P or if impossible C') =
max (P, min(1 — max P,,C)). (15)
s€

Proposition (12) interpreted as (15) is true (to a high degree)
for each tuple ¢ if either of the following two conditions holds:

1) It satisfies (to a high degree) condition P; or
2) It satisfies C' and there is no other tuple in the
whole database which satisfies condition P. a16)
All other remarks from subsection II-A, including the inter-
pretation of the formula 3sP, as a measure of the possibility
of satisfaction of the preference condition P, holds.

C. Contextual Bipolar Queries

As described in the previous two subsections, the possibility
and impossibility of meeting each respective conditions in
”and possibly” and “or if impossible” operators are evaluated
over the whole data under consideration, which is limiting in
many situations and one might want to assess the possibility
(or impossibility) of satisfying relevant parts of the operators
within some specifies context of the tuple, thus allowing for
even more flexible querying. This idea was explored and
developed by Zadrozny et al. in [14]-[16] where contextual
bipolar queries, an extension of the bipolar queries described
in the previous section, originated.

The novel part of such queries is the context W (t,s),
defined as a relation between the tuple ¢ under consideration
and every other tuple in the data, which allows for a flexible
definition of the subset of tuples that are relevant or similar
to the tuple under consideration, e.g. (using our housing ex-
amples) ’located close to the same city’, ’similarly appraised’
or even ’located close to each other’, which can be used to
simultaneously query “local gems” of undervalued properties
using their own neighborhoods as references.

Following the structure of previous two subsections we
will first re-introduce an example from section I and its
interpretation followed by crisp and fuzzified formulas. Let
us imagine a potential user with an unlimited budget (for the
simplicity of this example, but one can think of e.g. a business
reseller looking for attractive “investment opportunities’”) who
is looking for ’not too small’, but ’affordable’ ’within their
neighborhoods’, houses while hunting for some great deals
without really worrying where exactly they will be located:

”Find all houses that are ’not too small’ and

possibly, within the context of their ’location’, (17)
‘affordable” .
Such query can be modeled as a proposition:
C and possibly P with regard to W, (18)
and interpreted in the crisp case as:
C and possibly P with regard to W =
CA@s(Wys NCs A Ps) = P), (19

where C, P, W, ,, C; and P, denote, respectively, C(t), P(t),
W (t,s), C(s) and P(s); and after fuzzification as:

T (C and possibly P with regard to W) =
min(C, max(1 — max min(Wy s, Cs, Ps), P)) (20)
se

It is worth highlighting that contextual bipolar queries
follow all observations made in subsection II-A and subsec-
tion II-B.

III. QUERIES WITH RELATIVE OBJECT QUALIFICATION

Another possible approach to bipolarity in database query-
ing, although not referred to as such directly by the authors,
was introduced by Tudorie et al. [17], [18] as (queries with)
relative object qualification (ROQ), and later expanded to
(queries with) relative object qualification to group on another
attribute (grouped ROQ) in [19], [20].

A. Relative Object Qualification

Tudorie et al. introduced an aggregation operator “among”
with the query formulated as:

P among C, (21)

which might be exemplified by the following ’housing” query:

“affordable among ones located close to Glasgow”. (22)

which evaluation boils down to limiting the data under consid-
eration to tuples “pre-selected” by the primary condition (i.e.
where (tprimary(t) > 0) to formulate a linguistic (sub)domain
for the secondary one.

Discussed behavior of the “among” operator let us directly
compare it to our ”if possible” operator, where similar ap-
proach is assumed for (the negation of) the negative condition
- the positive condition is only taken into account when the
negative one is fulfilled (to a high degree). This parallel let us

Algorithm 1.

1) Evaluate primary query conditions and select only tuples
with Uprimwry(t) > 0;

2) Modify subdomains of secondary conditions based on
subsample of tuples from step 1;

3) Transform predicates from original domains to sub-
domains from step 2 (see also discussion in subsec-
tion III-A);

4) Evaluate secondary query conditions;

5) Calculate the final query satisfaction degree (e.g. using
a conjunction of intermediary satisfaction degrees from
steps 1 and 4).

consider the “among” operator as a bipolar one, albeit not in
the most straightforward understanding of it.

Algorithm 1 presents a simplified query evaluation proced-
ure (please refer to any of [17]-[20] for a more comprehensive
discussion), but for clarity we will briefly explain the predicate
transformation (Step 3) here as being crucial to the evaluation
of discussed operator.

Let us use a Price attribute defined over [a, b] by n linguistic
values (e.g. low, medium and high) spanning across its whole
domain as an example here. After Step 2 of Algorithm 1
a subdomain [a’,d] of Price is obtained where a <= da’
and b <= b. Then, a scaling and shifting transformation
f :]a,b] — [a’,¥] is applied to the membership functions of
aforementioned linguistic values such that p/p(x) = fopup(z)
and consequently:

/

W () = ppla + ——=(x —a')),

b —a
resulting in a uniform coverage of the new subdomain [a’, V']
of Price with analogical n linguistic values (e.g. low/, medium/
and high/). Again, please refer to any of [17]-[20] for more
details.

B. ROQ to Group on Another Attribute

The second type of queries introduced by Tudorie et al.
corresponds roughly with our idea of context, but in the
original implementation (see [19], [20]) is limited to an unary
relation G/(t)!, which limitations and possible extension will
be briefly explored in later sections.

Although Tudorie et al. do not introduce additional condi-
tions, which would directly correspond to our context, taking
our bipolar contextual query example (17) as a departure point,
one could think of the following query:

“Find all houses that are ’not too small’ and
‘affordable’ among ones ’located in each of the
unique areas given in the data®” .

(23)

to which examples and formulas from [19], [20] could easily
be extended, and formulate a query proposition:

C and P among G. (24)

'Some notation details follow our previous works and are not reflected in
works of Tudorie et al.

The main drawback of the queries with grouped ROQ seems
to be the ("hidden” from the user) mapping of domains and
predicates (see steps 2 and 3 of the Algorithm 1), which we
will illustrate and discuss in the following sections.

IV. RELATION BETWEEN BIPOLAR QUERIES AND
RELATIVE OBJECT QUALIFICATION

Although Tudorie et al. do not directly refer to queries
with ROQ as bipolar, the specific approach to user preferences
(discussed in section III), where some of them are of a clearly
higher importance than others, and the latter are evaluated
relative to them, suggests common roots of the interpretation
of bipolarity for both bipolar queries and queries with ROQ,
which we will explore here followed by some computational
evaluation later on.

Examples and discussion from section II and section III let
us formulate the following two pairs of closely related queries:

1) Bipolar queries and queries with ROQ; and
2) Contextual bipolar queries and queries with grouped
ROQ,
discussed further in subsection IV-A and subsection IV-B,
respectively.

A. Bipolar Queries and Relative Object Qualification

Let us consider queries consisting of the following fuzzy
predicates:

o Negation of the negative condition C' (i.e.
a mandatory one): ’located close to Glas-
gow’; and

o Positive condition P (a preference): ’inex-
pensive’.

(25)

Using the above mentioned predicates one can build the
following two queries:

1) Bipolar query (C and possibly P) in the form of:

”Find all houses ’located close to Glasgow’

and possibly ’‘inexpensive”, (26)
which then could be “translated” to:
2) Query with ROQ (P among C):
”Find all ’inexpensive’ houses among ones @7

"located close to Glasgow™;

roughly maintaining the desired search characteristics of look-
ing for houses ’located close to Glasgow’, but also ’inexpens-
ive’, if it is possible at all.

The main difference between these two queries comes from
the way the two conditions are combined:

1) In bipolar queries the secondary conditions are taken
into account only when it is actually possible to satisfy
them and the mandatory ones simultaneously (see (8)
and (9) and the rest of section II); while

2Mentioned areas are each considered individually here, de facto forming
a set of separate ROQ queries.

2) In queries with ROQ they are evaluated only for the
subset of records with predicates modified according to
Algorithm 1 (section III), which guarantees their high
satisfaction degrees for at least some of the tuples, see
examples 2 and 3 from section V (please note this does
not ensure high satisfaction degrees for the whole query
due to conjunction operators).

The approach employed in the latter has an interesting
property which might be considered both positive and neg-
ative depending on user intentions and context. Namely, it
disregards satisfaction degrees of the positive condition for
the unmodified predicates — this introduces, possibly hidden
from the user, a side effect of the query where predicates
defined by them (following the user-assisted approach, as
advocated by us at the end of section I and forming the central
stipulation of this paper) are modified. On one hand, this
”scaling” of satisfaction degrees might form a good indicator
that “nothing better” can be found in the data, and, on the
other, it artificially overstates them, where low satisfaction
degrees could give the user additional information on how
difficult are both conditions to simultaneously fulfill.

Examples of the above observation are presented on Fig-
ure 2 and Figure 3 of section V where predicate:

inexp(t) : Price — [0,1] = trap(0,0,100,200) (28)
is 7silently” modified to:
inexp(t) : Price — [0,1] = trap(0, 0, 89, 146); (29)
and predicate:
exp(t) : Price — [0,1] = trap(200,300,400,400) (30)
to:
exp(t) : Price — [0, 1] = trap(146,202, 400, 400), (31)

both of which quite drastically change satisfaction degrees of
houses priced in the range of £150k—200k (technically, the
whole domain of Price is reduced, but this does not impact
this observation).

B. Contextual Bipolar Queries and Relative Object Qualific-
ation to Group on Another Attribute

To reformulate queries (26) and (27) into examples of
contextual and grouped ROQ we need to introduce a third
set of predicates:

o Context W of the contextual bipolar query:
"located close to the same city’; and

« Grouping condition G of the grouped ROQ:
‘located close to each of the unique cities
given in the data’ (see footnote in (23)).

(32)

Using the preference condition P from (25) (mandatory con-
dition C' is omitted for simplicity, which does not impact
reported results) and the context and grouping conditions
introduced above, the two sample queries can be formulated
as follows:

1) Contextual bipolar query (possibly P wrt W):

”Find all ’inexpensive’ houses wrt ones ’loca-

ted close to the same city’; and (33)
2) Grouped ROQ query (P among G):
“Find all ’inexpensive’ houses among ones (34)

’located close to each of the cities”™ .

Besides observations from subsection IV-A, the two queries
above differ in how the context and grouping conditions are
defined. As a brief reminder, the context W (t, s) is defined as
a relation between the tuple ¢ under consideration and every
other tuple in the data, which allows for a flexible definition
of the subset of tuples that are relevant or similar to the tuple
under consideration, while the grouping condition G(t), as
defined in [19], [20], acts more like a consecutive ’treading”
through some tuple properties, see sample queries above with
context W (t,s) defined as ’located close to the same city’
and grouping condition G(t) as ’located close to each of
the cities’. See subsection II-C and subsection III-B for more
details.

It is worth highlighting that, to the best of our knowledge,
nothing, besides maybe a potential computational complexity,
stands against redefining the grouping condition as a relation
G(t, s) following our definition of the context — with such
amendment the two types of queries discussed in this section
would be even more closely related.

V. COMPUTATIONAL EVALUATION AND DISCUSSION

As a reminder, to illustrate the similarities and differences
discussed in the previous two sections we will use the follow-
ing three situations where the user searches for:

1) ’Inexpensive’ houses ’located close to Glasgow’, where
the former predicate forms the positive condition (a
preference) and the latter the negative (mandatory) one
— to introduce a basic bipolar approach to querying,
refer to (26) and (27) for actual queries used and sub-
section V-A for discussion;

2) ’Expensive’ ones, also ’located close to Glasgow’

— a simple modification of the ones above to better
show how Algorithm 1 impacts the optional predicate’s
definition, discussed in subsection V-B; and

3) All ’inexpensive’ houses, irrespective to their location,
but taking it into account while evaluating the property’s
“inexpensiveness”

— as an example of contextual, or grouped, approach,
as exemplified by queries (33) and (34) and discussed
in subsection V-C.

In our numerical examples the following predicates will be
used (see Figure 1 for visual representation):

close(t) : Dist — [0,1] = trap(0, 0, 5, 10)
inexp(t) : Price — [0,1] = trap(0, 0, 100, 200)
exp(t) : Price — [0, 1] = trap(200, 300, 400, 400)

(35)

and the Table I presents the sample data with three attributes,
Area, Distance from the city center” (as explained in the table

Table I
HOUSE PRICES AROUND EDINBURGH AND

GLASGOW.
Area Distance® Price [£k]
1 Edinburgh 139 142
2 Edinburgh 11.2 160
3 Edinburgh 10.6 168
4 Edinburgh 10.6 200
5 Edinburgh 7.3 210
6 Edinburgh 5.2 245
7 Edinburgh 4.1 255
8 Edinburgh 10.5 265
9 Edinburgh 4.6 315
10 Edinburgh 4.8 330
11 Glasgow 5.8 75
12 Glasgow 9.7 100
13 Glasgow 14.2 120
14 Glasgow 29.7 135
15 Glasgow 4.0 140
16 Glasgow 6.3 176
17 Glasgow 7.6 210
18 Glasgow 8.8 219
19 Glasgow 27.5 260
20 Glasgow 10.3 275

2 Shortest driving distance in miles to the
Edinburg and Glasgow City Chambers as
found on www.google.pl/maps.

close
1 \
0
0 5 10 15 20
Distance [miles]

inexpensive expensive
1 — S
0
0 100 200 300 400
Price [£k]

Figure 1. Predicates of Distance and Price with their membership functions
(defined with (35)).

note) in miles and Price in £k, found on a real estate website.
The following three sections will discuss the results obtained.

A. Computational Example 1

This example presents a basic bipolar approach to querying
and illustrates the impact of Algorithm 1 on returned satisfac-
tion degrees of queries (26) and (27). As can be observed,
“preselection” of tuples by ROQ results in a reduced domain
of Price and "left-sqeezed” inexpensive predicate (see Figure 2
and details in (28) and (29)), which lead to (as presented
in Table II) generally much lower values of tncapensive and,
finally, returning less tuples (only 3/10 as compared to 6/10)
with lower satisfaction degrees for some of the returned ones.

To the contrary, because the value of IC'P expressed as
(maxse g min(Cy, Ps)) equals 0.84 (i.e. it is not fully possible
to satisfy both conditions simultaneously, so the ones not
satisfying the preference one receive a partial “relief” from

inexpensive

200
Price [£k]

300 400

Figure 2. Predicate inexpensive in its original form (gray solid line) and
modified by Step 3 from Tudorie’s Algorithm 1 (dashed).

expensive

1 rTT T
/
/
/
/
0 /

0 100 200 300 400
Price [£K]

Figure 3. Predicate expensive in its original form (gray solid line) and
modified by Step 3 from Tudorie’s Algorithm 1 (dashed).

that), if only tuples satisfy the mandatory condition, their
overall query satisfaction degree cannot be lower than 1 —0.84
(property #12 is pretty far from Glasgow’s center, hence the
lower score).

B. Computational Example 2

In this analogical example we are still using the same
queries as above, i.e. (26) and (27), just with an inverse of
the positive condition: the user is looking for an expensive
house within the Glasgow area. Here we observe even larger
modification of the domain of Price and (this time “right-
sqeezed”) expensive predicate (for details of this modification
see Figure 3 and (30) and (31)).

It is worth highlighting that because most houses in our
data are not expensive in the bipolar query example most
of the tuple ”goodness” comes from the mandatory condition
with the satisfaction degree just slightly reduced by the 3C' P
expression (see Table III); and for queries with ROQ some
tuples evaluate tO [linezpensive(t) = 1 as designed. The
decision whether this is a desired “side-effect” will vary by
use case, although in this example values of D(t) seem to be
more appropriate.

C. Computational Example 3

In this last (even more simplified) example of contextual bi-
polar queries and queries with grouped ROQ (see queries (33)
and (34)) we wanted to focus on two main aspects of them:

o Both approaches let us evaluate a single query with

context or grouping conditions for multiple “groups” at
once (although, technically, some steps are performed
either tuple by tuple or over their pre-selected grouping);
and

o By removing the mandatory condition, we could even

better illustrate the effect Algorithm 1 has on the data
(sub)domains and predicates of the query.

Obtained results are given in Table IV and details of domain
and predicate modification are omitted, but their effects are
clearly visible in the data — please note the stretching”

Table II
RECORDS FROM TABLE I WITH SATISFACTION DEGREES
FOR QUERIES (26) AND (27) DISCUSSED IN SUBSECTION V-A.

Table IV
RECORDS FROM TABLE I WITH SATISFACTION DEGREES
FOR QUERIES (33) AND (34) DISCUSSED IN SUBSECTION V-C.

Area Dist. Price ficjose® Binespensive® DP TP AC # Area Dist. Price finezpensive® D' TH A?
11 Glasgow 5.8 75 0.84 1.00 (1.00) 0.84 0.84 0.00 1 Edinburgh 139 142 0.58 (1.00) 0.58 1.00 -0.42
15 Glasgow 4.0 140 1.00 0.60 (0.10) 0.60 0.10 0.50 2 Edinburgh 11.2 160 0.40 (1.00) 0.42 1.00 -0.58
16 Glasgow 6.3 176 0.74 0.24 (0.00) 0.24 0.00 (—) 3 Edinburgh 10.6 168 0.32 (0.90) 0.42 0.90 -0.45
17 Glasgow 7.6 210 0.48 0.00 (0.00) 0.16 0.00 (—) 4 Edinburgh 10.6 200 0.00 (0.46) 042 0.46 -0.04
18 Glasgow 8.8 219 0.24 0.00 (0.00) 0.16 0.00 (—) 5 Edinburgh 7.3 210 0.00 (0.33) 042 0.33 0.09
12 Glasgow 9.7 100 0.06 1.00 (0.81) 0.06 0.06 0.00 6 Edinburgh 52 245 0.00 (0.00) 042 0.00 (—)
" - - — - 7 Edinburgh 4.1 255 0.00 (0.00) 0.42 0.00 (—)
2 Lelose 18 the same for both queries, hence it is reported only once, while 8 Edinburgh 10.5 265 0.00 (0.00) 042 0.00 (—)
Pinezpensive forming the secondary preferen_ce c_ondition of the query, 9 Edinburgh 4.6 315 0.00 (0.00) 0.42 000 (—)
Ls evl?htlated differently for each; ROQ evaluation is reported within the 10 Edinburgh 4.8 330 0.00 (0.00) 042 0.00 (—)
rackets.
5D and T denote, respectively, the bipolar and query with ROQ satis- 11 Glasgow 58 75 1.00 (1.00) 1.00 1.00 0.00
faction degrees. 12 Glasgow 9.7 100 1.00 (0.93) 1.00 0.93 0.07
¢ (—) denote tuples returned by only one of the queries. 13 Glasgow 142 120 0.80 (0.68) 0.80 0.68 0.12
14 Glasgow 29.7 135 0.65 (0.49) 0.65 049 0.16
15 Glasgow 4.0 140 0.60 (0.42) 0.60 042 0.18
Table I1T 16 Glasgow 63 176 024 (0.00) 024 000 (—)
RECORDS FROM TABLE I WITH SATISFACTION DEGREES FOR
MODIFIED QUERIES (26) AND (27) DISCUSSED IN SUBSECTION V-B. # See notes in Table II.
Area Dist. Price [icjose® Mexpensive® D T* AP
11 Glasgow 58 75 0.84 0.00 (0.00) 0.81 0.00 (—) REFERENCES
15 Glasgow 4.0 140 1.00 0.00 (0.00) 0.81 0.00 (—)
16 Glasgow 6.3 176 0.74 0.00 (0.54) 0.74 0.54 0.20 [1] J. Kacprzyk and A. Ziétkowski, “Database queries with fuzzy linguistic
17 Glasgow 7.6 210 048 0.10 (1.00) 0.48 0.48 0.00 quantifiers,” IEEE Transactions on Systems, Man, and Cybernetics,
18 Glasgow 8.8 219 0.24 0.19 (1.00) 0.24 0.24 0.00 vol. 16, no. 3, pp. 474-479, 1986.
12 Glasgow 9.7 100 0.06 0.00 (0.00) 0.06 0.00 (—) [2] M. Lacroix and P. Lavency, “Preferences: Putting more knowledge into

4 See notes in Table II.

effect on pinespensive(t) Where for both groups (Edinburgh
and Glasgow) the new membership degrees are covering the
whole [0,1] interval. Again, the decision whether this effect
is desirable will vary for every use-case.

In addition, the effect of 3C'P expression when the simul-
taneous satisfaction of both negative and positive conditions
is not possible is again clearly visible in the Edinburgh part of
the table where most tuples were evaluated to 1 —0.58 = 0.42
as 0.58 was deemed as the highest satisfaction degree for both
conditions simultaneously.

VI. CONCLUSIONS

In this work we first introduced two possible approaches
to a very appealing subject of modeling of bipolar user
preferences in database querying: bipolar queries and queries
with relative object qualification.

Then, we discussed relation between them highlighting
some similarities and differences in intentions and interpret-
ation in the scope of user-assisted database querying, where
Tudorie et al’s approach revealed one major, possibly negative
characteristic, namely it “silently” modifies (sub)domains of
data and query predicates of the positive/secondary/preference
conditions.

The main contribution of this research is the direct com-
parison of both approaches supported by some computational
examples which will be extended towards more thorough
theoretical examination and will also cover linguistic data
summarization as a natural extension in our planned future
research.

[3]

[4]

[5

=

[6

=

[7]

[8

—

[9]

[10]

(11]

[12]

[13]

[14]

queries,” in Proceedings of the 13 International Conference on Very
Large Databases, Brighton, UK, 1987, pp. 217-225.

R. R. Yager, “Higher structures in multi-criteria decision making,”
International Journal of Man-Machine Studies, vol. 36, pp. 553-570,
1992.

, “Fuzzy logic in the formulation of decision functions from
linguistic specifications,” Kybernetes, vol. 25, no. 4, pp. 119-130, 1996.
G. Bordogna and G. Pasi, “Linguistic aggregation operators of selection
criteria in fuzzy information retrieval,” International Journal of Intelli-
gent Systems, vol. 10, no. 2, pp. 233-248, 1995.

J. Chomicki, “Querying with intrinsic preferences,” Lecture Notes in
Computer Science, vol. 2287, pp. 34-51, 2002.

S. Zadrozny, “Bipolar queries revisited,” in Modeling Decisions for
Artificial Intelligence. MDAI 2005, ser. Lecture Notes in Computer
Science, V. Torra, Y. Narukawa, and S. Miyamoto, Eds. Berlin,
Heidelberg: Springer, 2005, vol. 3558, pp. 387-398.

S. Zadrozny and J. Kacprzyk, “Bipolar queries and queries with pref-
erences (invited paper),” in 17th International Workshop on Database
and Expert Systems Applications (DEXA '06), Krakéw, Poland, 2006,
pp. 415-419.

, “Bipolar queries using various interpretations of logical con-
nectives,” in Foundations of Fuzzy Logic and Soft Computing. IFSA
2007, ser. Lecture Notes in Computer Science, P. Melin, O. Castillo,
L. T. Aguilar, J. Kacprzyk, and W. Pedrycz, Eds. Berlin, Heidelberg:
Springer, 2005, vol. 4529, pp. 181-190.

, “Bipolar queries: An approach and its various interpretations,”
in Proc. of the Joint 2009 International Fuzzy Systems Association
World Congress and 2009 European Society of Fuzzy Logic and Tech-
nology Conference (IFSA/JEUSFLAT 2009), Lisbon, Portugal, 2009, p.
1288-1293.

——, “Bipolar queries: An aggregation operator focused perspective,”
Fuzzy Sets and Systems, vol. 196, pp. 69-81, 2012.

P. Bosc, O. Pivert, A. Mokhtari, and L. Liétard, “Extending relational
algebra to handle bipolarity,” in Proceedings of the 2010 ACM Sym-
posium on Applied Computing. New York, NY, USA: Association for
Computing Machinery, 2010, p. 1718-1722.

P. Bosc and O. Pivert, “On a fuzzy bipolar relational algebra,” Inf. Sci.,
vol. 219, p. 1-16, 2013.

S. Zadrozny, J. Kacprzyk, M. Dziedzic, and G. de Tré, “Contextual
bipolar queries,” in Advance Trends in Soft Computing, ser. Studies
in Fuzziness and Soft Computing, M. Jamshidi, V. Kreinovich, and

[15]

[16]

(7]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

J. Kacprzyk, Eds. Springer International Publishing, 2014, vol. 312,
pp. 421-428.

S. Zadrozny, J. Kacprzyk, and M. Dziedzic, “Contextual bipolar queries:
“or if impossible” operator case,” in 2015 Conference of the Interna-
tional Fuzzy Systems Association and the European Society for Fuzzy
Logic and Technology (IFSA-EUSFLAT-15), ser. Advances in Intelligent
Systems Research, J. M. Alonso, H. Bustince, and M. Reformat, Eds.,
vol. 89, Gijoén, Spain, 2015, pp. 1266-1273.

——, “On a new type of contextual queries and linguistic summaries
of a bipolar type,” in 2015 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), 2015, pp. 1-8.

C. Tudorie, S. Bumbaru, and C. Segal, “New kind of preference in data-
base fuzzy querying,” in Proc. of the 11th International Conference on
Information Processing and Management of Uncertainty in Knowledge-
based Systems, IPMU 2006, Paris, France, 2006, p. 1389-1395.

C. Tudorie, S. Bumbaru, and L. Dumitriu, “Relative qualification in
database flexible queries,” in 2006 3rd International IEEE Conference
Intelligent Systems, IS 2006, London, UK, 2006, pp. 83-88.

C. Tudorie, “Qualifying objects in classical relational database query-
ing,” in Handbook of Research on Fuzzy Information Processing in
Databases, J. Galindo, Ed. London, UK: IGI Global, 2008, pp. 218—
245.

C. Tudorie and D. Stefanescu, “Special cases of relative object qualifica-
tion: Using the among operator,” in Intelligent Systems and Technologies,
ser. Studies in Computational Intelligence, J. W. Horia-Nicolai Teodor-
escu and L. C. Jain, Eds. Berlin, Heidelberg: Springer-Verlag, 2009,
vol. 217, pp. 181-191.

J. Kacprzyk and S. Zadrozny, “Data mining via linguistic summaries
of data: an interactive approach,” in Methodologies for the Conception,
Design and Application of Soft Computing. Proceedings of IIZUKA’98,
T. Yamakawa and G. Matsumoto, Eds., lizuka, Japan, 1998, pp. 668—
671.

——, “Data mining via linguistic summaries of databases: an interactive
approach,” in A New Paradigm of Knowledge Engineering by Soft
Computing, L. Ding, Ed. Singapore: World Scientific, 2001, pp. 325—
345.

M. Dziedzic, J. Kacprzyk, S. Zadrozny, and G. de Tré, “Quantified qual-
ity criteria of contextual bipolar linguistic summaries,” in Challenging
Problems and Solutions in Intelligent Systems. Studies in Computational
Intelligence, ser. Studies in Computational Intelligence, G. de Tre,
P. Grzegorzewski, J. Kacprzyk, J. W. Owsiriski, W. Penczek, and
S. Zadrozny, Eds. Springer, Cham, 2016, vol. 634, pp. 421-428.

J. Kacprzyk and S. Zadrozny, “FQUERY for Access: fuzzy querying
for a windows-based DBMS,” in Fuzziness in Database Management
Systems, P. Bosc and J. Kacprzyk, Eds. Heidelberg: Physica-Verlag,
1995, pp. 415-433.

——, “The paradigm of computing with words in intelligent database
querying,” in Computing with Words in Information/Intelligent Systems.
Part 1. Foundations. Part 2. Applications, L. A. Zadeh and J. Kacprzyk,
Eds. Heidelberg and New York: Springer-Verlag, 1999, pp. 382-398.
——, “Computing with words in intelligent database querying: stan-
dalone and internet-based applications,” Information Sciences, vol. 134,
no. 1-4, pp. 71-109, 2001.

D. Dubois and H. Prade, “Bipolarity in flexible querying,” in FQAS
2002, ser. LNAI, T. Andreasen, A. Motro, H. Christiansen, and H. L.
Larsen, Eds. Berlin, Heidelberg: Springer-Verlag, 2002, vol. 2522, pp.
174-182.

M. Dziedzic, J. Kacprzyk, and S. Zadrozny, “Bipolar linguistic summar-
ies: A novel fuzzy querying driven approach,” in 2013 Joint IFSA World
Congress and NAFIPS Annual Meeting (IFSA/NAFIPS). Edmonton,
Canada: IEEE, 2013, pp. 1279-1284.

