

A New Approach to Fuzzy Regular Expression
Parsers for Cybersecurity Logs

Trevor Martin
Intelligent Systems Lab

University of Bristol
Bristol, BS8 1UB, UK

Trevor.Martin@bristol.ac.uk

Alex Healing
BT Future Security Research
BT Research and Innovation
Adastral Park, IP5 3RE, UK

alex.healing@bt.com

Ben Azvine
BT Future Security Research
BT Research and Innovation
Adastral Park, IP5 3RE, UK

ben.azvine@bt.com

Abstract— As we move towards a zero-trust environment,
collaborative intelligent systems are a vital tool in the
cybersecurity workflow. These intelligent systems need to receive
accurate and complete information from the multiplicity of low-
level network monitoring systems. Typically, these low-level
systems use regular expressions which are fast but not robust
against minor changes - thus, information is often discarded.
This paper outlines a new approach to low-level parsers, able to
suggest new regular expression sequences and deal with
approximate matching in an efficient way.

Keywords— logfile, parser, cybersecurity, fuzzy regular
expression

I. INTRODUCTION
We are moving towards a zero-trust environment in the

digital sphere, in which a network is regarded as hostile until
shown otherwise. In the past, network security has been
assumed, and ensured by a range of tools such as firewalls
(which use rules to permit or deny network connections), and
intrusion detection / prevention systems (which use rules and
pattern-recognition to identify, and possibly block, suspicious
traffic). At higher levels such as social networks, other
websites, email, filesystems, operating systems, etc. a host of
more sophisticated tools analyse traffic and program behaviour
with the aim of preventing malware, data loss, and related
threats. Again, these systems rely on rules and simple pattern
recognition to create the features for subsequent processing. In
recent years, artificial intelligence (AI) has been proposed as an
all-encompassing solution that will automate network security
processes, aiming to match the security deployed in a system to
the user, rather than to the network or device. Whether or not
this is feasible, there is no doubt that AI is a vital tool in
identification of anomalous events and sequences in networks,
cutting out the ‘noise’ created by vast volumes of data.

At the start of the cyber-security monitoring chain, a
variety of systems implement basic filtering operations and
monitor traffic to generate the data for subsequent analysis.
Regular expressions are an almost universal choice in
analysing low-level logs, as they enable very fast recognition
of patterns and extraction of key data fields. However, these
low-level systems are inherently brittle, since they are based on
strict patterns and data formats, and can discard large volumes
of data if a tiny deviation from expected formats occurs. For
example, when a monitored system changes it can cause a

slight alteration in the generated data which might fall outside
the expected range and hence no longer match the appropriate
regular expression. Similar problems can arise when software
is updated or other changes in configuration take place. In
practice this often leads to data being discarded until the
problem is resolved by manual re-configuration of the
monitoring system. Initial set-up of monitoring systems
(especially the need to manually create parsers) can also be
labour-intensive, since regular expressions are often difficult to
design and maintain - as recognised in the aphorism "Some
people, when confronted with a problem, think 'I know, I'll use
regular expressions'. Now they have two problems."

In this paper we consider the problem of identifying and
extracting data from a (mostly) formatted stream and propose a
new approximate matching technique for identifying sequences
of regular expressions. The method uses a fuzzy hierarchy
(lattice) generated from the regular expressions, and is able to
produce potential modifications to regular expression
sequences from sample log data. The approach relies on three
underlying themes - the graded (x-mu) approach to fuzzy sets
[1], formal concept analysis [2, 3, 4] extended by the x-mu
approach [5,6] , and a new approach described in this paper to
calculate a graded distance, either between a logfile record (a
sequence of fields, each represented as a string) and a sequence
of regular expressions, or between two regular expression
sequences. In the following section, we briefly introduce these
underlying themes and subsequently show how the method can
be used to categorise unseen logfile data and handle graded
matching when data deviates from the expected format.

II. BACKGROUND

A. Problem Description
We focus on the initial analysis of log files and streams in

the cybersecurity workflow, a vital step that provides data for
subsequent analysis and classification of network events and
trends. Logfiles vary in format, content and granularity, and
examples include web proxy logs, firewall logs, IDS logs,
netflow logs, DNS logs, etc.

Although content varies, these files and streams have a
similar structure since they are time-stamped records of events
in which various items of relevant data are stored (such as ids,
URLs, IP addresses, flow data, messages, etc.). They are
commonly processed in the first instance by regular

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

expression-based parsers which can quickly and efficiently
identify data types and extract key attributes into a centralised
data storage system, for subsequent analysis.

Two significant bottlenecks in the acquisition of data are:

(i) the need to manually configure regular expression
parsers for each data source, and for each variation in a data
source. Monitoring systems are configurable, and are updated
from time to time. Both factors contribute to changes in the
format and content of data contained in the stream, requiring
further manual configuration

(ii) systematic or random changes in the data from other
causes (e.g. changes in the monitored system)

In both cases, significant loss of monitored data can occur
when the data does not quite match the expected pattern. Table
I shows an example of uniformly formatted data (note that
headers/field descriptions are generally not available, but the
nature of each field is "obvious" when a number of examples
are considered). Table II shows more variation in format.

Because monitoring data is typically produced in large
volumes and at high speed, it is impractical to store and
reprocess records that do not match exactly - instead, they are
usually discarded.

This work aims to:

• automatically create regular expression sequences that
match samples of records from log data and are
sufficiently general to identify and process additional
records from the same source. These can be presented
to a human expert for approval / alteration

• use the derived regular expression sequences to
categorise new log data records (as a recognised log
type) and identify components of the records

• allow a graded approach to the re-processing of records
that cannot be categorised, by finding the closest
sequence of regular expressions and considering the
minimum number of changes required to make the

record match that sequence.

• use rejected records to suggest updates to regular
expression sequences for specific log streams.

B. Regular Expressions
Although regular expressions are widely used, there is no

formal standard defining their exact syntax and behaviour
(although partial standards such as POSIX exist).
Consequently, there is an essential core of expressions, with
various add-ons (see www.regular-expressions.info,
regexr.com, etc for details). In this work, we assume the
regular expressions follow a common "standard" and that there
is an associated matching engine which, given a regular
expression and a character string, returns true if the string is
accepted by the regular expression and false otherwise. For
consistency with other work (not reported here), we have used
the java 9 regular expression engine docs.oracle.com/javase/
9/docs/api/java/util/regex/Pattern. Note that the approach
described in this paper is not dependent on the regexp engine.

We also assume a library of regular expression "primitives"
representing basic data "types" such as month, year, date, time,
IP address, description, host name, mac address, etc. (see
regexlib.com for example). These regular expressions are the
building blocks for the sequences. We further assume that each
regular expression is associated with a tag indicating the data
type recognised (see Table III). For readability we allow
compound tags, built up from atomic tags or from other
compound tags. For example, using { } to delimit a tag, the
compound expression

SHORTDATE := {MONTHDAY}-{MONTHNUM}

would match a string such as 23-09 or 12-10.

A compound tag can be converted to a regular expression by
substituting tags by definitions until all tags have been replaced
(assuming no recursive or mutually recursive definitions).

Fuzzy matching of a string against a regular expression is
possible by defining a membership function over the number of
changes to the string necessary to make it acceptable to the

TABLE I. EXAMPLE OF UNIFORMLY FORMATTED LOG DATA

TABLE II. EXAMPLE OF FORMATTED LOG DATA WITH VARIATIONS IN FORMAT

regular expression (or the proportion of this number to the total
string length). For example, the string 1024703809 matches the
INT regular expression (Table III) perfectly; a string
10247o3809 requires a single character to be changed (o → 0)
in order to match the INT regular expression. This string has a
high, though not full, membership in the set of strings accepted
as INT (see Fig. 1). A more sophisticated approach could
weight different substitutions (so that replacing "o" with "0" or
"I" with "1" would have a lower cost than, say, replacing "m"
with a digit). The details are described elsewhere (e.g. [7]) - the
important point is that there are well-established methods for
approximate matching of strings to regular expressions. For our
purposes, it is better to use the inverse function and focus on
the set of strings that are accepted by a regular expression with
at least a specified membership, so that

where INTα is the set of strings accepted with membership

α or greater. See [8] for further discussion. This approach
enables us to deal with a crisp set at each membership level,
and hence we can use standard (non-fuzzy) methods to process
the data rather than having to rewrite/re-engineer code so that it
can handle memberships with the data.

C. Regular Expression Sequences
For the purpose of analysing logfiles, we assume the data is

record-based, with each record split into fields as shown in
Tables 1 and 2. Records are not necessarily all the same length
but have some commonality - for example, in Table II we

could compare the first field of each record to a regular
expression identifying dates such as
DATE:={MONTHDAY}-{SHORTMONTH}-{TWODIGITYEAR}

with MONTHDAY defined in Table III and appropriate
regular expression definitions for the other tags. A first guess at
a parser for the data in Table II might identify records of length
3, 5 and 6, each starting with the sequence {DATE} {TIME}
{DATA}, followed (in records of length 5 and 6) by
{IP4ADDRESS} {HOSTADDRESS}, etc. We assume
appropriate definitions for tags that are not shown in Table III.
Clearly there is a degree of judgment and intuition in this
process, as other representations would also match the records
- to take an extreme example, each field is a string of zero or
more characters so would also be matched by DATA. A
sequence of DATA fields would be too general for the records
in Tables I and II as the pattern would match every record and
would not differentiate the content at all. To automate the
generation of parsers from data, we therefore seek a way of
capturing a subset of patterns which matches the sample
records without over-generalising.

III. A FRAMEWORK FOR GRADED GENERALISATION

A. From Regular Expressions to Formal Concepts
Whilst regular expressions are powerful tools for string

matching, their design and maintenance can be error-prone. In
part this arises from the lack of a full standard, but is largely
due to the compact representation using punctuation symbols
and the context-sensitive nature of the symbols - for example,
the ^ character can represent a start of line (e.g. ^[a-z] matches
a single lower case letter at the beginning of a line) or a
complement operator (e.g. [^a-z] matches any single character
except a lower case letter). Whilst experience and the use of
predefined libraries can help, it is often difficult to identify the
full set of strings accepted by a regular expression, and to see
the relation between different regular expressions. For
example, intuitively one would expect the set of strings
accepted by MONTHNUM (above) to be a subset of those
accepted by MONTHDAY which in turn is contained in INT, as is
suggested by the example strings shown in the table.

As a more complex illustration, consider the following four
expressions intended to represent different forms of MAC
address

MAC1 (?:(?:[A-Fa-f0-9]{4}\.){2}[A-Fa-f0-9]{4})
MAC2 (?:(?:[A-Fa-f0-9]{2}-){5}[A-Fa-f0-9]{2})

MAC3 (?:(?:[A-Fa-f0-9]{2}:){5}[A-Fa-f0-9]{2})

MAC4 (?:(?:[A-Fa-f0-9]{1,2}:)?(?:(?:[A-Fa-f0-9]
{1,2}:){5}[A-Fa-f0-9]{1,2}))

From the definitions, it is difficult to see the relation
between the sets of strings accepted by these regular
expressions. Testing would reveal (for example) that

abcd.1222.34f5 is accepted by MAC1

ab-cd-12-22-34-f5 is accepted by MAC2

ab:cd:12:22:34:f5 is accepted by MAC3 and MAC4

a:b:cd:12:22:34:f5 is accepted by MAC4

INT1 = 1024703809,…{ }
INT0.8 = 1024703809,10247o3809,…{ }

POSINT \b(?:[1-9][0-9]*)\b
MINUTE (?:[0-5][0-9])

MONTHNUM (?:0?[1-9]|1[0-2])
DATA .*?

MONTHDAY (?:(?:0[1-9])|(?:[12][0-9])|(?:3[01])|[1-9])
HOUR (?:2[0123]|[01]?[0-9])

INT (?:[+-]?(?:[0-9]+))
SECOND (?:(?:[0-5][0-9]|60)

TABLE III. SAMPLE REGULAR EXPRESSION TAGS AND DEFINITIONS

Fig. 1. An example membership function for fuzzy regular expressions.
A string in which 9 out of 10 characters match the regular expression has
membership 0.86

We might postulate that MAC4 accepts a superset of the
strings accepted by MAC3. A more structured way to approach
this problem is by use of formal concept analysis (FCA) [2, 3]
where we consider a set of sample strings and the regular
expressions that accept each string. In FCA terms, the strings
are objects and the regular expressions are attributes. Given a
set of strings and regular expressions, each string (object) is
associated with the set of regular expressions that accept it
(attributes), and each regular expression is associated with the
set of strings it accepts. This defines a formal context - a
Boolean table in which rows correspond to strings and columns
to regular expressions. Table IV shows a formal context for a
set of strings (shown as row labels) and regular expressions
(shown as column labels). The table entry is 1 (true) where the
string is accepted by the regular expression and 0 otherwise.
(NB the ISO SECOND includes 60, a leap second).

The formal context defines a lattice, as shown in Fig 2.
Each node is a formal concept, defined by a set of strings (the
concept extension) and a set of attributes (the concept
intension) that accept all strings in the extension. To avoid
repetition, the lattice uses reduced labelling [2, 3] in which a
concept's intension is the set of regular expressions attached to
the node and to all of its ancestor nodes; a concept's extension
is the set of strings attached to the node and to all of its
descendant nodes. For example, the node labelled

(HOUR , 0) has the extension {0, 1, 10, 16},

corresponding to the set of strings which all satisfy the
regular expressions

HOUR, INT and DATA (the intension of the concept).

The lattice shows the subset/superset relation between the
concepts - e.g. any string accepted by MONTHNUM will also
be accepted by HOUR or MONTHDAY. The lattice also
highlights differences between the regular expressions, e.g.16
is accepted by HOUR, MINUTE and MONTHDAY (plus the
labels attached to its ancestor nodes) but not by MONTHNUM.
With a suitable string generator, the lattice can reveal errors in
regular expression definitions but this is not the focus here.
Instead, we use the lattice to define a graded notion of
generalisation for a regular expression when compared to a
second regular expression.

For clarity, we restrict the context to single strings
representing different concepts; in practice, there may be many
strings that are accepted by a given set of regular expressions.
Each concept extension has a size (cardinality) that can be
found by considering a large sample of strings, or by analysis
of the regular expressions themselves. We also note that each
regular expression is associated with a node in the lattice, and
that some nodes in the lattice do not have associated regular
expressions. These correspond to conjunction and disjunction
of regular expressions (or, equivalently, they correspond to the
union and intersection of sets of strings). For any pair of
regular expressions, R1 and R2, the lattice represents a partial
order, i.e. we have one of the following cases:

R1 ≥ R2 (R1 accepts all strings accepted by R2)

R2 ≥ R1 (R2 accepts all strings accepted by R1)

or neither of these, so that R1 accepts some strings that R2
does not accept, and vice-versa.

Where two regular expressions are related under the partial

Fig. 2. Formal Concept Lattice corresponding to the context in Table IV

TABLE IV. FORMAL CONTEXT FOR A SAMPLE SET OF STRINGS AND THE REGULAR EXPRESSIONS IN TABLE III

order, e.g. R1 ≥ R2 , we say that the expression R2 is more
specific than R1, since it accepts some of the same strings as R1
but not necessarily all (conversely, R1 is more general than R2)

Define R to be the set of all regular expressions in our
library, R = { R1, R2 , …, Rn}, and R* to be a subset R*⊆ R,
then the greatest lower bound (GLB) and least upper bound
(LUB) of R* are unique and guaranteed to exist.

(in case of multiple upper / lower bounds, we take the least
/ greatest respectively). i.e. the LUB is the most specific
regular expression that accepts all strings accepted by either R1
or R2 and the GLB is the most general regular expression that
accepts all strings accepted by either R1 or R2

The top element of the lattice corresponds to a regular
expression such as .* which accepts any sequence of
characters.

B. Minimal Record Labelling
Definition : the minimal labelling of a record

r = s1 s2 … sn

is given by minLab(r) = R1 R2 … Rn

where each Ri is a regular expression defined by

(si is the string value of field i)

Thus, for each field in the record, we choose the lowest
regular expression that accepts the field.

C. Graded Generalisation of Regular Expression Sequences
Using the regular expression lattice, it is straightforward to

take a record and label each field with the most specific regular
expression that accepts the field. We simply need to find the
greatest lower bound of all regular expressions accepting the
string. In practice this search can be guided by the lattice, since
if a string is not accepted by a regular expression, it will not be
accepted by any descendant nodes.

Each sample record yields a regular expression sequence;
our task is to find a small set of sequences that accept all
sample records (and unseen records of the same logtype). To
illustrate, assume we have a record containing three fields
which represent an hour, minute and second. Examples might
be
minLab(15,14,32)=
 HOUR∧MINUTE, HOUR∧MINUTE, MINUTE

minLab(0,25,60)=
 HOUR, MINUTE∧MONTHDAY, SECOND

In this case the second sequence is the more general, and
completely subsumes the first sequence (i.e. all records
accepted by the first sequence are also accepted by the second).
This is obvious by considering the pairwise least upper bound
for each position in the sequences, since

HOUR ∧ MINUTE ≤ HOUR

HOUR ∧ MINUTE ≤ MINUTE ∧ MONTHDAY

MINUTE ≤ SECOND

This relation can be denoted by extending the partial order
to sequences of the same length, so that if

then

We can discard the sequence S2 as a candidate for

recognising the log records since any sequences it accepts are
also accepted by S1

We also define a graded (or fuzzy) version which allows us
to generalise a regular expression, based on extension
cardinalities and a fuzzy proportion of inclusion. This allows
us to replace two regular expressions R1 and R2 with their least
upper bound, as long as the extension of R1 is most of the
extension of LUB(R1, R2). Formally, given a membership
function most , a threshold membership level α , an initial
sequence

and a new candidate sequence

we generalise S1 to

in the case that for all i, R1i generalises R2i at α, most

We denote this relation , defined as

R1i !

α ,most
R2i iff R1i ≥ R2i OR most

ext R1i()
ext LUB R1i , R2i()()

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
≥α

For instance, assume an additional definition NONNEGINT
in Fig 1, accepting non-negative integers. Given a pattern with
POSINT and another with HOUR, we could generalise to
NONNEGINT since this has almost the same extension as
POSINT (differing only in accepting 0). However, we would
not generalise to INT since this accepts (roughly) twice as
many strings. There is an element of pragmatism here in
comparing the number of strings accepted as INT with the
number accepted as POSINT. Since we typically use a large set
of sample strings, this is a valid comparison.

LUB R*() = Rk such that Rk ∈R and ∀Rj ∈R
* :Rj ≤ Rk

GLB R*() = Rk such that Rk ∈R and ∀Rj ∈R
* :Rk ≤ Rj

Ri = GLB E E ∈R ∧ E accepts si{ }()

S1 = R11 R12 … R1n
S2 = R21 R22 … R2n

 S1 ≥ S2 iff R11 ≥ R21 and R12 ≥ R22 … R1n ≥ R2n

 S1 = R11 R12 … R1n

 S2 = R21 R22 … R2n

 S3 = LUB R11, R21() LUB R12, R22()… LUB R1n , R2n()

R1i !

α , most
R2i

IV. ALGORITHM TO GENERATE REGULAR EXPRESSION
SEQUENCES FROM RECORD SAMPLES

The algorithm is shown in Fig 3. Each record in the sample
is read and its minimal labelling is compared to the current set
of pattern sequences. If an existing pattern sequence subsumes
the minimal labelling, no further action is necessary - for
example, if we have a pattern sequence:

HOUR, MINUTE, SECOND

and a record containing
15,14,32

with minimal labelling

HOUR∧MINUTE, HOUR∧MINUTE, MINUTE

then the existing pattern sequence is more general than the
record. This is covered in the algorithm by the condition

S generalises minLab(r)

and the action
replace S in outputSet by LUB(minLab(r),S)

is (effectively) a null operation since it leaves S unchanged.

If one or more of the labels in the existing pattern sequence
are graded generalisations of the corresponding labels derived
from the record (as described in Section III.C), the existing
pattern sequence is modified. Similarly, if the minimal
labelling of the record is a graded generalisation of the pattern
sequence, then the pattern sequence is modified. Otherwise, a
new pattern sequence is added to the set when there is
insufficient similarity to existing sequences.

In the worst case, this algorithm is quadratic in the number
of records (if every record leads to a new pattern that can't be

combined with any existing pattern). In practice most logtypes
give rise to only a few patterns and the runtime is roughly
linear in the number of records used for the learning phase.

V. EXPERIMENTAL VALIDATION
We focus on two key features of the method - categorising

unseen records as the correct logfile type (and hence extracting
the correct data components) and minimising the number of
regular expression sequences that are used for each logfile
type.

We have used a set of public domain logfiles from sources
including:

www.stratosphereips.org/datasets-ctu13

(a dataset of "botnet traffic that was captured in the CTU
University, Czech Republic, in 2011. The goal of the dataset
was to have a large capture of real botnet traffic mixed with
normal traffic and background". This dataset is netflow data in
CSV and TSV format)

csr.lanl.gov/data/2017.html

(a dataset of (some) network and computer (host) events
collected from the Los Alamos National Laboratory enterprise
network)

log-sharing.dreamhosters.com

(multiple log samples from various security and network
devices and applications, mostly unmodified and all collected
from real systems.

vast challenge datasets (www.vacommunity.org)

(various synthetic datasets in a number of formats)

INPUT : L, a sample of logfile records
 most, a fuzzy set representing acceptable ratio for generalisation
 α, a membership threshold
OUTPUT :outputSet, a minimal set of regexp sequences that accepts the logfile records

outputSet = empty set
FOREACH record, r

 FOREACH pattern sequence, S ∈ outputSet
 IF minLab(r) generalises S at (α, most)
 OR S generalises minLab(r) at (α, most)
 THEN
 replace S in outputSet by LUB(minLab(r),S)
 ENDIF
 ENDFOR
ENDFOR
IF r did not cause any change to outputSet
 add minLab(r) to outputSet
ENDIF
RETURN outputSet

Fig. 3. Algorithm to create general patterns from samples of logfile records

These logfiles vary in size from a few thousand to several
million records; for test purposes below we use the first 500
records to create logfile parsers and (up to) 100K records to
test the categorisation performance.

Results are given for alpha = 1, 0.8 and 0.6 to illustrate the
balance between accuracy in recognising logfile types, and
compactness of the derived regular expression patterns.

Table V shows the categorisation performance of the
parsers. The logfiles are completely unchanged from the
downloaded versions, some of which are not cleaned at all -
hence there are some unreadable records containing control /
extended ASCII characters as indicated in the final column.
Execution times are of the order of a few seconds on a mid-
range laptop (exact times are not given - clearly, with any
experimental software, run time can be improved significantly
by re-engineering code and using faster hardware).

Table VI gives the number of patterns for each record
length at α = 1 and 0.8. The bluecoat data in particular shows
various record lengths. This is due to the presence of records
periodically giving timestamped information on software
versions and monitor configuration - in particular, switching
between records of length 23 and 26. It is noticeable that the
number of patterns from records of length 23 and 26 is reduced
significantly by allowing greater generalisation of fields (i.e.
using alpha of 0.8 instead of 1, see algorithm in Fig 3). A

b
l
u
e
c
o
a
t

n
e
t
f
l
o
w
2
-

C
S
V

n
e
t
f
l
o
w
1
-

T
S
V

I
P
L
o
g

s
t
r
a
t
o
s
p
h

e
r
e

s
n
o
r
t

c
i
s
c
o

F
i
r
e
w
a
l
l

D
H
C
P

R
e
j
e
c
t
e
d

r
e
a
d

F
a
i
l
u
r
e
s

firewall_log_1.csv 0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

90190
95623
95650

0
0
0

9810
4377
4350

0
0
0

firewall_log_4.csv 0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

99924
100000
100000

0
0
0

76
0
0

0
0
0

IPLog3.5.csv 0
0
0

0
0
0

0
0
0

100000
100000
100000

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

bluecoat1.log 94150
95380
95385

0
0
0

199
199
199

0
0
0

0
0
0

0
0
0

0
0
0

7
7
7

5830
4600
4595

13
13
13

stratospher.log 0
0
0

0
0
0

0
0
0

0
0
0

46689 0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

DhcpSrvLog-Sun.log 0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

10492
10492
10492

195
195
195

0
0
0

alertcsv.csv 0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

99923
99923
99923

0
0
0

0
0
0

77
77
77

0
0
0

capture20110818.tsv 0
0
0

0
0
0

99946
100000
100000

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

54
0
0

0
0
0

capture20110810
.binetflow

0
0
0

99646
100000
100000

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

4
0
0

0
0
0

TABLE V. NUMBER OF RECORDS CATEGORISED BY EACH LOGFILE PARSER. EACH CELL SHOWS A VALUE (FROM TOP) WITH α=1, 0.8 AND 0.6 AS SHOWN IN
THE ALGORITHM (FIG 3). TESTS ARE OVER THE FIRST 100000 RECORDS READ, EXCEPT IN CASES WHERE THE FILE CONTAINS FEWER THAN 100000 RECORDS

TABLE VI. LENGTH (L) AND NUMBER OF PATTERNS (C) FOR EACH
LOGFILE TYPE AT α=1, 0.8.

possible extension to this work would look at the sequencing of
records with different lengths (for example using the
mechanism described in [9])

The Cisco firewall data (first row of Table V) shows the
poorest level of performance because this particular log
contains a number of records in a format not seen in the data
used to create the parser patterns.

Importantly, the rejected data from each logfile source is
saved and can be used to suggest new or updated versions of
the parser patterns. This process can be fully-automated or part
of a collaborative system in which the human analyst can judge
whether or not the suggested change is reasonable. For
example, the automatic analysis of the rejected Cisco firewall
records shows a significant number matching the alternative
pattern depicted in Table VII. An analyst can decide whether
this is a valid pattern and should be identified as an addition to
the parser, i.e. whether it should be combined with the existing
pattern by generalising the URIHOST tag to an alternative tag
matching URIHOST or MAC3

VI. RELATED WORK
Many studies have focused on the problem of learning

regular expressions from data, and the related problem of
learning regular expressions to match sequences.

 The difficulty of designing good regular expressions is
illustrated in [10] where regular expression design was
described as a "highly non-trivial task" and used to illustrate
the (potential) benefit of crowd sourcing as a solution. In a
similar vein, [11]designed a system to generate test strings for
regular expressions, focusing on areas that typically cause
problems in regexp design and using a number of heuristics to
create strings that (semantically) should not be accepted but
would match the given definitions. They found more than 260
errors in a set of almost 700 regular expressions taken from a
standard regular expression library (regexlib.com), including a
regexp for a floating point number that would accept a single
decimal point with no digits.

Many studies have focused on the problem of learning
regular expressions from data, although this is an NP-complete
task in principle. Regular expressions are frequently used for
sequence extraction in DNA - see for example the work of [12]
which outlines an approximate matching mechanism for
regular expressions involving alternation (the | symbol).

Another application of regular expressions to sequences
[13] examined a regular-expression based approach to
identifying sequences of events (in testing GUI) and found it to
give comparable performance to an SVM-based classifier.

We are not aware of any similar work in the area of logfile
analysis.

VII. SUMMARY
There is immense scope for the use of collaborative (human

+ machine) intelligent systems in monitoring and analysing
logfile data to maintain security of networked systems. We
have outlined a new approach to the first stage of the
cybersecurity workflow, gathering the low level data from
logs, prior to its analysis and transformation into event
sequences and higher-level structures. The approach follows
the collaborative intelligence paradigm, in which the machine
does the initial work and human judgment / insight can refine
the results.

 Further work is underway to improve the mechanism for
graded generalisation and to develop an interface so that this
tool can be used in practical cyber-defence applications.

REFERENCES

[1] T. P. Martin, "The X-mu representation of fuzzy sets," Soft Computing,
vol. 19, pp. 1497 - 1509, 2014/05/31 2015.

[2] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical
Foundations: Springer, 1998.

[3] U. Priss, "Formal Concept Analysis in Information Science," Ann Rev of
Information Science and Technology, vol. 40, pp. 521 - 543, 2006.

[4] R. Belohlavek, V. Sklenar, and J. Zacpal, "Crisply Generated Fuzzy
Concepts," Lecture Notes in Computer Science, pp. 269-284, 2005.

[5] T. P. Martin, "Change mining in evolving fuzzy concept lattices,"
Evolving Systems, vol. 5, pp. 259-274, 2014/06/21 2014.

[6] T. P. Martin, "Representation of Fuzzy Concept Lattices," in UK
Computational Intelligence (UKCI), 2015, Exeter, UK, 2015, pp. 1-8.

[7] T. P. Martin, Y. Shen, and B. Azvine, "Incremental Evolution of Fuzzy
Grammar Fragments to Enhance Instance Matching and Text Mining,"
IEEE Transactions on Fuzzy Systems, vol. 16, pp. 1425-1438, 2008.

[8] T. P. Martin, "The X-mu representation of fuzzy sets," Soft Computing,
vol. 19, pp. 1497-1509, 2015.

[9] T. P. Martin and B. Azvine, "A Virtual Machine for Event Sequence
Identification using Fuzzy Tolerance," in IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), Vancouver 2016, pp. 1080-1087.

[10] R. A. Cochran, L. D’Antoni, B. Livshits, D. Molnar, and M. Veanes,
"Program Boosting: Program Synthesis via Crowd-Sourcing," presented
at the Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Mumbai, India,
2015.

[11] E. Larson and A. Kirk, "Generating Evil Test Strings for Regular
Expressions," 2016 9th Ieee International Conference on Software
Testing, Verification and Validation (Icst), pp. 309-319, 2016.

[12] P. Powell, "RESIM-An Algorithm for Finding the Similarity of Regular
Expression Based Patterns and Strings," Asilomar Conference on
Signals Systems and Computers, p. 283, 1992.v

[13] R. Gove and J. Faytong, Identifying Infeasible GUI Test Cases Using
Support Vector Machines and Induced Grammars, 2011.

TIMESTAMP_ISO8601 BASE16FLOAT URIPROTO URIHOST NOTSPACE …
TIMESTAMP_ISO8601 BASE16FLOAT SYSLOGPROG MAC3 NOTSPACE …

 match match Generalise Replace/combine match …
2011-08-18 10:19:17.534 0.000 IPX/SPX 0:15:17:2c:e5:2d -> …

TABLE VII (PART) RESULT OF APPROXIMATE MATCHING REJECTED RECORD (SHOWN IN THE BOTTOM ROW) AGAINST THE NEAREST MATCHING PATTERN IN
THE PARSER (TOP ROW). THE SECOND ROW IS THE MINIMAL LABELLING OF THE RECORD, AND THE THIRD ROW HIGHLIGHTS WHERE THE LABELS MATCH OR THE

PATTERN LABELS NEED TO BE CHANGED IN ORDER TO ACCEPT THE RECORD

