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Abstract— As we move towards a zero-trust environment, 
collaborative intelligent systems are a vital tool in the 
cybersecurity workflow. These intelligent systems need to receive 
accurate and complete information from the multiplicity of low-
level network monitoring systems. Typically, these low-level 
systems use regular expressions which are fast but not robust 
against minor changes - thus, information is often discarded. 
This paper outlines a new approach to low-level parsers, able to 
suggest new regular expression sequences and deal with 
approximate matching in an efficient way. 
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I. INTRODUCTION 
We are moving towards a zero-trust environment in the 

digital sphere, in which a network is regarded as hostile until 
shown otherwise. In the past, network security has been 
assumed, and ensured by a range of tools such as firewalls 
(which use rules to permit or deny network connections), and 
intrusion detection / prevention systems (which use rules and 
pattern-recognition to identify, and possibly block, suspicious 
traffic). At higher levels such as social networks, other 
websites, email, filesystems, operating systems, etc. a host of 
more sophisticated tools analyse traffic and program behaviour 
with the aim of preventing malware, data loss, and related 
threats. Again, these systems rely on rules and simple pattern 
recognition to create the features for subsequent processing. In 
recent years, artificial intelligence (AI) has been proposed as an 
all-encompassing solution that will automate network security 
processes, aiming to match the security deployed in a system to 
the user, rather than to the network or device. Whether or not 
this is feasible, there is no doubt that AI is a vital tool in 
identification of anomalous events and sequences in networks, 
cutting out the ‘noise’ created by vast volumes of data. 

At the start of the cyber-security monitoring chain, a 
variety of systems implement basic filtering operations and 
monitor traffic to generate the data for subsequent analysis. 
Regular expressions are an almost universal choice in 
analysing low-level logs, as they enable very fast recognition 
of patterns and extraction of key data fields. However, these 
low-level systems are inherently brittle, since they are based on 
strict patterns and data formats, and can discard large volumes 
of data if a tiny deviation from expected formats occurs. For 
example, when a monitored system changes it can cause a 

slight alteration in the generated data which might fall outside 
the expected range and hence no longer match the appropriate 
regular expression. Similar problems can arise when software 
is updated or other changes in configuration take place. In 
practice this often leads to data being discarded until the 
problem is resolved by manual re-configuration of the 
monitoring system. Initial set-up of monitoring systems 
(especially the need to manually create parsers) can also be 
labour-intensive, since regular expressions are often difficult to 
design and maintain - as recognised in the aphorism "Some 
people, when confronted with a problem, think 'I know, I'll use 
regular expressions'. Now they have two problems."  

In this paper we consider the problem of identifying and 
extracting data from a (mostly) formatted stream and propose a 
new approximate matching technique for identifying sequences 
of regular expressions. The method uses a fuzzy hierarchy 
(lattice) generated from the regular expressions, and is able to 
produce potential modifications to regular expression 
sequences from sample log data. The approach relies on three 
underlying themes - the graded (x-mu) approach to fuzzy sets 
[1], formal concept analysis [2, 3, 4] extended by the x-mu 
approach [5,6] , and a new approach described in this paper to 
calculate a graded distance, either between a logfile record (a 
sequence of fields, each represented as a string) and a sequence 
of regular expressions, or between two regular expression 
sequences. In the following section, we briefly introduce these 
underlying themes and subsequently show how the method can 
be used to categorise unseen logfile data and handle graded 
matching when data deviates from the expected format. 

II. BACKGROUND 

A. Problem Description 
We focus on the initial analysis of log files and streams in 

the cybersecurity workflow, a vital step that provides data for 
subsequent analysis and classification of network events and 
trends. Logfiles vary in format, content and granularity, and 
examples include web proxy logs, firewall logs, IDS logs, 
netflow logs, DNS logs, etc. 

Although content varies, these files and streams have a 
similar structure since they are time-stamped records of events 
in which various items of relevant data are stored (such as ids, 
URLs, IP addresses, flow data, messages, etc.). They are 
commonly processed in the first instance by regular 
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expression-based parsers which can quickly and efficiently 
identify data types and extract key attributes into a centralised 
data storage system, for subsequent analysis.  

Two significant bottlenecks in the acquisition of data are: 

(i) the need to manually configure regular expression 
parsers for each data source, and for each variation in a data 
source. Monitoring systems are configurable, and are updated 
from time to time. Both factors contribute to changes in the 
format and content of data contained in the stream, requiring 
further manual configuration 

(ii) systematic or random changes in the data from other 
causes (e.g. changes in the monitored system)   

In both cases, significant loss of monitored data can occur 
when the data does not quite match the expected pattern. Table 
I shows an example of uniformly formatted data (note that 
headers/field descriptions are generally not available, but the 
nature of each field is "obvious" when a number of examples 
are considered). Table II shows more variation in format. 

Because monitoring data is typically produced in large 
volumes and at high speed, it is impractical to store and 
reprocess records that do not match exactly - instead, they are 
usually discarded.  

This work aims to: 

• automatically create regular expression sequences that 
match samples of records from log data and are 
sufficiently general to identify and process additional 
records from the same source. These can be presented 
to a human expert for approval / alteration 

• use the derived regular expression sequences to 
categorise new log data records (as a recognised log 
type) and identify components of the records 

• allow a graded approach to the re-processing of records 
that cannot be categorised, by finding the closest 
sequence of regular expressions and considering the 
minimum number of changes required to make the 

record match that sequence.  

• use rejected records to suggest updates to regular 
expression sequences for specific log streams.  

B. Regular Expressions 
Although regular expressions are widely used, there is no 

formal standard defining their exact syntax and behaviour 
(although partial standards such as POSIX exist). 
Consequently, there is an essential core of expressions, with 
various add-ons (see www.regular-expressions.info, 
regexr.com, etc for details). In this work, we assume the 
regular expressions follow a common "standard" and that there 
is an associated matching engine which, given a regular 
expression and a character string, returns true if the string is 
accepted by the regular expression and false otherwise. For 
consistency with other work (not reported here), we have used 
the java 9 regular expression engine docs.oracle.com/javase/ 
9/docs/api/java/util/regex/Pattern. Note that the approach 
described in this paper is not dependent on the regexp engine. 

We also assume a library of regular expression "primitives" 
representing basic data "types" such as month, year, date, time, 
IP address, description, host name, mac address, etc. (see 
regexlib.com for example). These regular expressions are the 
building blocks for the sequences. We further assume that each 
regular expression is associated with a tag indicating the data 
type recognised (see Table III). For readability we allow 
compound tags, built up from atomic tags or from other 
compound tags. For example, using { } to delimit a tag, the 
compound expression 

SHORTDATE := {MONTHDAY}-{MONTHNUM}  

would match a string such as 23-09 or 12-10.  

A compound tag can be converted to a regular expression by 
substituting tags by definitions until all tags have been replaced 
(assuming no recursive or mutually recursive definitions).  

Fuzzy matching of a string against a regular expression is 
possible by defining a membership function over the number of 
changes to the string necessary to make it acceptable to the 

TABLE I. EXAMPLE OF UNIFORMLY FORMATTED LOG DATA  

 

TABLE II. EXAMPLE OF FORMATTED LOG DATA WITH VARIATIONS IN FORMAT  

 



regular expression (or the proportion of this number to the total 
string length). For example, the string 1024703809 matches the 
INT regular expression (Table III) perfectly; a string 
10247o3809 requires a single character to be changed (o → 0) 
in order to match the INT regular expression. This string has a 
high, though not full, membership in the set of strings accepted 
as INT (see Fig. 1). A more sophisticated approach could 
weight different substitutions (so that replacing "o" with "0" or 
"I" with "1" would have a lower cost than, say, replacing "m" 
with a digit). The details are described elsewhere (e.g. [7]) - the 
important point is that there are well-established methods for 
approximate matching of strings to regular expressions. For our 
purposes, it is better to use the inverse function and focus on 
the set of strings that are accepted by a regular expression with 
at least a specified membership, so that  

 
where INTα is the set of strings accepted with membership 

α or greater. See [8] for further discussion. This approach 
enables us to deal with a crisp set at each membership level, 
and hence we can use standard (non-fuzzy) methods to process 
the data rather than having to rewrite/re-engineer code so that it 
can handle memberships with the data. 

C. Regular Expression Sequences 
For the purpose of analysing logfiles, we assume the data is 

record-based, with each record split into fields as shown in 
Tables 1 and 2. Records are not necessarily all the same length 
but have some commonality - for example, in Table II we 

could compare the first field of each record to a regular 
expression identifying dates such as 
DATE:={MONTHDAY}-{SHORTMONTH}-{TWODIGITYEAR} 

with MONTHDAY defined in Table III and appropriate 
regular expression definitions for the other tags. A first guess at 
a parser for the data in Table II might identify records of length 
3, 5 and 6, each starting with the sequence {DATE} {TIME} 
{DATA}, followed (in records of length 5 and 6) by 
{IP4ADDRESS} {HOSTADDRESS}, etc. We assume 
appropriate definitions for tags that are not shown in Table III. 
Clearly there is a degree of judgment and intuition in this 
process, as other representations would also match the records 
- to take an extreme example, each field is a string of zero or 
more characters so would also be matched by DATA. A 
sequence of DATA fields would be too general for the records 
in Tables I and II as the pattern would match every record and 
would not differentiate the content at all. To automate the 
generation of parsers from data, we therefore seek a way of 
capturing a subset of patterns which matches the sample 
records without over-generalising. 

III. A FRAMEWORK FOR GRADED GENERALISATION 

A. From Regular Expressions to Formal Concepts 
Whilst regular expressions are powerful tools for string 

matching, their design and maintenance can be error-prone. In 
part this arises from the lack of a full standard, but is largely 
due to the compact representation using punctuation symbols 
and the context-sensitive nature of the symbols - for example, 
the ^ character can represent a start of line (e.g. ^[a-z] matches 
a single lower case letter at the beginning of a line) or a 
complement operator (e.g. [^a-z] matches any single character 
except a lower case letter). Whilst experience and the use of 
predefined libraries can help, it is often difficult to identify the 
full set of strings accepted by a regular expression, and to see 
the relation between different regular expressions. For 
example, intuitively one would expect the set of strings 
accepted by MONTHNUM (above) to be a subset of those 
accepted by MONTHDAY which in turn is contained in INT, as is 
suggested by the example strings shown in the table.  

As a more complex illustration, consider the following four 
expressions intended to represent different forms of MAC 
address  

MAC1 (?:(?:[A-Fa-f0-9]{4}\.){2}[A-Fa-f0-9]{4}) 
MAC2 (?:(?:[A-Fa-f0-9]{2}-){5}[A-Fa-f0-9]{2}) 

MAC3 (?:(?:[A-Fa-f0-9]{2}:){5}[A-Fa-f0-9]{2}) 

MAC4 (?:(?:[A-Fa-f0-9]{1,2}:)?(?:(?:[A-Fa-f0-9] 
{1,2}:){5}[A-Fa-f0-9]{1,2})) 

From the definitions, it is difficult to see the relation 
between the sets of strings accepted by these regular 
expressions. Testing would reveal (for example) that  

abcd.1222.34f5 is accepted by MAC1 

ab-cd-12-22-34-f5  is accepted by MAC2 

ab:cd:12:22:34:f5 is accepted by MAC3 and MAC4 

a:b:cd:12:22:34:f5  is accepted by MAC4 

 

INT1 = 1024703809,…{ }
INT0.8 = 1024703809,10247o3809,…{ }

POSINT \b(?:[1-9][0-9]*)\b 
MINUTE (?:[0-5][0-9]) 

MONTHNUM (?:0?[1-9]|1[0-2]) 
DATA  .*? 

MONTHDAY (?:(?:0[1-9])|(?:[12][0-9])|(?:3[01])|[1-9]) 
HOUR (?:2[0123]|[01]?[0-9]) 

INT (?:[+-]?(?:[0-9]+)) 
SECOND  (?:(?:[0-5][0-9]|60) 

TABLE III. SAMPLE REGULAR EXPRESSION TAGS AND DEFINITIONS 

 
Fig. 1. An example membership function for fuzzy regular expressions.  
A string in which 9 out of 10 characters match the regular expression has 
membership 0.86 



We might postulate that MAC4 accepts a superset of the 
strings accepted by MAC3. A more structured way to approach 
this problem is by use of formal concept analysis (FCA) [2, 3] 
where we consider a set of sample strings and the regular 
expressions that accept each string. In FCA terms, the strings 
are objects and the regular expressions are attributes. Given a 
set of strings and regular expressions, each string (object) is 
associated with the set of regular expressions that accept it 
(attributes), and each regular expression is associated with the 
set of strings it accepts. This defines a formal context - a 
Boolean table in which rows correspond to strings and columns 
to regular expressions. Table IV shows a formal context for a 
set of strings (shown as row labels) and regular expressions 
(shown as column labels). The table entry is 1 (true) where the 
string is accepted by the regular expression and 0 otherwise. 
(NB the ISO SECOND includes 60, a leap second).  

The formal context defines a lattice, as shown in Fig 2. 
Each node is a formal concept, defined by a set of strings (the 
concept extension) and a set of attributes (the concept 
intension) that accept all strings in the extension. To avoid 
repetition, the lattice uses reduced labelling [2, 3] in which a 
concept's intension is the set of regular expressions attached to 
the node and to all of its ancestor nodes; a concept's extension 
is the set of strings attached to the node and to all of its 
descendant nodes. For example, the node labelled  

(HOUR , 0) has the extension {0, 1, 10, 16},  

corresponding to the set of strings which all satisfy the 
regular expressions  

HOUR, INT and DATA (the intension of the concept).  

The lattice shows the subset/superset relation between the 
concepts - e.g. any string accepted by MONTHNUM will also 
be accepted by HOUR or MONTHDAY. The lattice also 
highlights differences between the regular expressions, e.g.16 
is accepted by HOUR, MINUTE and MONTHDAY (plus the 
labels attached to its ancestor nodes) but not by MONTHNUM. 
With a suitable string generator, the lattice can reveal errors in 
regular expression definitions but this is not the focus here. 
Instead, we use the lattice to define a graded notion of 
generalisation for a regular expression when compared to a 
second regular expression.  

For clarity, we restrict the context to single strings 
representing different concepts; in practice, there may be many 
strings that are accepted by a given set of regular expressions. 
Each concept extension has a size (cardinality) that can be 
found by considering a large sample of strings, or by analysis 
of the regular expressions themselves. We also note that each 
regular expression is associated with a node in the lattice, and 
that some nodes in the lattice do not have associated regular 
expressions. These correspond to conjunction and disjunction 
of regular expressions (or, equivalently, they correspond to the 
union and intersection of sets of strings). For any pair of 
regular expressions, R1 and R2, the lattice represents a partial 
order, i.e. we have one of the following cases: 

R1 ≥ R2 (R1 accepts all strings accepted by R2) 

R2 ≥ R1 (R2 accepts all strings accepted by R1) 

or neither of these, so that R1 accepts some strings that R2 
does not accept, and vice-versa.  

Where two regular expressions are related under the partial 

 
Fig. 2. Formal Concept Lattice corresponding to the context in Table IV 

TABLE IV.  FORMAL CONTEXT FOR A SAMPLE SET OF STRINGS AND THE REGULAR EXPRESSIONS IN TABLE III 

 



order, e.g. R1 ≥ R2 , we say that the expression R2 is more 
specific than R1, since it accepts some of the same strings as R1 
but not necessarily all (conversely, R1 is more general than R2) 

Define R to be the set of all regular expressions in our 
library, R = { R1, R2   , …, Rn}, and R* to be a subset R*⊆ R, 
then the greatest lower bound (GLB) and least upper bound 
(LUB) of R* are unique and guaranteed to exist. 

  

(in case of multiple upper / lower bounds, we take the least 
/ greatest respectively). i.e. the LUB is the most specific 
regular expression that accepts all strings accepted by either R1 
or R2 and the GLB is the most general regular expression that 
accepts all strings accepted by either R1 or R2 

The top element of the lattice corresponds to a regular 
expression such as .* which accepts any sequence of 
characters. 

 

B. Minimal Record Labelling  
Definition : the minimal labelling of a record  

r = s1 s2 … sn  

is given by minLab(r) = R1 R2 … Rn 

where each Ri is a regular expression defined by 

   
(si is the string value of field i) 

Thus, for each field in the record, we choose the lowest 
regular expression that accepts the field. 

 

C. Graded Generalisation of Regular Expression Sequences 
Using the regular expression lattice, it is straightforward to 

take a record and label each field with the most specific regular 
expression that accepts the field. We simply need to find the 
greatest lower bound of all regular expressions accepting the 
string. In practice this search can be guided by the lattice, since 
if a string is not accepted by a regular expression, it will not be 
accepted by any descendant nodes.  

Each sample record yields a regular expression sequence; 
our task is to find a small set of sequences that accept all 
sample records (and unseen records of the same logtype). To 
illustrate, assume we have a record containing three fields 
which represent an hour, minute and second. Examples might 
be  
minLab(15,14,32)= 
  HOUR∧MINUTE, HOUR∧MINUTE,  MINUTE 

minLab(0,25,60)=  
   HOUR,  MINUTE∧MONTHDAY,  SECOND 

In this case the second sequence is the more general, and 
completely subsumes the first sequence (i.e. all records 
accepted by the first sequence are also accepted by the second). 
This is obvious by considering the pairwise least upper bound 
for each position in the sequences, since  

HOUR ∧ MINUTE  ≤ HOUR 

HOUR ∧ MINUTE ≤ MINUTE ∧ MONTHDAY 

MINUTE ≤ SECOND 

This relation can be denoted by extending the partial order 
to sequences of the same length, so that if 

   
then   

   
We can discard the sequence S2 as a candidate for 

recognising the log records since any sequences it accepts are 
also accepted by S1 

We also define a graded (or fuzzy) version which allows us 
to generalise a regular expression, based on extension 
cardinalities and a fuzzy proportion of inclusion. This allows 
us to replace two regular expressions R1 and R2 with their least 
upper bound, as long as the extension of R1 is most of the 
extension of LUB(R1, R2). Formally, given a membership 
function most , a threshold membership level α , an initial 
sequence  

   
and a new candidate sequence  

   
we generalise S1 to  

   

in the case that for all i,  R1i generalises R2i at α, most 

We denote this relation  , defined as 

 
R1i !

α ,most
R2i iff R1i ≥ R2i OR most

ext R1i( )
ext LUB R1i , R2i( )( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
≥α   

For instance, assume an additional definition NONNEGINT 
in Fig 1, accepting non-negative integers. Given a pattern with 
POSINT and another with HOUR, we could generalise to 
NONNEGINT  since this has almost the same extension as 
POSINT (differing only in accepting 0). However, we would 
not generalise to INT since this accepts (roughly) twice as 
many strings. There is an element of pragmatism here in 
comparing the number of strings accepted as INT with the 
number accepted as POSINT. Since we typically use a large set 
of sample strings, this is a valid comparison. 

LUB R*( ) = Rk  such that Rk ∈R and ∀Rj ∈R
* :Rj ≤ Rk

GLB R*( ) = Rk  such that Rk ∈R and ∀Rj ∈R
* :Rk ≤ Rj

Ri  = GLB E E ∈R ∧ E  accepts si{ }( )

 

S1 = R11 R12 … R1n
S2 = R21 R22 … R2n

 S1 ≥ S2 iff R11 ≥ R21  and R12 ≥ R22  … R1n ≥ R2n

 S1 = R11 R12 … R1n

 S2 = R21 R22 … R2n

 S3 = LUB R11, R21( ) LUB R12, R22( )… LUB R1n , R2n( )

 
R1i !

α , most
R2i



IV. ALGORITHM TO GENERATE REGULAR EXPRESSION 
SEQUENCES FROM RECORD SAMPLES 

The algorithm is shown in Fig 3. Each record in the sample 
is read and its minimal labelling is compared to the current set 
of pattern sequences. If an existing pattern sequence subsumes 
the minimal labelling, no further action is necessary - for 
example, if we have a pattern sequence: 

HOUR,  MINUTE,  SECOND 

and a record containing 
15,14,32 

with minimal labelling 

HOUR∧MINUTE, HOUR∧MINUTE,  MINUTE 

then the existing pattern sequence is more general than the 
record. This is covered in the algorithm by the condition 

S generalises minLab(r) 

and the action  
replace S in outputSet by LUB(minLab(r),S) 

is (effectively) a null operation since it leaves S unchanged. 

If one or more of the labels in the existing pattern sequence 
are graded generalisations of the corresponding labels derived 
from the record (as described in Section III.C), the existing 
pattern sequence is modified. Similarly, if the minimal 
labelling of the record is a graded generalisation of the pattern 
sequence, then the pattern sequence is modified. Otherwise, a 
new pattern sequence is added to the set when there is 
insufficient similarity to existing sequences. 

In the worst case, this algorithm is quadratic in the number 
of records (if every record leads to a new pattern that can't be 

combined with any existing pattern). In practice most logtypes 
give rise to only a few patterns and the runtime is roughly 
linear in the number of records used for the learning phase.  

V. EXPERIMENTAL VALIDATION 
We focus on two key features of the method - categorising 

unseen records as the correct logfile type (and hence extracting 
the correct data components) and minimising the number of 
regular expression sequences that are used for each logfile 
type.  

We have used a set of public domain logfiles from sources 
including: 

www.stratosphereips.org/datasets-ctu13 

(a dataset of "botnet traffic that was captured in the CTU 
University, Czech Republic, in 2011. The goal of the dataset 
was to have a large capture of real botnet traffic mixed with 
normal traffic and background". This dataset is netflow data in 
CSV and TSV format) 

csr.lanl.gov/data/2017.html 

(a dataset of (some) network and computer (host) events 
collected from the Los Alamos National Laboratory enterprise 
network) 

log-sharing.dreamhosters.com 

(multiple log samples from various security and network 
devices and applications, mostly unmodified and all collected 
from real systems.  

vast challenge datasets (www.vacommunity.org)   

(various synthetic datasets in a number of formats) 

INPUT : L, a sample of logfile records 
 most, a fuzzy set representing acceptable ratio for generalisation 
 α, a membership threshold 
OUTPUT :outputSet, a minimal set of regexp sequences that accepts the logfile records 
 
outputSet = empty set  
FOREACH record, r  

 FOREACH pattern sequence, S ∈ outputSet  
  IF minLab(r) generalises S at (α, most) 
     OR S generalises minLab(r) at (α, most) 
  THEN 
    replace S in outputSet by LUB(minLab(r),S) 
  ENDIF 
  ENDFOR 
ENDFOR 
IF r did not cause any change to outputSet  
  add minLab(r) to outputSet  
ENDIF 
RETURN outputSet 
 

Fig. 3. Algorithm to create general patterns from samples of logfile records 



These logfiles vary in size from a few thousand to several 
million records; for test purposes below we use the first 500 
records to create logfile parsers and (up to) 100K records to 
test the categorisation performance.  

Results are given for alpha = 1, 0.8 and 0.6 to illustrate the 
balance between accuracy in recognising logfile types, and 
compactness of the derived regular expression patterns.  

Table V shows the categorisation performance of the 
parsers. The logfiles are completely unchanged from the 
downloaded versions, some of which are not cleaned at all - 
hence there are some unreadable records containing control / 
extended ASCII characters as indicated in the final column. 
Execution times are of the order of a few seconds on a mid-
range laptop (exact times are not given - clearly, with any 
experimental software, run time can be improved significantly 
by re-engineering code and using faster hardware). 

Table VI gives the number of patterns for each record 
length at α = 1 and 0.8. The bluecoat data in particular shows 
various record lengths. This is due to the presence of records 
periodically giving timestamped information on software 
versions and monitor configuration - in particular, switching 
between records of length 23 and 26. It is noticeable that the 
number of patterns from records of length 23 and 26 is reduced 
significantly by allowing greater generalisation of fields (i.e. 
using alpha of 0.8 instead of 1, see algorithm in Fig 3). A 
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0 
0 
0 

99923 
99923 
99923 

0 
0 
0 

0 
0 
0 

77 
77 
77 

0 
0 
0 

capture20110818.tsv 0 
0 
0 

0 
0 
0 

99946 
100000 
100000 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

54 
0 
0 

0 
0 
0 

capture20110810 
.binetflow 

0 
0 
0 

99646 
100000 
100000 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

4 
0 
0 

0 
0 
0 

           

TABLE V. NUMBER OF RECORDS CATEGORISED BY EACH LOGFILE PARSER. EACH CELL SHOWS A VALUE (FROM TOP) WITH α=1, 0.8 AND 0.6 AS SHOWN IN 
THE ALGORITHM (FIG 3). TESTS ARE OVER THE FIRST 100000 RECORDS READ, EXCEPT IN CASES WHERE THE FILE CONTAINS FEWER THAN 100000  RECORDS 

 

TABLE VI. LENGTH (L) AND NUMBER OF PATTERNS (C) FOR EACH 
LOGFILE TYPE AT α=1, 0.8.  



possible extension to this work would look at the sequencing of 
records with different lengths (for example using the 
mechanism described in [9]) 

The Cisco firewall data (first row of Table V) shows the 
poorest level of performance because this particular log 
contains a number of records in a format not seen in the data 
used to create the parser patterns. 

Importantly, the rejected data from each logfile source is 
saved and can be used to suggest new or updated versions of 
the parser patterns. This process can be fully-automated or part 
of a collaborative system in which the human analyst can judge 
whether or not the suggested change is reasonable. For 
example, the automatic analysis of the rejected Cisco firewall 
records shows a significant number matching the alternative 
pattern depicted in Table VII. An analyst can decide whether 
this is a valid pattern and should be identified as an addition to 
the parser, i.e. whether it should be combined with the existing 
pattern by generalising the URIHOST tag to an alternative tag 
matching URIHOST or MAC3 

VI. RELATED WORK 
Many studies have focused on the problem of learning 

regular expressions from data, and the related problem of 
learning regular expressions to match sequences. 

 The difficulty of designing good regular expressions is 
illustrated in [10] where regular expression design was 
described as a "highly non-trivial task" and used to illustrate 
the (potential) benefit of crowd sourcing as a solution. In a 
similar vein, [11]designed a system to generate test strings for 
regular expressions, focusing on areas that typically cause 
problems in regexp design and using a number of heuristics to 
create strings that (semantically) should not be accepted but 
would match the given definitions. They found more than 260 
errors in a set of almost 700 regular expressions taken from a 
standard regular expression library (regexlib.com), including a 
regexp for a floating point number that would accept a single 
decimal point with no digits. 

Many studies have focused on the problem of learning 
regular expressions from data, although this is an NP-complete 
task in principle. Regular expressions are frequently used for 
sequence extraction in DNA - see for example the work of [12] 
which outlines an approximate matching mechanism for 
regular expressions involving alternation (the | symbol). 

Another application of regular expressions to sequences 
[13] examined a regular-expression based approach to 
identifying sequences of events (in testing GUI) and found it to 
give comparable performance to an SVM-based classifier.  

We are not aware of any similar work in the area of logfile 
analysis.  

VII. SUMMARY 
There is immense scope for the use of collaborative (human 

+ machine) intelligent systems in monitoring and analysing 
logfile data to maintain security of networked systems. We 
have outlined a new approach to the first stage of the 
cybersecurity workflow, gathering the low level data from 
logs, prior to its analysis and transformation into event 
sequences and higher-level structures. The approach follows 
the collaborative intelligence paradigm, in which the machine 
does the initial work and human judgment / insight can refine 
the results.  

 Further work is underway to improve the mechanism for 
graded generalisation and to develop an interface so that this 
tool can be used in practical cyber-defence applications.  
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TIMESTAMP_ISO8601 BASE16FLOAT URIPROTO URIHOST NOTSPACE …  
TIMESTAMP_ISO8601 BASE16FLOAT SYSLOGPROG MAC3 NOTSPACE … 

 match match Generalise Replace/combine match  … 
2011-08-18 10:19:17.534 0.000 IPX/SPX 0:15:17:2c:e5:2d -> …   

TABLE VII (PART) RESULT OF APPROXIMATE MATCHING REJECTED RECORD (SHOWN IN THE BOTTOM ROW) AGAINST THE NEAREST MATCHING PATTERN IN 
THE PARSER (TOP ROW). THE SECOND ROW IS THE MINIMAL LABELLING OF THE RECORD, AND THE THIRD ROW HIGHLIGHTS WHERE THE LABELS MATCH OR THE 

PATTERN LABELS NEED TO BE CHANGED IN ORDER TO ACCEPT THE RECORD  




