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Abstract—A new approach to the use of fuzzy terms in analytic
functions which constitute a standard part of the SQL syntax
is proposed. The motivation is that though extensions of the
SQL queries including linguistic (fuzzy) terms have been widely
used as they have made it possible to better and more directly
represent complex requirements of a human user searching a
relational database, notably for generating linguistic summaries,
there has been little attention paid so far to the use of analytic
functions in this context. Analytic functions can provide for an
attractive way of analysing data in a relational database and may
be possibly adopted as a tool to generate even more sophisticated
linguistic summaries. In this paper we study a basic structure
of standard (crisp) analytic functions use and point out some
opportunities to extend it using linguistic terms. A starting point
for our discussion is the mechanism of grouping rows in SQL as
it is one of the most important components of the application of
analytic functions.

Index Terms—flexible fuzzy queries, analytic functions, group-
ing data, linguistic data summaries

I. INTRODUCTION

Flexible fuzzy queries were conceived as an attractive exten-
sion to standard data retrieval solutions at the very early stages
of fuzzy set theory and fuzzy logic development. In particular,
many interesting extensions to the SQL language have been
proposed; cf., e.g., [1]–[8]. The SQL’s SELECT instruction
and its WHERE clause which contains a specification of the
criteria that should be met by the data sought were of primary
interest in these approaches. This is due to the fact that a
database query may be most often identified with conditions
that the data sought should satisfy. Such conditions may have a
compound structure and comprise multiple atomic conditions
imposing some constraints on the values of the attributes of
the data sought. The essence of the flexible fuzzy approach to
querying consists in modeling these constraints via fuzzy sets
defined in the domains of the respective attributes. Another
interesting feature of the proposed fuzzy extensions to regular
SQL queries is the usage of linguistic quantifiers such as
“most”, “almost all” etc. as operators making it possible to
combine conditions of a query in a more flexible, human-
consistent way.

Extensions to the other clauses of the SELECT instruction
have been also addressed even if to a slightly lesser extent.
In this paper we point out the potential of such extensions to

the analytic functions which are present in the SQL standard
for ca. 20 years. We look at particular components of the
analytic clause, a part of the SELECT instruction hosting an
analytic function, and check how linguistic terms may make
it more human consistent, i.e, more in line with reasoning
and perception of a human user. We start with the standard
GROUP BY clause of the SELECT instruction as it has its
counterpart in the analytic clause and poses similar challenges
for a flexible interpretation. Additionally, this clause has been
already pointed out in the literature [9] as a promising tool in
the data summarization process which, from our perspective,
is closely related to the flexible fuzzy querying (cf., e.g.,
[10]). Then, we discuss particular components of the analytic
clause showing some examples and proposing computational
background of the proposed extended semantics of this clause.
Our long term goal is to adopt this clause as a part of the
authors’ linguistic summaries of data [11]–[13] paradigm, in
particular in the interactive, protoform based, mechanism of
summaries generation.

In Section II we briefly remind the concept of a flexible
fuzzy query against a relational database. Then, in Section
III, we introduce a unified approach to the modeling of a
fuzzy version of the GROUP BY clause and standard aggregate
functions. Section IV is the core of this paper, discussing
possible direction of the “fuzzification” of the analytic clause.
We conclude with Section V. Wherever we refer to the syntax
of SQL its Oracle™ variant is assumed.

II. THE CONCEPT OF A FLEXIBLE FUZZY QUERY - A BRIEF
REMINDER

Flexible queries are meant to provide for a more comfort-
able interaction of a human user with a database management
system responsible for data retrieval. An important aspect of
securing such a comfortable interaction is to provide a support
for translating a query, which is conceived by a human user
and best expressed using natural language, into a machine
executable formalism such as, e.g., SQL. The flexible fuzzy
queries provide first of all for a convenient translation of
linguistic terms expressing imprecise values, relations and
quantifications using the concept of a fuzzy set.
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In the context of this paper it will be instructive to consider
flexible fuzzy querying in the context of an interface support-
ing an extended version of SQL as proposed, e.g., by Kacprzyk
and Zadrożny [14], [15] and Bosc et al. [16]. Basically, a
traditional querying language is there extended to support
linguistic terms in queries exemplified by fuzzy values like
“young” and fuzzy relations (fuzzy comparison operators) like
“much greater than” in the following SQL query (it is assumed
that a dictionary of such linguistic terms is maintained for the
user [17]):

SELECT *
FROM emp
WHERE
age IS young AND
salary IS much greater than USD 50,000

The matching of a database table row against such a query
is meant to be not a binary notion but has a gradual character
and is identified with the membership of data to respective
fuzzy sets, modeling parts of a query condition. For example,
an employee represented by a row in the emp table matches
the above query to a degree which is the minimum (operator
usually assumed in fuzzy logic to model the conjunction)
of the matching degrees of this employee against the condi-
tions age IS young and salary IS much greater
than USD 50,000 which are, in turn, computed as the
membership degree of the age of this employee to a fuzzy
set representing the term young and the membership degree
of the salary of this employee to a fuzzy set representing
the term much greater than USD 50,000,00. The
latter can alternatively be computed as the membership degree
of a pair (salary, 50000) to a fuzzy relation much
greater than.

Such a simple and straightforward extension of SQL to cover
linguistic terms, represented by fuzzy sets, has been further
extended in various directions, notably including queries with
linguistic quantifiers [2], [3], [18] such as “most”, “almost all”,
“much more than a half”, etc. Linguistic quantifiers may be
seen in this context as playing the role of flexible aggregation
operators, acting upon satisfaction degrees of not all query
conditions but, for instance, of most conditions.

III. AGGREGATION IN THE FUZZIFIED GROUP BY CLAUSE

The GROUP BY clause is an important part of the SQL
SELECT instruction. Its basic syntax has the following form

GROUP BY grouping-expression

and its effect is the grouping of the rows of a given table
into sets of rows possessing the same value of the grouping-
expression. Actually, a comma separated list of expressions
may be employed instead of just one but for our purposes it
will suffice to consider the above mentioned simplified version
of the SQL syntax.

In the standard SQL, grouping expressions are usually of a
scalar (discrete) value. For example, one may want to group
hotels according to their city address or to group employees

according to the department they work in. This may be equated
to forming a partition of rows so as the pairs of clusters
(groups) are disjoint and together cover the whole set of
rows. Thus, a motivation similar to the one laying ground
for fuzzy clustering may be adopted to justify the need for
the fuzzification of the GROUP BY clause. Namely, one may
need to group the rows but it is possible and natural for some
rows to belong simultaneously to different groups, usually to
a varying degree. For example, one may group hotel rooms
according to their price matching with linguistic terms such
as, e.g., “cheap”, “middle-priced”, “expensive”. Then, a room
may belong to cheap ones to some degree but at the same
time possibly it belongs also to the group of the medium
priced rooms to another degree. Similar examples for the
employees may group them according to their salary matching
various, linguistically expressed, levels (e.g., “low”, “average”,
“high”, “very high”) or according to their age (“young”,
“middle-aged”, “old”). These examples provide for another
justification to “fuzzify” the GROUP BY clause. Namely, the
grouping of rows is often especially attractive with respect to
the continuous attributes (columns) such as price, salary,
age. However, most often it would be impractical to directly
group rows in the standard way according to such attributes
values as the resulting groups would be often small in size
or even singletons. This of course depends on the actual
distribution of given column values in the table. For example,
if there is a rule that there are only, e.g., 5 distinct levels of
the salaries in a company then direct grouping with respect to
this attribute may make sense. Anyway, grouping rows with
respect to fuzzy (linguistic) terms seems to be a solution in a
more general case of continuous attributes.

The GROUP BY clause is attractive as it provides for a
different perspective on data gathered in a given table what
obtains via the grouping itself and via applying aggregate
functions to particular groups of rows. Let us consider a
following example of the “crisp” SQL query involving the
GROUP BY clause:

SELECT depno, COUNT(*)

FROM emp (1)
GROUP BY depno

This query, even if it gets data from the emp table containing
data on the employees of a company, actually provides the user
with information on departments which these employees work
in. It is worth noticing that this information on departments
is not, and should not be, represented directly in the dept
table which usually accompanies the emp table in a company’s
database and contains basic information on departments such
as the name, contact info etc.

A query shown in (1) tells how many employees work in
each department, thanks to the use of the aggregate function
COUNT in the SELECT clause. As mentioned earlier it may be
very useful to apply in such a query some fuzzy (linguistically
expressed) criteria of grouping rows. For example, one may



be interested in:
What is the count or average salary in, e.g., three
age groups comprising young, middle-aged and old
employees.

(2)

Or, what is the number of 5 star hotels in small, medium size
and large cities in Scotland, and what is an average price of
the room in those hotels in each mentioned category of cities.

The “fuzzifying” of the GROUP BY clause was however
treated at the beginning as more challenging than, e.g., of the
WHERE clause. In fact neither SQLf [1], [19] nor FQUERY for
Access [17], [20], [21] originally provided for including fuzzy
terms into this clause. Bosc et al. [1] considered only fuzzy
conditions in the related HAVING clause which may be used
to filter out some groups of rows produced by the GROUP BY
clause. However, originally they assumed the grouping in its
crisp version and only later on [9] introduced grouping rows
with respect to a fuzzy partition; cf. also [22]–[25].

In order to comprehensively “fuzzify” the GROUP BY
clause one has to address two main problems:

1) how to define “fuzzy” grouping syntactically
and semantically,

2) how to execute aggregate operators against
resulting “fuzzy groups” of rows.

(3)

The first challenge is of a more technical nature. As soon as
the WHERE clause allows for fuzzy conditions then producing
fuzzy groups, e.g., corresponding to (2), is conceptually simple
as the required groups of rows may be produced by using
three separate SELECT instructions with the WHERE clauses
featuring the conditions “age IS young”, “age IS middle”
and “age IS old”, respectively. So the challenge is limited
to appropriately extending the GROUP BY clause so as to
properly accommodate the interpreted grouping-expression.
Of course, one also has to devise a scheme of an efficient
execution of a query containing such a fuzzy GROUP BY
clause.

The second problem mentioned above is of a more theoret-
ical nature. Its essence is best illustrated using our example
(2). Namely, how should one understand the concept of an
average salary of a group of employees when each of them
can belong to this group to some degree which is based on
its age matching with a given group label (linguistic term),
i.e., with being young, middle-aged or old ? How to define
and compute such an aggregate value and how to make an
approach general enough so as it covers also other aggregate
operators known in SQL such as MAX, MIN, etc.

Let us now address both problems mentioned in (3) in a
slightly more detailed way.

Let us assume that the GROUP BY clause takes the follow-
ing form:

GROUP BY price (4)

and consider how a fuzzy interpretation may be adopted for
it.

First of all, it should be decided where linguistic terms, such
as “ cheap” or “expensive”, to be used to group rows, do come

from. In view of a brief reminder of flexible fuzzy querying
provided in Section II, a natural source of such terms is a
dictionary of linguistic terms maintained by a fuzzy querying
interface; cf., e.g., [17], [26]. Effectively, it boils down to the
definition of a given attribute (column) as a linguistic variable
[27]. Alternatively, such a fuzzy partition of a given attribute
domain (here: price) may be automatically derived in query-
ing environment using, e.g., a fuzzy c-means algorithm; cf.
also [28]. In [9] the authors propose to extend the GROUP
BY clause so as it can include an explicit specification of the
(fuzzy) partition of an attribute domain with respect to which
the grouping takes place.

No matter how the linguistic terms set, ltsA = {lA1 , . . . , lAk },
is established for a given attribute A, for each row t the
matching degree of A’s value, t(A), with a particular linguistic
term lAi ∈ ltsA is denoted as md(t(A), lAi ) and computed as
the membership degree of t(A) to the fuzzy set representing
the particular linguistic term:

md(t(A), lAi ) = µLA
i

(t(A)) (5)

where LAi denotes a fuzzy set representing the linguistic term
lAi and µLA

i
is its membership function. Then, a group of rows

Gi is formed for every linguistic term lAi and it is a fuzzy set
of rows with the following membership function:

µGi
(t) = md(t(A), lAi ) (6)

Some groups Gi may be empty (non-existent) and some
pairs of groups may have non-empty intersection. Additionally,
each row t is assumed to be equipped with an additional
attribute (column) expressing its membership to a group Gi,
equal md(t(A), lAi ). This line of reasoning provides a solution
to the first problem of (3).

In order to address the second problem of (3) and make
the “fuzzy” GROUP BY clause operational one has to define
how particular aggregate functions of the standard SQL are
going to work for fuzzy groups of rows. As it was already
mentioned, in standard SQL one uses grouping of rows in order
to compute some aggregate values for the obtained groups
of rows. For example, the user may be interested in learning
how many hotels there are in particular cities, what average
salary employees earn in particular departments, or what the
maximum salary in particular departments is. Then, one uses
an SQL query of the following form:

SELECT grouping-expression,

AGG(aggregated-expression)

FROM table (7)
GROUP BY grouping-expression

where AGG is a placeholder for a specific aggregate function,
such as COUNT, SUM or AVG . Again, a query scheme shown in
(7) is a simplification of the general SQL syntax but is detailed
enough to discuss the question of its fuzzy interpretation.
For some aggregate functions AGG this interpretation is fairly
obvious and easy, for some others it is more difficult and not
that obvious. We will first briefly discuss in the following



subsections two classes of aggregate functions, represented by
COUNT and AVG, respectively; cf. also [26].

It is worth noticing that even for a “non-fuzzy” GROUP
BY clause, i.e. based on a crisp grouping expression, the
aggregate functions still have to be prepared to deal with fuzzy
(multi)sets of values. Namely, if the WHERE clause contains
fuzzy conditions and a crisp GROUP BY clause is used then
the rows in the “crisp” groups are assigned matching degrees
with respect to the mentioned WHERE clause conditions and
thus aggregating applies, in general, to fuzzy multisets.

Let us notice here that a presumably simplest solution
consists in ignoring the fuzzy character of the set of aggregated
values and applying aggregation functions to the support of a
given fuzzy multiset. This approach has been adopted by Bosc
and Pivert [1] in their earliest version of the SQLf language
where GROUP BY clause was not to allowed to be fuzzified
but aggregate functions in the SELECT clause were allowed to
be used together with fuzzy conditions in the WHERE clause.

There is a vast literature on fuzzy aggregation operators
meant as counterparts of standard logical connectives. The
problem of “fuzzy data” aggregation in the framework of data
querying has been also dealt with, cf., e.g., the works of Bosc
and his group [22]–[25], the paper of Laurent [29] discussing
it in a broader context as well as works of Dubois and Prade
focused on theoretical fundations [30], [31].

A. COUNT aggregate function
This aggregate function forms a class of itself and, in the

original, non-fuzzy, context it just returns the number of rows
in a given group. We will consider here only its COUNT(*)
form as from the point of view of a fuzzy interpretation it
does not differ from the other versions. Its fuzzy interpretation
is thus quite straightforward - it is assumed that it returns
the fuzzy cardinality of the given group while the matching
degree defined in (6) is interpreted as the membership degree
of particular rows to a given group. Formally, assuming the
cardinality proposed by Zadeh, i.e., the so-called ΣCount [32],
one obtains for a group Gi, corresponding to a linguistic term
li defined over attribute’s A domain, the following result:

COUNT(*) 7−→
∑
tj

µLA
i

(tj(A)) (8)

Thus, in case of the COUNT aggregate function its fuzzy
interpretation is quite clear even if several other definitions
of fuzzy set cardinality may be employed; cf., e.g., [33].

B. AVG aggregate function
This class of aggregate functions is more challenging when

one tries to apply it to a fuzzy set. In order to study possible
approaches let us consider that some numbers forming a
fuzzy multiset, X̃ , have to be averaged. A multiset has to be
considered as the values being aggregated may be repeated.

A simple approach consists in some generalization of the
standard averaging formula. Namely, for a crisp multiset of
numbers, X = {xi}, their average is computed as follows:

AVG (X) =

∑
xi∈X xi

|X|
(9)

where |X| denotes the cardinality of a crisp set X .
Then, in case a fuzzy set X̃ replaces X in (9) it is natural

to use a fuzzy set cardinality, in particular the ΣCount in the
denominator of the formula (9). It remains unclear how to deal
with the sum in the numerator of (9). A reasonable approach
might be to replace the sum with a weighted sum where the
membership degrees play the role of the weights and thus one
comes up with the following formula [26]:

AVG (X̃) =

∑
j µX̃(xj) ∗ xj∑
j µX̃(xj)

(10)

what may be further rewritten as:

AVG (X̃) =
∑
j

pj ∗ xj (11)

where pj denotes the normalized membership degree of xj (or,
more precisely, the normalized membership degree of the row
of which xj is a value of an attribute under consideration),
i.e.:

pj =
µX̃(xj)

ΣkµX̃(xk)
(12)

C. WOWA operator based approach

However, in what follows we adopt a more general ap-
proach to aggregate functions which consists in using Torra’s
Weighted Ordered Weighted Averaging Operators (WOWA)
[34]. WOWA is an extension to Yager’s Ordered Weighted
Averaging operator (OWA) [35], [36] and is defined as follows
[34], for parameters: n being a dimension of the operator,
and w = [w1, . . . , wn], p = [p1, . . . , pn] being vectors of
weights, and for a vector of arguments a = [a1, . . . , an] to be
aggregated:

fw,pWOWA(a1, . . . , an) =
∑
i

ωi ∗ aσ(i) (13)

where σ is a permutation of {1, . . . , n} such that ∀i ∈
{1, . . . , n − 1} aσi+1

≤ aσi
and the weights ωi are defined

as:
ωi = w?(Σj≤i pσ(j))− w?(Σj<i pσ(j)) (14)

where w? is a monotonic increasing function interpolating
the point (0, 0) together with the points (i/n,Σj≤iwj) ∀i ∈
{1, . . . , n} (w? is required to be a straight line when these
points lie along such a line).

Thus the WOWA operator makes it possible to use two
types of weights. The weights of the original OWA operator,
denoted wi:

w = [w1 . . . , wn], ∀i∈{1,...,n} wi ∈ [0, 1] and
∑
i

wi = 1

(15)
which are assigned to the positions of the arguments in their
non-increasing ordering, i.e., w1 is the weight of the largest
among the arguments {ai}i∈{1,...,n}, w2 of the second largest
etc. Depending on the choice of these weights one obtains
various aggregation operators covering the whole spectrum
from the minimum operator via arithmetic average, up to the



maximum operator. The weights of the second type, denoted
pi:

p = [p1 . . . , pn], ∀i∈{1,...,n} pi ∈ [0, 1] and
∑
i

pi = 1

(16)
are assigned to particular arguments being aggregated, ai, and
not to their position in any ordering.

Thus, in the setting considered in this paper, the weights
wi make it possible to define a given aggregate function
(e.g., w = [1, 0, . . . , 0] for the maximum operator, or w =
[1/n, 1/n, . . . , 1/n] for the arithmetic average operator) while
the weights pi make it possible to take into account the mem-
bership degrees of the rows forming a group. In order to satisfy
(16) the normalization shown in (12) is adopted. It is worth
noticing that although an WOWA operator is parametrized by
two vectors of weights those weights have a straightforward
interpretation when considered for the purposes of modelling
SQL aggregation operator applied to a fuzzy set of rows.

It may be easily shown that the WOWA operator emulating
the arithmetic average operator, i.e., with the weights w =
[1/n, . . . , 1/n] and p computed as in (12) yields exactly the
same results as the operator (11) proposed in [26].

Thus, in general the WOWA operator makes it possible to
apply any aggregation operator definable with the use of an
OWA operator to a fuzzy set of arguments and one obtains a
single number as the result. Moreover, the WOWA operator
has some desired properties, For any weighting vectors w
and p, satisfying (15) and (16), the WOWA operator is an
aggregation operator, i.e., yields results between the minimum
and maximum operators [34]. For example, when ∀i pi = 1/n,
where n is the dimension of the operator, then it acts as the
OWA operator with the weight vector w. Thus, if a group of
rows is non-fuzzy then the aggregate function modeled by the
given WOWA operator behaves as expected - as the original
aggregate operator. However, due to the normalization (12) the
WOWA based aggregate operator produces the same results
for many different fuzzy sets X̃ (cf. (12)), provided that the
vectors a and w are fixed (the set X̃ is a fuzzy set of arguments
ai with the membership degrees pi). This may be less intuitive
but this is, in general, the case of any possible interpretations
of the results of a fuzzy set aggregation. For example, the
WOWA operator of dimension n representing the maximum
operator (i.e., with w = [1, 0, . . .]) when applied to a vector
of arguments a using a vector of weights p such that not all
pi’s are equal 1/n may produce as a result a value which does
not appear in a.

Among the standard aggregate functions in SQL there is
also SUM which produces the sum of the expression computed
over a group of rows. It is not an aggregation operator in the
sense mentioned earlier and thus does not directly fit into the
aggregation scheme provided by the WOWA operator. How-
ever one may interpret it in the same way as the aggregation
operators exploiting an obvious relation between SUM and AVG
aggregate functions which is:

SUM(exp) = n ∗AV G(exp)

where n is the number of rows in a group (i.e., a fuzzy set
X̃) over which the expression exp is evaluated.

Based on that let us define the SUM operator over a fuzzy
set (a group) of n rows in the following way:

SUM(exp) = (
∑
i

µX̃(xi)) ∗ fw,pWOWA(x1, . . . , xn) (17)

where xi is the value of expression exp for i-th element of
the group (represented by a fuzzy set X̃), w = [1/n, . . . , 1/n]
and p = [µX̃(x1)/(

∑
i µX̃(xi)), . . . , µX̃(xn)/(

∑
i µX̃(xi))],

as previously. This way some basic expected properties of
the SUM aggregate function are preserved. Namely, if it is
computed for a group of rows represented by a crisp set
(µX̃(xi) = 1 ∀i) then the result is a standard sum. From the
computational point of view, formula (17) is equivalent to a
simple weighted sum:

SUM(exp) =
∑
i

µX̃(xi) ∗ xi (18)

and, of course, this form should be used in an implementation.

IV. ANALYTIC FUNCTIONS

A. Basics

Analytic functions in SQL are, in fact, aggregate functions
but used in a different context. Namely, aggregate functions are
computed for a group of rows, defined by a GROUP BY clause,
or for all rows in a table. Thus, they produce an aggregated
value for a set of rows. Analytic functions go beyond that,
extending the repertoire of the aggregation schemes and, most
importantly, making it possible to compute the aggregated
value in the context of a single row. Hence, the set of of values
(rows) to be aggregated, referred to as a window, is determined
for each row separately. A call to an analytic function is thus
a part of what is called an analytic clause.

Let us start with briefly reminding the syntax of an analytic
clause in SQL (it is again a simplified version of the syntax
but it will serve our purposes):

AGG(aggregated-expression) OVER
(
PARTITION BY grouping-expression
ORDER BY ordering-expression
<windowing-clause>

)
)

where AGG denotes an analytic function, the grouping expres-
sion defines the grouping of the table rows as in the case of
the GROUP BY clause, ordering expression determines how
rows are ordered within a given group and the windowing
clause decides which part of the group will be subject to the
aggregation carried out by the analytic function.

Thus, the analytic clause comprises the following parts, all
of which are optional:

1) a partition of the rows into groups (PARTITION BY
subclause); it works like the GROUP BY clause but
partitioning is executed for each row t separately and



only a group Gt to which t belongs is considered while
computing the analytic function; if the partition is not
specified then the whole table plays the role of Gt;

2) an ordering of the rows in the window which is impor-
tant for some analytic functions as well as helps to define
the window mentioned below (ORDER BY subclause);
if the ordering is used alone, i.e., without a window (see
below), then it yields a default window which comprises
only the rows in the group with the same or lower value
of the ordering expression than the current row has,

3) a window of rows (<windowing-clause>); a subset
of a group Gt comprising rows which participate in
computing the analytic function value; window size can
be defined either in terms of a number of rows or in
terms of the values of the ordering expression.

Now let us look at possible interpretations of linguistic
terms within the components of the analytic clause.

B. Partitioning

As mentioned earlier, this part of the analytic clause re-
sembles, both with respect to the syntax and the semantics,
the GROUP BY clause of the SELECT instruction. Thus its
fuzzification may be carried out along the lines discussed in
section (III), in particular by using a linguistic term in the
role of a grouping expression. However, there is an important
difference between the GROUP BY and the PARTITION BY
clauses when a fuzzy grouping expression is used. In the case
of the former a row may be assigned to a few (fuzzy) groups to
different degrees. For each resulting fuzzy group the value of
an aggregate function is computed. On the other hand, in case
of the PARTITION BY clause for a given row t an analytic
function is computed in the context of one group, Gt, to which
row t “belongs”. In the fuzzy case this belongingness is, in
general, not well defined as t may belong to several groups to
a different degree.

We propose two solutions:
1) a group is chosen for which t’s membership is highest;

if there is more than one such a group then these groups
are combined,

2) an analytic function is computed in the context of each
group, using an appropriate WOWA operator, and then
computed values are aggregated using an appropriately
adjusted WOWA operator.

The former solution does not need any further explanations.
For the latter, let us consider the following example:

SELECT
name, salary,
AVG(salary) OVER (

PARTITION BY ˜age) AS agvsal
FROM emp

which is meant to retrieve for each employee his or her name,
salary and an average salary for his or her age group. Here
and in what follows we assume that the ˜ symbol preceding a
column name triggers a fuzzy grouping based on the linguistic

terms defined for a given column (here, as previously: young,
middle-aged, old).

Let John Doe belong to the groups of middle-aged and
young employees to the degrees, respectively, 1 and 0.7.
Then, for him the third expression (avgsal) in the SELECT
clause above will be computed as follows. First, the WOWA
operators will aggregate salaries in groups (fuzzy sets) gather-
ing, respectively, young and middle-aged employes using
weights w and p properly defined to take into account the
number of employees with non-zero membership degrees in
each group (implying the dimension of the WOWA operator),
and their matching degrees with the linguistic terms young
and middle-aged (defining the p vector). Let us assume
that these WOWA operators produced, respectively, the values
byoung and bmiddle-aged. Then, the final value of the avgsal for
John Doe will be computed using the following expression:

fw,pWOWA(byoung, bmiddle-aged) (19)

where:
w = [1/2, 1/2]

p = [µGyoung(tJohn Doe), µGmiddle-aged(tJohn Doe)]

Gli denote (fuzzy) groups of rows resulting from the
PARTITION BY age clause, and tJohn Doe denotes a row
representing John Doe. Thus, the weighted average of byoung
and bmiddle-aged with weights corresponding to the degrees of
how John Doe is young and how middle-aged, respectively.

C. Ordering

The ordering of rows based on a linguistic term, contrary to
the use of linguistic terms in the GROUP BY or PARTITION
BY clause, does not seem reasonable. For example, the order-
ing of employees according to their age in such a way that their
actual age is replaced with linguistic terms such as “young”,
“middle-aged”, “old” etc., and only then the rows are sorted,
may only make some rows (employess) indistinguishable with
respect to the value of an ordering expressions what rarely
will be desired. On the other hand, it should be noted that
the ordering applies, in general, to a fuzzy set of rows as
a fuzzy condition may be used in the WHERE clause of the
SELECT instruction and the ordering of the rows takes place
at the end of the query processing. Thus, it certainly may be of
interest to order the rows according to the membership degree
which, in fact, should be treated as an additional attribute and
it should be possible to use it in ordering expression. On
the other hand, it is worth a study if in some scenarios the
membership degrees of the rows should be taken into account
when the rows are ordered with respect to another regular
ordering expression. For example in case of the following
query, when the user wants to rank middle-aged employees
according to their seniority:

SELECT name, age, seniority
FROM emp
WHERE age IS middle-aged



ORDER BY senority

it might be reasonable to take into account how particular em-
ployees match a linguistic term “middle-aged” while ordering
them. This is an example of a query with ordering concerning
the whole table but the same applies to a group of rows yielded
by the PARTITION BY part of the analytic clause.

An interesting option may be ordering the rows according
to their matching degree against a selected linguistic term (a
fuzzy value). For example, ordering employees according to
the degree their age matches the linguistic term “middle-aged”
may be of interest as the membership function of a fuzzy set
representing this linguistic term usually will not be monotonic
with respect to the value of an underlying attribute, i.e., the
age.

D. Definition of a window

The windowing clause may appear in the analytic clause
only together with the ordering clause as a window may be
defined only with respect to some ordering of rows in a group.
The most interesting variants of the windowing clause syntax
are from our perspective the following:

ROWS BETWEEN n PRECEDING/FOLLOWING AND
m PRECEDING/FOLLOWING

RANGE BETWEEN x PRECEDING/FOLLOWING AND
y PRECEDING/FOLLOWING

Both versions of the syntax define the window with respect
to a row t, referred to as the current row, which is the row
for which an analytic function is computed. The first version
makes it possible to define a window as a set of subsequent
rows located between n-th position before/after the current
row and m-th position before/after the current row. The second
version indicates as the first row of the window the row for
which the value of the ordering expression is lower/higher by
x compared to the value of this expression at the current row,
and similarly for the last row of the window.

Both variants of the windowing clause syntax are readily
available for the “fuzzification”. Let us consider some exam-
ples. The following query shows the average price paid for
each hotel room by its latest guests:

SELECT
roomnumber,
AVG(price} OVER(

PARTITION BY roomnumber
ORDER BY checkindate
ROWS BETWEEN ˜latest PRECEDING

AND
1 PRECEDING) avgprice

FROM roomsoccupancy

where “latest” is a fuzzy value represented by, e.g., the
following membership function:

µlatest(x) =


1 for x ≤ 2
0.83 for x = 3
0.33 for x = 4
0.17 for x = 5
0.0 for x > 5

(20)

i.e., up to two stays before the given current stay are treated
as fully “latest”, third stay before the current is “latest” to the
degree 0.83 etc.

The following query shows for each employee how much
lower is his or her salary compared to the best earning
employee at more or less the same age:

SELECT
name,salary,birthdate,
MAX(salary) OVER(
ORDER BY birthdate ASC
RANGE BETWEEN

Not_much_more_than_730 PRECEDING AND
Not_much_more_than_730 FOLLOWING) -

salary
FROM emp

where “Not much more than 730” is a fuzzy value (linguis-
tic term) represented by a fuzzy set A with, e.g., the following
membership function:

µA(x) =

 1 for x ≤ 800
(1000− x)/200 for 800 < x ≤ 1000
0 for x > 1000

(21)
which represents the meaning of the statement that given
number of days is not much greater than 730.

The computation of values of the analytic functions against
a window defined in above mentioned flexible way follows the
scheme presented for the GROUP BY and PARTITION BY
clauses (cf. section III and subsection IV-B). The weights p are
now implied by the membership degree of a row to a respective
window. In the most complex scenario these weights may be
the conjunction of weights implied by the WHERE clause, the
PARTITION BY clause and the window.

Both queries show that using windows with flexible limits
is of practical value. One may expect that this is even more
useful when such windows are part of a linguistic summary.

V. CONCLUDING REMARKS

We have proposed a novel concept of a flexible analytic
clause of the SQL’s SELECT instructions to make them more
flexible and human consistent. First of all, it provides for
a considerable extension of applicability of the new flexible
fuzzy queries themselves, by making them easier to use and
better representing human intentions and preferences. More-
over, the use of the new flexible analytic clause should make
it possible to considerably extend the classes of linguistic data
summaries along the ideas of using for this purpose relations
between flexible fuzzy queries and linguistic data summaries



[10] or relations between bipolar queries and bipolar (con-
textual) linguistic data summaries [37]. This should provide
for an additional functionality of the powerful concept of a
linguistic data summary.

This paper is a first step towards defining a flexible fuzzy
interpretation of the analytic clause. Some details of the syntax
and semantics have to be further elaborated as well as an
effective scheme of execution has to be studied. In particular,
desired properties of the emerging operators have to be dealt
with in a more comprehensive way and their satisfying by
proposed alternative approaches studied in a more depth.
This includes also a study of an appropriate interpretation
of many different analytic functions, beyond AVG , MAX etc.
The concept sketched in this paper looks promising and has
a potential in extending the applicability of the linguistic
summarization of data.
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Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 88–102.
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