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Abstract—During the last years we have developed advanced
tools for tuning fuzzy logic programs devoted to facilitate the
selection of the more appropriate set of weights and fuzzy con-
nectives used in programs rules. Designing accurate techniques
for automating these tasks is very useful for programmers,
even when they are time consuming. In order to increase its
performance, in this paper we make use of powerful and well-
known SAT/SMT solvers for improving our original approaches.
Inspired by some previous experiences we have acquired in this
setting, whose impact is growing in many modern software tools,
we show some representative experiments (related to circuit
validation and linear regression) and benchmarks which illus-
trate the significant advantages enjoyed by the new empowered
method.

Index Terms—Fuzzy Logic Programming, SAT/SMT, Tuning,
Software for Soft Computing

I. INTRODUCTION

Research on SAT (Boolean Satisfiability) and SMT (Satisfi-
ability Modulo Theories) [9], [17] represents a successful and
large tradition in the development of highly efficient automatic
theorem provers for classic logic with a wide range of
practical applications. There also exist attempts for covering
fuzzy logics, as occurs with the approaches presented in [7],
[30]. Moreover, if automatic theorem proving supposes both
a starting point for the foundations of logic programming as
well as one of its important application fields [16], [26], in [6],
[10] we showed some preliminary guidelines about how fuzzy
logic programming can face the automatic proving of fuzzy
theorems by making use of the ‘’Fuzzy LOgic Programming
Environment for Research”, FLOPER in brief, developed
in our research group.1. We have successfully used this tool
for implementing real soft computing applications connecting
with cloud computing [27]–[29], the semantic web [2]–[5]
and, more recently, neural networks [21].

One step beyond, the main goal of the present paper is
to make use of SMT solvers for reinforcing some tuning
techniques we have recently implemented on this platform
[20], [22]. The main reason for implementing our approach
with MALP is the fact that, to the best of our knowledge,
this is the only fuzzy logic programming language for which
there exist tuning techniques already available.2

1The online version of the system is available at
http://dectau.uclm.es/malp/sandbox

2See [1] –as well as [25]– for analyzing a wide list of modern fuzzy
software systems including the FLOPER system.

In this paper we focus on the so-called multi-adjoint
logic programming approach, MALP in brief [14], [19],
a powerful and promising approach in the area of fuzzy
logic programming. In this framework, a program is a set
of “weighted” rules whose bodies contain atoms connected
by fuzzy connectives defined on a concrete lattice of truth
degrees. Consider, for instance, the following MALP rule:
“good(X) ←prod @aver(nice(X), cheap(X)) with 0.8”,
where aggregator @aver is typically defined as
@aver(x1, x2) , (x1 + x2)/2. Therefore, the rule specifies
that X is good—with a truth degree of 0.8— whenever X
be nice and cheap enough. Assuming that X is nice and
cheap with, e.g., truth degrees n and c, respectively, then X
is good with a truth degree of 0.8 ∗ ((n+ c)/2).

To solve a MALP goal, i.e, a query to the system plus a
substitution (initially the empty substitution, denoted by id),
a generalization of the classical modus ponens inference rule
called admissible steps (→AS), are systematically applied on
atoms in a similar way to classical resolution steps in pure
logic programming, thus returning a state composed by a
computed substitution together with an expression where all
atoms have been exploited. Next, this expression is interpreted
under a given lattice by means of interpretive steps (→IS),
hence returning a pair 〈truth degree; substitution〉, called fuzzy
computed answer (fca), which is the fuzzy counterpart of
the classical notion of computed answer used in pure logic
programming (see [14], [19] for details).

When specifying a MALP program, it might sometimes be
difficult to assign weights—truth degrees—to program rules,
as well as to determine the right connectives. In order to
overcome this drawback, in [20] we have recently introduced
a symbolic extension of MALP programs called symbolic
multi-adjoint logic programming, sMALP in brief. Here, we
can write rules containing symbolic weights and symbolic
connectives, i.e., truth degrees and operators –denoted as
“#label”– which are not defined on its associated multi-
adjoint lattice. In order to evaluate these programs, we
introduce a symbolic operational semantics that delays the
evaluation of symbolic expressions. Therefore, a symbolic
fuzzy computed answer –called sfca– could now include
symbolic (unknown) truth values and connectives.

The approach is correct in the sense that using the symbolic
semantics and then replacing the unknown values and connec-
tives by concrete ones gives the same result as replacing these
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Figure 1. Screenshot of the online tool available at http://dectau.uclm.es/malp/sandbox.

values and connectives in the original sMALP program and,
then, applying the concrete semantics on the resulting MALP
program. sMALP programs can be used to tune a program
w.r.t. a given set of test cases, thus easing what is considered
the most difficult part of the process: the specification of the
right weights and connectives for each rule.

The SAT/SMT-based tuning technique we introduce in
this paper makes use of one of the most popular solvers
nowadays, i.e. Z3 [8], [23], according to the following three
main tasks:

1) Firstly, the lattice of truth degrees of the sMALP
program to be tuned is translated to Z3 syntax.

2) Next, the set of sfca’s obtained after partially evaluating
the test cases introduced a priori by the user are also
automatically coded as a Z3 formula.

3) Finally, the Z3 solver is launched in order to minimize
the deviation of the solutions w.r.t. the set of test cases
while checking the satisfiability of such formula.

The structure of this paper is as follows. In Section II we
recast from [20], [22] the original tuning method we have
recently introduced in the FLOPER system. While Section
III explains the new SAT/SMT-based reinforcement applied
on such technique, Section IV illustrates the benefits of using
the empowered tuning process focusing on two particular
domains (circuit validation and linear regression). Finally, in
Section V we show our conclusions and provide some lines
for future research.

II. TUNING SYMBOLIC FUZZY LOGIC PROGRAMS

Let’s now summarize the automated technique for tuning
multi-adjoint logic programs using sMALP programs that we
initially presented in [20] and next implemented in our online
tool in [22]. We firstly introduce the running example of this
section.

Example 1: At the bottom of Figure 1, we specify the lattice
([0, 1],≤) loaded by default in our freely accessible tool. In
general, lattices are described by means of a set of PROLOG
clauses where the definition of the following predicates is
mandatory: member/1 and members/1, that identify the
elements of the lattice; bot/1 and top/1 stand for the
infimum and supremum elements of the lattice; and finally
leq/2, that implements the ordering relation. Connectives
are defined as predicates whose meaning is given by a number
of clauses. The name of a predicate has the form and_label,
or_label or agr_label depending on whether it implements
a conjunction, a disjunction or an aggregator, where label is
an identifier of that particular connective. The arity of the
predicate is n+ 1, where n is the arity of the connective that
it implements, so its last parameter is a variable to be unified
with the truth value resulting of its evaluation.

Moreover, at the top of Figure 1, we can see a sMALP
program loaded in the system. Here, we consider a travel
guide that offers information about three restaurants, named
attica, celler and gaggan, where each one of them is featured
by three factors: the restaurant services, the quality of its food,
and the price, denoted by predicates service , food and price,
respectively. We assume that all weights can be easily ob-



tained except for the weight of the fact service(attica), which
is unknown, as expressed by the symbolic weight #s3. Since
the programmer has also some doubts on the connectives to be
used in the first rule, she introduces the symbolic disjunction
and aggregator symbols #|s1 and #@s2.

Typically, a programmer has a model in mind where some
parameters have a clear value. For instance, the truth value of
a rule might be statistically determined and, thus, its value is
easy to obtain. In other cases, though, the most appropriate
values and/or connectives depend on subjective notions and,
thus, programmers do not know how to obtain these values.
In a typical scenario, we have an extensive set of expected
computed answers (i.e., test cases), so the programmer can
follow a “try and test” strategy. Unfortunately, this is a tedious
and time consuming operation. Actually, it might even be
impractical when the program should correctly model a large
number of test cases.

The first action for initializing the tuning process
consists in introducing a set of test cases with syntax:
r → Q, where r is the desired truth degree for the
fca associated to query Q (which obviously does
not contain symbolic constants). For instance, in our
running example we can introduce the following
three test cases: 0.75 → good_restaurant(attica),
0.8 → good_restaurant(celler) and 0.9 →
good_restaurant(gaggan). Then, users simply need
to click on the Tune program button for proceeding with
the tuning process. The precision of the technique depends
on the set of symbolic substitutions considered at tuning
time. So, for assigning values to the symbolic constants,
our tool takes into account all the truth values defined on
a members/1 predicate (which in our case is declared as
members([0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1])) as
well as the set of connectives defined in the lattice associated
to the program, which in our running example coincides
with the three conjunction and disjunction connectives based
on the so-called Product, Gödel and Łukasiewicz logics.
Obviously, the larger the domain of values and connectives
is, the more precise the results are. For tuning an sMALP
program, we have implemented three methods, which exhibit
different run-times (but they obviously produce the same
outputs):

• Basic: The basic method is based on applying each sym-
bolic substitution to the original sMALP program and
then fully executing the resulting instantiated MALP pro-
grams (both the admissible and the interpretive stages).

• Symbolic: In this version, symbolic substitutions are
directly applied to sfca’s (thus, only the interpretive
stage is repeatedly executed).

• Thresholded: In this case, we consider the symbolic
algorithm improved with thresholding techniques.

The following definition formalizes the algorithms followed
by the first couple of the tuning methods just commented,
since the third one uses thresholding techniques for
prematurely disregarding computations leading to non

Figure 2. Screenshot of the online tool after completing a tuning process.

significant solutions and such improvements can be applied
to both the basic and symbolic tuning methods.

Algorithms for tuning sMALP programs
Input:an sMALP program P and a number of (expected)

test cases (Qi, 〈vi; θi〉)3, where Qi is a goal and
〈vi; θi〉 is its expected fca for i = 1, . . . , k.

Output:a symbolic substitution Θ.
Basic method:
1) Consider a finite number of possible symbolic substitu-

tions for sym(P), say Θ1, . . . ,Θn, n > 0.
2) For each j ∈ {1, . . . , n}, compute 〈Qi, θi〉 →∗ 〈vi,j ; θi〉

in PΘj , for i = 1, . . . , k.
3) Return the symbolic substitution Θj that minimizes∑k

i=1 distance(vi, vi,j).
Symbolic method:
1) For each test case (Qi, 〈vi; θi〉), compute the sfca
〈Q′i, θi〉 of 〈Qi, id〉 in P .

2) Consider a finite number of possible symbolic substitu-
tions for sym(P), say Θ1, . . . ,Θn, n > 0.

3) For each j ∈ {1, . . . , n}, compute 〈Q′iΘj , θi〉 →∗IS
〈vi,j ; θi〉, for i = 1, . . . , k.

4) Return the symbolic substitution Θj that minimizes∑k
i=1 distance(vi, vi,j).

As seen in Figure 2, the system also reports the processing
time required by each method and offers an option for
applying the best symbolic substitution to the original sMALP
program in order to show the final, tuned MALP program.

3For readability, we usually write the simplified form vi → Qi by
assuming that goal Qi is a ground goal, that is, a goal without variables
and thus, substitution θi is the identity -empty- substitution.



Example 2: In our case, the best substitution is Θ =
{#|s1/|prod,#@s2/@aver,#s3/0.3} with a deviation of
0.05. By applying the symbolic substitution, we obtain a
MALP program without symbolic constants, which can be
executed w.r.t. a goal like good_restaurant(X), thus ob-
taining the following three fca’s: <0.856, X/attica>,
<0.943, X/celler> and <0.949, X/gaggan>.

III. SAT/SMT FOR IMPROVING TUNING TECHNIQUES

Boolean satisfiability (SAT) is the problem of checking if a
propositional logic formula can ever evaluate to true [17]. Sat-
isfiability modulo theories (SMT) generalizes boolean satis-
fiability by adding equality reasoning, arithmetic, quantifiers,
and other useful first-order theories. An SMT solver is a tool
for deciding the satisfiability of formulas in these theories.
In this work, we have integrated the FLOPER system with
Z3 [23], an SMT solver from Microsoft Research, with the
aim of improving the performance of the tuning techniques
previously implemented for manipulating MALP programs.
Z3 supports the SMT-LIB [8] standard, which includes a
scripting language that defines a textual interface for SMT
solvers. In this section we describe how the MALP system
translates a tuning problem into an SMT-LIB script that Z3
can solve in order to find the best symbolic substitution for
a symbolic fuzzy logic program, given a set of test cases.
Compared with the symbolic tuning algorithm seen in the
previous section, the SMT-based method replaces steps 2), 3)
and 4), that is, the new process starts after performing the first
step which generates the set of sfca’s 〈Q′i, θi〉 of 〈Qi, id〉 in
P , being (Qi, 〈vi; θi〉) are the set of test cases.

As seen in Example 1, MALP associates to each fuzzy
program a lattice of truth degrees. In order to perform
the tuning process with Z3, it is necessary to translate the
lattice associated with the program to SMT-LIB function
declarations. Note that the predicate members/1 is no longer
necessary since Z3 will search for the most appropriate values
from the underlying domain.

After partially executing the goal of each test case in the
FLOPER environment, the resulting sMALP expressions
not containing atoms are also translated to SMT-LIB, storing
in a variable deviation! the sum of the distances between
the sfca’s and the expected truth degrees of the corresponding
test cases, thus minimizing this variable in Z3, as follows:

(assert
(= deviation!
(+
(lat!distance td_1 expr_1)
(lat!distance td_2 expr_2)
...
(lat!distance td_n expr_n))))

(minimize deviation!)
(check-sat)
(get-model)

Example 3: The tuning process with Z3 shown in Fig-
ure 4 produces the following SMT-LIB script, where the
symbolic connectives #|s1 and #@s2 are represented as
strings sym!or!2!s1 and sym!agr!2!s2, respectively,

Figure 3. Lattice ([0, 1],≤) in SMT-LIB.

and the symbolic value #s3 is represented as a real number
sym!td!0!s3:

(declare-const sym!or!2!s1 String)
(declare-const sym!agr!2!s2 String)
(declare-const sym!td!0!s3 Real)
(declare-const deviation! Real)
(assert (dom!sym!or!2 sym!or!2!s1))
(assert (dom!sym!agr!2 sym!agr!2!s2))
(assert (lat!member sym!td!0!s3))
(assert (= deviation! (+
(lat!distance 0.85
(call!sym!or!2 sym!or!2!s1 0.65
(call!sym!agr!2 sym!agr!2!s2 0.9 sym!td!0!s3)))

(lat!distance 0.9
(call!sym!or!2 sym!or!2!s1 0.81
(call!sym!agr!2 sym!agr!2!s2 0.7 0.7)))

(lat!distance 0.95
(call!sym!or!2 sym!or!2!s1 0.49
(call!sym!agr!2 sym!agr!2!s2 0.8 1))))))



Figure 4. Screenshot of the online tool after completing a tuning process
with Z3.

(minimize deviation!)
(check-sat)
(get-model)

The Z3 system produces the following output, whose
model is interpreted by the FLOPER environment
in order to generate the symbolic substitution Θ =
{#|s1/|prod,#@s2/@aver,#s3/0.2428571428} with a devi-
ation of 0.044:

sat
(model
(define-fun sym!or!2!s1 () String "or_prod")
(define-fun sym!td!0!s3 () Real 0.2428571428?)
(define-fun deviation! () Real 0.044)
(define-fun sym!agr!2!s2 () String "agr_aver"))

IV. EXAMPLES

In this section we illustrate the use and benefits achieved
on the afore mentioned SAT/SMT-based symbolic tuning
technique by focusing on two well-known scenarios (circuit
validation and linear regression), but it is important to indicate
that the technique can be applied to any real world software
application coded in MALP with the FLOPER environment.

A. Combinational equivalence checking

The problem of checking the equivalence of combinational
circuits is an essential circuit design task. The simplest form
of equivalence checking addresses combinational circuits. Let
CA and CB denote two combinational circuits, both with
inputs x1, . . . , xn and both with m outputs, CA with outputs
y1, . . . , ym and CB with outputs w1, . . . , wm. The function
implemented by each one of the two circuits is defined as fol-
lows: fA : {0, 1}n → {0, 1}m, and fB : {0, 1}n → {0, 1}m.

Let x ∈ {0, 1}n and define fA(x) = (fA,1(x), . . . , fA,m(x))
and fB(x) = (fB,1(x), . . . , fB,m(x)). The two circuits are
not equivalent if the following condition holds:

∃x∈{0,1}n ∃1≤i≤m fA,i(x) 6= fB,i(x)

which can be represented as the following satisfiability prob-
lem [18]:

n∨
i=1

(fA,i(x)⊕ fB,i(x)) = 1

The resulting satisfiability problem is illustrated in Figure
5, and it is referred to as a miter [11]. From these results,
it is easy to encode in CNF the problem of verifying the
equivalence of two combinational circuits and, therefore, it is
capable of being tuned as a fuzzy logic program.

x1 . . . xn

...

...

...

...

...

y1

ym

w1

wm

CA

CB

Figure 5. Equivalence Checking Miter

We will encode the combinational circuits in MALP as
predicates of arity 2, where the first argument is a list con-
taining the inputs, and the second one is a list containing the
outputs. To check the equivalence between two circuits, we
will implement the miter represented in Figure 5 as a predicate
miter/3 that takes two circuits (two atoms representing the
name of the predicate of each circuit) and an input list, and
checks if any of the outputs of both circuits is different for
the input provided. miter/3 is evaluated with a truth degree
of false when all outputs are equal for the given input, or
with a truth degree of true in any other case.

zip_xor([],[],[]).
zip_xor([X|Xs],[Y|Ys],[@xor(X,Y)|Zs]) :-
zip_xor(Xs,Ys,Zs).

fold_or([],false).
fold_or([X|Xs],’|’(X,Ys)) :-
fold_or(Xs,Ys).

miter(Ca,Cb,Xs) :-
call(Ca,Xs,Ys),
call(Cb,Xs,Ws),
zip_xor(Ys,Ws,XOR),
fold_or(XOR,OR),
OR.

In order to check the equivalence between two circuits CA

and CB with n inputs using the tuning technique, the system
only needs a test case with the following shape:

true -> miter(CA, CB, [#x1, ..., #xm]).
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Figure 6. Two combinational circuits implementing the same function.

This test case tells the system that we want to find a
combination of inputs (x1, . . . , xm) for CA and CB such that
the output of the miter/3 predicate is true, that is, such
that some of the outputs yi of both circuits are different. If the
circuits are equivalent, the system will not be able to find such
assignment of values, and it will return an arbitrary symbolic
substitution with a deviation of 1.0. Otherwise, it will return a
symbolic substitution for which one of the outputs is different
in both circuits, with a deviation of 0.0.

Example 4: Let a/2 and b/2 be the MALP predicates
representing the combinational circuits shown in Figure 6.

a([X0,X1,X2,X3], [Y0,Y1]) :-
truth_degree(
@not(’&’(X0,
@not(’&’(@not(’&’(X1,X2)), @not(’&’(X2,X3))

)))), Y0),
truth_degree(@not(’&’(X2,X3)), Y1).

b([X0,X1,X2,X3], [Y0,Y1]) :-
truth_degree(
@not(’&’(X0,
’|’(
’&’(X1,X2), ’&’(X2,X3)))), Y0),

truth_degree(@not(’&’(’&’(X2,X3),X3)), Y1).

We run the tuning process with this program and with the
following test case:

true -> miter(a, b, [#x0 , #x1 , #x2 , #x3]).

Table I
EXECUTION TIME (IN MILLISECONDS) OF THE TUNING ALGORITHMS IN
MALP AND Z3 FOR CHECKING THE EQUIVALENCE OF COMBINATIONAL

CIRCUITS BASED ON NUMBER OF INPUTS.

Inputs MALP Z3
4 45 36
5 930 37
6 2260 40
7 5670 41
8 12200 42
9 29340 43

10 65480 45

The MALP environment gives the following output, which
demonstrates that the circuits are not equivalent, since the
deviation of the best symbolic substitution found is 1.0:

{#x0/false, #x1/false, #x2/false, #x3/false}
deviation: 1.0

Example 5: Let us now introduce a third combinational
circuit, not equivalent to the previous two ones, represented
in MALP by the following predicate c/2:

c([X0,X1,X2,X3], [Y0,Y1]) :-
truth_degree(@not(’&’(X0 ,X1)), Y0),
truth_degree(@not(’|’(X2 ,X3)), Y1).

We run the tuning process to check the equivalence of the
circuits a/2 and c/2. In this case, the system finds a
combination of the inputs, (0, 0, 0, 1), for which both circuits
produce different outputs, since the deviation is 0.0:

{#x0/false ,#x1/false ,#x2/false ,#x3/true}
deviation: 0.0

For this combination, circuit a/2 produces the outputs (1, 1),
while circuit c/2 produces the outputs (1, 0).

Table I summarizes the averages of execution time in mil-
liseconds4 associated to the tuning algorithms when checking
the equivalence of several combinational circuits by varying
the number of inputs. It is worth mentioning that, apart from
the fact that the tuning method based on Z3 is always better
that the one not using it, as wanted, it also slightly increases
its execution time when the number of inputs grow, while the
MALP method (not using Z3) largely reduces its performance
in an exponential way w.r.t. the number of input signals.

B. Linear regression

Linear regression is a linear approach for modelling the
relationship between a dependent variable and one or more
explanatory variables. Data consist of n observations on a de-
pendent variable Y and p explanatory variables, X1, . . . , Xp.
The relationship between Y an X1, . . . , Xp is formulated as
a linear model:

Y = β0 + β1X1 + · · ·+ βpXp + ε (1)

4Each cell contains the average after 100 runs using a desktop computer
equipped with an AMD Opteron™ processor @ 1593 MHz and 2.00 GB
RAM.



Table II
DATA SET OF EXAMPLE 6.

Temp. Noise
20.00 88.59
16.00 71.59
19.79 93.30
18.39 84.30
17.10 80.59

Temp. Noise
15.50 75.19
14.69 69.69
17.10 82.00
15.39 69.40
16.20 83.30

Temp. Noise
15.00 79.59
17.20 82.59
16.00 80.59
17.00 83.50
14.39 76.30

where β0, β1, . . . , βp are constants referred to as the regres-
sion coefficients and ε is a random disturbance [12].

We will express the regression model as a MALP program
with a single rule that defines Equation 1 by combining the
connectives |̇add(x, y) = x + y and &̇prod(x, y) = xy of the
real lattice, where parameters βi are symbolic constants:

y(X1,...,Xp) <- #b0 |add (#b1 &prod X1) |add

... |add (#bp &prod Xp).

This predicate takes p explanatory variables as inputs and
is evaluated with a truth degree which is a linear combination
of these inputs. To find the parameters βi that best fit the
data, we will tune this program by entering a test case for
each sample in the data set, where the value of the dependent
variable will be the expected truth degree of the test case.

Example 6: A popular, classical study described in [24],
measured the frequency (the number of wing vibrations per
second) of chirps made by a ground cricket, at various ground
temperatures. The resulting data is shown in Table II, where
the first column represents the temperature in Celsius scale,
and the second one represents the noise in decibels. We want
to analyse the relationship between the temperature and the
noise level generated by the crickets. Since the data set has
only one explanatory variable, i.e. temperature, the program
will have two symbolic constants:

chirps(Temp) <- #b0 |add (#b1 &prod Temp).

Each sample of the data set shown in Table II becomes a test
case, thus obtaining the following set of test cases:
88.6 -> chirps(20.0). 71.6 -> chirps(16.0).
93.3 -> chirps(19.8). 84.3 -> chirps(18.4).
80.6 -> chirps(17.1). 75.2 -> chirps(15.5).
69.7 -> chirps(14.7). 82.0 -> chirps(17.1).
69.4 -> chirps(15.4). 83.3 -> chirps(16.2).
79.6 -> chirps(15.0). 82.6 -> chirps(17.2).
80.6 -> chirps(16.0). 83.5 -> chirps(17.0).
76.3 -> chirps(14.4).

After executing the tuning process, the MALP environment
provides the following output:
{#b0/42.92, #b1/2.28}
deviation: 43.23

Figure 7 shows the linear regression model y = 42.92+2.28x
obtained by the MALP tuning technique using Z3.

Table III summarizes the averages of execution time5 of
the tuning algorithm with Z3, in seconds, when fitting linear

5Each cell contains the average after 100 runs using a desktop computer
equipped with an AMD Opteron™ processor @ 1593 MHz and 2.00 GB
RAM.
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Figure 7. Linear regression model of Example 6.

Table III
EXECUTION TIME (IN SECONDS) OF THE TUNING ALGORITHM IN Z3 FOR

LINEAR REGRESSION BASED ON THE NUMBER OF EXPLANATORY
VARIABLES AND TEST CASES.

Explanatory variables
1 2 3 4 5

Te
st

ca
se

s

20 0.35 1.55 6.27 11.38 33.48
30 2.22 6.45 27.05 49.40 72.34
40 6.01 25.32 107.68 165.52 378.15
50 14.04 43.60 184.35 583.45 1547.56
60 29.80 150.85 619.22 1094.20 3319.37
70 40.30 213.32 794.55 2452.84 7532.63
80 51.08 311.07 1058.35 4261.00 17317.25
90 106.15 625.05 1658.60 7688.81 40313.90

100 215.10 874.47 3189.72 11204.84 85873.49

regression models by varying the number of explanatory
variables and the number of test cases.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have collected from [20], [22] our initial
formulation of a symbolic extension of fuzzy logic programs
belonging to the so-called multi-adjoint logic programming
approach, as well as some tuning techniques useful for
tailoring sMALP programs (also providing an online tool
freely available via URL http://dectau.uclm.es/
malp/sandbox). Next, inspired by our previous works [10]
and [6], where we proposed two techniques for evaluating
propositional fuzzy formulae with the FLOPER system in
an alternative way than fuzzy SAT/SMT methods, we have
focused on improving the former tuning techniques with the
use of powerful SAT/SMT solvers.

Even when embedding the use of such solvers inside the
core of our initial symbolic tuning algorithm has required
some translation procedures for adapting the syntax of several
MALP components (lattice of truth degrees, symbolic fuzzy
computed answers, etc.) to the Z3 notation, the resulting
performance of the new method has been highly improved.



Our benchmarks have revealed significant advantages in sev-
eral aspects and, what is more important, although we have
focused only on two well-known scenarios (circuit validation
and linear regression) the technique is applicable to any other
real world application coded in MALP with FLOPER.

We are nowadays facing more involved non-linear re-
gression problems [13]. Other pending task for the near
future consists in exploring the synergies between our tuning
approach and machine learning strategies and, since in [15]
we have designed a new fuzzy language extending MALP
with similarity relations, we also plan to enrich the present
implementation of the SAT/SMT-based symbolic tuning tech-
nique to cope with FASILL programs managing similarities.
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