
Abstract— This paper describes a modification of a biological 
inspired algorithm based on shark behavior (SSO, shark smell 
optimization) for the optimization of the membership function‘s 
parameters for the fuzzy controllers of autonomous mobile 
robots. SSO is a metaheuristic technique based on the behavior 
presented by sharks in nature, which can be used for solving 
optimization problems. First, SSO is used to optimize 
benchmark control problems. Second, the traditional SSO is 
tested with the optimization of the membership function’s 
parameters of type-1 fuzzy controllers. Third, tests are also 
performed with the Interval Type-2 Fuzzy Logic Controller. The 
comparison of results between the controller optimized with 
SSO and the controller optimized with WDO demonstrates that 
the proposed method shows better performance in the optimal 
design of fuzzy controllers. 

Keywords: Mobile Robot, T2FS (Type-2 Fuzzy Systems), 
T2FLC (Type-2 Fuzzy Logic Controller), T1FLC (Type-1 Fuzzy 
Logic Controller), SSO (Shark Smell Optimization), WDO 
(Wind Driven Optimization).  

I. INTRODUCTION

The main goal of optimization is to find the best solution 
for a set of possible solutions to a particular problem. There 
are cases in which the problem solving space is too large and 
this may result in a time to find the solution becoming 
unaffordable. In other cases, there are different computational 
intelligence areas that provide a set of techniques to solve 
search and optimization problems [1], [2]. Such techniques 
can provide very competitive results, although not 
necessarily the best alternatives. Algorithms based on 
populations have become a new paradigm of collective 
intelligence and can find the best or near to best solutions to 
optimization problems with reasonable times and costs [3], 
[4]. 

Many scientists in the field of artificial intelligence have 
taken these algorithms as a research topic. Swarm 
intelligence, can be viewed as a set of metaheuristic 
techniques of artificial intelligence that are based on the 
analysis of systems with collective behavior [5] [6] [7]. 
These systems are present in nature, generally in a self-
organized manner [8]. 

Many systems based on search and optimization 
algorithms have been applied to solve a wide range of 
problems. 
In [9] an algorithm inspired by the movement of stars, 
galaxies, and superclusters of galaxies under the force of 
gravity is proposed. In this work, different fuzzy systems 
were designed for the dynamic adaptation of the c3 and c4 
parameters to measure the performance of the algorithm with 
seven mathematical functions with a different number of 
dimensions. This method increases the efficiency of the 
algorithm by providing multiple cycles   of exploration and 
exploitation, thus increasing the chances of accurately 
finding a global minimum. 
In [10] a new method for dynamic parameter adaptation in 
particle swarm optimization (PSO) is proposed. PSO is a 
metaheuristic inspired on social behaviors, which is very 
useful in optimization problems. This paper proposes an 
improvement to the convergence and diversity of the swarm 
in PSO using fuzzy logic. Fuzzy rules were used to control 
the key parameters in PSO to achieve the best possible 
dynamic adaptation of these parameter values. 
In [11] a modification to the bee colony optimization 
algorithm (BCO), with a fuzzy approach to dynamically 
change its parameters, was proposed. This is a metaheuristic 
technique inspired by the behavior presented by bees in 
nature, which can be used for solving optimization 
problems. First, the traditional BCO was tested with the 
optimization of fuzzy controllers. Second, a modification of 
the original method is presented by including fuzzy logic to 
dynamically change the main parameter values of the 
algorithm during execution. Third, the proposed 
modification of the BCO algorithm with the fuzzy approach 
is used to optimize benchmark control problems. 
In [12] the BCO technique was used to find the optimal 
distribution of the membership functions in the design of 
fuzzy controllers. BCO is used specifically for tuning 
membership functions of the fuzzy controller for trajectory 
stability in an autonomous mobile robot.  Two types of 
perturbations were added to the model for the Generalized 
Type-2 Fuzzy Logic System to better analyze its behavior 
under uncertainty and this shows better results when 
compared to the original BCO.  
In [13]–[15] the Differential Evolution (DE) algorithm uses 
fuzzy logic for dynamic parameter adaptation of the 

Optimal design of interval type-2 fuzzy 
tracking controllers of mobile robots 

using a metaheuristic algorithm 
Felizardo Cuevas, *Oscar Castillo and Prometeo Cortes 

Tijuana Institute of Technology, Tijuana BC México 
*email: ocastillo@tectijuana.mx, Prometeo.cortes@tectijuana.edu.mx, felizardo.cuevas@tectijuana.edu.mx

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

mailto:ocastillo@tectijuana.mx
mailto:Prometeo.cortes@tectijuana.edu.mx


mutation parameter (F). This modification of the algorithm 
is called Fuzzy Differential Evolution algorithm (FDE).  

A comparison of the algorithm using type-1 fuzzy logic and 
interval type-2 fuzzy logic was performed for a set of 
Benchmark functions. Through evolutionary computing, a 
route planner was also designed by dynamically optimizing 
the membership functions of the fuzzy controller and motion 
controller.  

In [16] an auto-tuned fuzzy load frequency controller (FLFC)-
based artificial bee colony (ABC) algorithm was developed to 
smooth the deviations in the frequency and tie-line power due 
to load disturbances in an interconnected power system. 
Optimal tuning of membership functions (MFs) and fuzzy 
control rules is very important to improve the design 
performance and achieve a satisfactory level of robustness for 
a particular application. In this work, to reduce the fuzzy 
system design effort and consider large parametric 
uncertainties, a new systematic and simultaneous tuning 
method was developed for designing MFs and fuzzy rules. For 
this, the designing problem is restructured as an optimization 
problem and the ABC algorithm was applied to solve it. 
The main contribution of this work is the implementation of a 
method to dynamically determine the optimal parameter 
values of a fuzzy controller using the shark smell optimization 
algorithm (SSO). There are previous works by the researchers 
that use the same SSO algorithm with the difference that in this 
paper, SSO is used for the dynamic adjustment of fuzzy 
controller parameters. In this case, the algorithm is only used 
to adjust the parameters of membership functions of a fuzzy 
controller, but not the rules. In this work, the method is 
applied to different benchmark control problems. 
This paper is organized as follows. The basic concepts   and 
operation of the SSO algorithm are described in Section II, the 
proposed methodology is explained in Section III, the case 
studies used in this work are described in Section IV, the 
experimental results with type-1 fuzzy logic, type-2 fuzzy 
logic and the statistical comparison between the two 
algorithms SSO (Shark Smell Optimization) and WDO (Wind 
Driven Optimization) respectively are described in Section V. 
Finally, in Section VI the conclusions are presented. 

II. SHARK SMELL OPTIMIZATION

This section describes the model proposed by Oveis Abe- 
dinia, Nima Amjady and Ali Ghasemi in 2004, based on the 
observation of intelligent behavior of sharks searching for 
food or prey [17][18][19]. Shark Smell optimization (SSO) is a 
meta-heuristic algorithm [17, 18] that belongs to the class of 
nature-inspired algorithms. 
This method (SSO) uses a technique similar to the way the 
sharks look for food in nature and how they use their location 
and optimization methods to find optimal routes towards the 
source of food [18]. 

Natural systems have become currently an important source of 
ideas and models for the development of many artificial 
systems [19]. Various biological and natural processes have 
inspired these types of algorithms. 

A. BEHAVIOR AND STRUCTURE OF SSO
Natural systems have become currently an important source of 
ideas and models for the development of many artificial 
systems. The mathematical model of the shark search process 
consists of three main components shown below [17, 20]: 

1) Initialization of food source (Population of solutions):
The fish is injured and injects blood into the sea
(search environment). Therefore, the speed of 
movement of the fish is low and negligible compared 
to the shark’s velocity. Hence, the source of food 
(prey) is assumed to be approximately fixed. 

2) Shark search (Determination of food location): The
blood is injected into the sea and the effect of the
water flows on distorting the odor particles. Thus, 
closer odor particles to the prey will be stronger. 
Consequently, by following the odor particles, the 
shark can hunt the prey. 

3) Scout Sharks (exploration Phase): Evaluation of odor
particles Information or quality of the solution in the
constant search for a food source, a blood source, that 
is, an injured fish, in the shark search environment. 

B. BEHAVIOR AND STRUCTURE OF SSO
This method was proposed in [17]. The shark smell 
optimization algorithm (SSO) is based on the shark smelling 
abilities for localizing the source of food. In sharks' movement, 
the concentration of the smell is an important factor to guide 
the shark to the prey. In other words, the shark moves in the 
way with higher smell concentration. Fig. 1 presents the 
movement of shark to the odor source based on its 
concentration. This characteristic is used in the SSO algorithm 
to find the best solution to an optimization problem. In this 
algorithm, several assumptions are considered, which have 
been presented in [17]. The following steps briefly explain the 
algorithm (for a minimization problem): 

Fig. 1 Shark’s movement to blood odor source and towards the prey. 

a. Initialization
A population of initial solutions is randomly generated for an 
optimization problem in a feasible search area (sea). A source 
(prey) represents the optimal solution whilst the quality of the 
solution is represented by the smell strength at a particular 
position. According to [17],[20] the initial solution is given as 
follows: 

(1)



where the  initial position vector , i.e.  initial candidate 
solution for the optimization problem, is as follows: 

 (2) 

where  is the  dimension of the  shark position; ND is 
several decision variables in an optimization problem. Intensity 
of smell in each position indicates its closeness to the prey. 

b. Forward Movement
As the blood disperses into the water, the shark will move 
towards the target with a velocity , oriented by the smell of 
the stronger odor particles, hence leading to a high-quality 
solution. In correspondence with the position vector, each 
velocity vector has dimensional component elements: 

   (3) 
By increasing the odor concentration, the velocity of the shark 
will increase. In each stage for magnitude of , is given as 
follows: 

 (4) 
where 

 and  are random values, which gives more randomness to 
the search when determining the velocity reached by the 
gradient function and to broaden the search of the algorithm. 
The rate of momentum  becomes constant for stage k 
(number of stages for shark’s forward movement) and the 
velocity is dependent from its former state. 
The considered sign for the value of    depends on the 
direction of the selected term of the minimum operator.  
The velocity vector will determine the new position during the 
forward movement of the shark given by: 

(5) 

where 

c. Rotational Movement
The rotational movement allows the shark to identify the 
stronger odor particles it when moves forward and this enables 
a local search within in the SSO algorithm. As can be noted 
from Fig. 2, the rotation of the shark is on a closed contour and 
not necessarily a circle. From optimization viewpoint, the 

shark implements a local search in each stage to find better 
candidate solutions. This is modelled by the equation below: 

 (6) 

The rotational movement allows the shark to identify the 
stronger odor particles when it moves forward and this enables 
a local search with in the SSO algorithm.  

Fig. 2 Shark`s Rotational Movement. 

d. Updating the Shark Position
 If the shark finds a point with stronger smell during the 
rotational movement; it will follow this point and continue the 
search path from it as shown in Fig. 2. This characteristic is 
implemented in the SSO algorithm as follows: 

 (7) 

The objective function OF should be minimized. The cycle 
will continue until k reaches the minimum value (best 
individual) in the given population in a search space, which 
will be chosen for the optimization problem. 
SSO has a number of defined parameters by us, like the other 
metaheuristic optimization methods, including population size 
NP and number of stages  as well , , and  of each 
stage. We have empirically seen that SSO works well with 
these values of , , and . However, these 
parameters can be fine-tuned for each optimization problem 
separately. 

III. DYNAMIC PARAMETERS SETTING OF THE CONTROLLER WITH 
SSO ALGORITHM

This section is focused on describing the dynamic adjustment 
of the parameters of a fuzzy controller. Methodologies similar 
to this proposal are described in [21][22][23]. The main goal in 
choosing the SSO algorithm is because there are few research 
works published of this algorithm, there also exist other 
variants [24][25]  and we consider a good idea to use it and 



analyze if good results can be achieved when compared with 
respect to other algorithms.  

A. DYNAMIC ADAPTATION OF FUZZY CONTROLLER
PARAMETERS WITH PROPOSED METHODOLOGY

For the development of the proposed method, we establish the 
following sequence of steps in the SSO algorithm: 
1. 40 dimensions are needed to establish the position of the
points to optimize in the MFs.
2. We set a lower and upper limit of -1 to 1 normalizing range
in the membership functions in fuzzy input and output sets.
3. The objective function is based on the controller's fuzzy
inference system.
The methodology to optimize the parameters of the
membership functions with the shark smell algorithm,
evaluating the fuzzy controller in the plant and the results
obtained in the evaluation with respect to the desired path, is
illustrated in Fig. 3.

Fig. 3 Procedure for optimization of the parameters of the membership 
functions.

In Fig. 4, we graphically show the sequence of steps of the 
proposed algorithm. 
The pseudocode of the proposed algorithm is presented below: 
Step 1: Randomly generate the initial population of n blood 
particles for the MF parameters. To start, a set of random 
source odor particles is generated, where each row (vector) 
represents a blood particle. The particle has in memory a 
position, and that position is a possible solution to the problem, 
which in this case represents the values of the membership 
function parameters of the fuzzy controller. 
The initial population must contain possible position candidate 
solutions that satisfy the constraints. Set k = 0, and evaluate the 
fitness value of the initial populations by (6). 
Step 2: Select the best position for the neighborhood search. 
The selected odor particle memory contains the best position 
found so far and to define the fitness of each shark take 
position the equation of the mean square error is used, which is 
Eq. (7). 
Step 3: Evaluate the fitness of each particle and identify each 
of the points of MFs using SSO. 
Step 4: Represent the new value of MF from each shark 
position.  
Step 5: Select the fittest positions of each shark. 
Step 6: Move dynamically each of the MF points of the Inputs-
Outputs. 
Step 7: Check if the new fitness Function is better than the 
previous Fitness Function. If satisfied, update final position of 
each of the FIS MF points. 

Step 8: Check the stopping criteria. If satisfied, terminate the 
search, else K = K + 1 up , show and save the best values 
found and return to evaluate new solutions. 

Fig. 4 Procedure to adjust fuzzy controller parameters using SSO.

We propose the following fuzzy control architecture to use 
dynamic variation of parameters at runtime, as is shown in Fig. 
4. 
The fuzzy logic controller design is of the Mamdani type and 
has 2 inputs and 2 outputs where the parameters of the 
Membership Functions are dynamically adjusted with 9 rules 
that are chosen with prior knowledge of the problem within the 
exploitation and exploration in search spaces. 
To better explain the difference between the used method, with 
respect to one of the most used metaheuristics: particle swarm 
optimization (PSO) which was developed by Kennedy and 
Eberhart in [26][27], PSO has biological inspiration in nature, 
to be more specific in the behavior of birds, where each bird 
represents a particle. A comparison is made among PSO, WDO 
and SSO illustrated in Table I. Considering that the SSO 
algorithm is also based on PSO, the following comparison 
table is made, and a Clarification is made that PSO is not 



currently used in this methodology, but rather only used in this 
table for comparison purposes. 

TABLE I 
COMPARISON OF METHOD CHARACTERISTICS. PSO: PARTICLE 

SWARM OPTIMIZATION; WDO: WIND-DRIVEN OPTIMIZATION; SSO: 
SHARK SMELL OPTIMIZATION 

Characteristic PSO WDO SSO 
Population Particle Air 

package 
Shark 
Smell 

 New speed       
 Current speed       
 Actual position       
 Next position       
 Better experience         - 
 Best group experience  - 

Increase         k  T  k 
Uniform random 
numbers between 
0 and 1 

r1 , r2 - - 
- 

Cognitive 
parameter 

 c1 - - 

Social parameter  c2 - - 

B. FUZZY LOGIC
The term fuzzy logic was introduced with the 1965 proposal of 
fuzzy set theory by Lotfi Zadeh [28]. Fuzzy logic had however 
been studied since the 1920s, as multiple-valued logic—
notably by Łukasiewicz and Tarski [29]. The use of linguistic 
variables can model human ways of thinking, and it is much 
easier to program systems based on the logic of human 
reasoning. By combining fuzzy logic with other artificial 
intelligence techniques, this mixture of techniques is able to 
achieve something that previously seemed impossible: the 
autonomy of mobile robots. So today, robots currently help 
with household chores, and even medical areas, in all areas of 
the industry, robots play a very important role in 
manufacturing processes. The good performance and 
efficiency in the work environment, creates the need for 
software and hardware to be updated and optimized regularly, 
as discussed in [30], [31]. 
We propose a fuzzy logic controller optimization; this fuzzy 
controller is of Mamdani type and is applied to create a smooth 
response in a mobile robotic platform, instead of a response 
with oscillations that could be produced with traditional hard 
logic. Other metaheuristics and combinations among them 
have also been used hybridizing with fuzzy logic in current 
robotics as in [32], [33][34]. Also Castillo and Melin et al. 
[5][35][36] describe the applications of the method. 
Therefore, for designing the fuzzy system of Mamdani type, 
with dynamical adjustment of parameters of fuzzy controller, 
the two measures described as linear velocity error and 
angular velocity error  were considered as inputs. The 
system has the fuzzy outputs; ParMotor1 and ParMotor2. 
In regards to the inputs of the fuzzy system, the error variables 
have by themselves a defined range of possible values which 
range from -50 to 50, but with the linear velocity error and 
angular velocity error , we perform a normalization of the 
values of these to have values between -1 and 1. Eq. 8 shows 

how the normalization of the linear velocity error is performed 
and Eq. 9 shows how the normalization of the angular velocity 
error is obtained. 

 (8) 

(9) 
The design of the input variables can be appreciated in Fig. 5 
and 6, which show the inputs linear velocity error , and 
angular velocity error  respectively, where each input is 
granulated into three membership functions, trapezoidal at the 
ends and triangular at the middle. For the output variables, as 
mentioned above, we perform a normalization of the values of 
these to have values between -1 and 1, so that the output 
variables were designed using this range of values. Each 
output is granulated into three triangular membership 
functions, the design of the output variables can be seen in Fig. 
7 and 8,   and  respectively. The fuzzy system has the 
linear and angular velocity errors as inputs, as shown in Fig. 9. 
To design the rules of each fuzzy system, it was decided that in 
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Fig. 5 Input 1: Linear velocity error . 
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Fig. 6 Input 2: Angular velocity error . 
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Fig. 7 Output 1: Parmotor 1 . 
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Fig. 8 Output 2:  Parmotor 2 . 
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Robot SSO

(mamdani)

9 rules

Fig. 9 Fuzzy system for robot controller. 

early iterations the SSO algorithm must explore and eventually 
exploit. Taking into account other variables such as linear 
velocity error and angular velocity error for example, when 

 is small negative (SN) and  is zero (Z), that is, that the 
smell particles are close together, we must use exploitation, 
and when  is big positive (BP) and  is big positive (BP) 
we must use exploration, this in search of the candidate 
solutions. The fuzzy controller has 9 rules, which are shown 
below in Table II [37]: 

TABLE II 
FUZZY SYSTEM ROBOT CONTROLLER: IF-THEN FUZZY RULES 

Rule    ANTECEDENT   CONSEQUENT 

1. If (elv is SN) and (ewv is SN) then (PM1 is SN)(PM2 is SN) (1) 

2. If (elv is SN) and (ewv is Z)   then (PM1 is SN)(PM2 is Z   ) (1)

3. If (elv is SN) and (ewv is BP) then (PM1 is SN)(PM2 is BP) (1) 

4. If (elv is Z)   and (ewv is SN) then (PM1 is Z )(PM2   is SN) (1)

5. If (elv is Z)   and (ewv is Z)    then (PM1 is Z )(PM2   is Z  ) (1)

6. If (elv is Z)   and (ewv is BP)  then (PM1 is Z )(PM2  is BP) (1)

7. If (elv is BP) and (ewv is SN) then (PM1 is BP)(PM2 is SN) (1) 

8. If (elv is BP) and (ewv is Z)    then (PM1 is BP)(PM2 is Z  ) (1)

9. If (elv is SN) and (ewv is SN) then (PM1 is SN)(PM2 is SN) (1) 

C. INTERVAL TYPE-2 FUZZY LOGIC
The concept of T1FS and T2FS fuzzy logic systems was 
developed by Zadeh between 1965 and 1975, approximately 
[38], [39]. This section presents a concise overview of T2FLS 
with the intention of providing basic knowledge of how 
IT2FLS works to achieve its objective. 
First, we break down the overall behavior of the robot   that we 
call “behavior”, which may have the task of following a line. 
In Fig. 10, a controller is designed to determine the control 
action of the mobile robot. These basic behaviors have as 
control structures a controller with type-2 fuzzy logic formed 
from a set of fuzzy IF-THEN rules [40], [41]. The actions are 
monitored by the controller's rule set to select the appropriate 
actions that are transmitted to the system. 

elv (3)

ewv (3)

PM1 (3)

PM2 (3)

BaseRobotSSOT2

(mamdani)

9 rules

Fig. 10 It2flc Architecture. 

We know that the T2FS is located in a region built by a main 
type-1 membership function (T1MF). T2FS is obtained by 
using fuzzy sets to partition the input domains of the base line 
T1FS with a footprint of uncertainty (FOU) as shown in Fig. 
11 to Fig. 14. Consequently, the T1MF is extended to T2MF 
by adding FOU to represent uncertainty. The variability in 
each of the actions is modeled with interval type-2 fuzzy sets 
(IT2FS). The T2FS linguistic input variables and their ranges 
are used for path tracking, as shown in Fig. 11 and 12, with 
two outputs, which are the Parmotor1 ( ) and Parmotor2 
( ), as shown in Fig. 13 and 14. 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SN Z BP

 elv 

M
em

be
rs

hi
p 

F
un

ct
io

n

Fig. 11 Footprints of IT2 MFs for input 
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Fig. 12 Footprints of IT2 MFs for input 
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Fig. 13 Footprints of IT2 MFs for output Parmotor1 . 
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Fig. 14 Footprints of IT2 MFs for output Parmotor2 . 

Therefore, membership functions have values distributed 
according to the uncertainty. As well as those that belong to 
the antecedents also in the consequent parts. From the design, 
three MFs, the  input (SN: Small Negative, Z: Zero, BP: 
Big Positive ), three MFs for the  input (SN: Small 
Negative, Z: Zero, BP: Big Positive), three MFs for the 
output (SN: Small Negative, Z: Zero, BP: Big Positive) and 
three MFs, the  output ( SN: Negative Small, Z: Zero, 
BP: Positive Big), are built. 
In this work, nine rules were developed for the T2FLS path 
tracking. The number of rules (9) is determined by expert 
knowledge with T1FLS. Fuzzy rules are obtained from the 
combination of two inputs with three membership functions. 
The rules are used to control the parmotor of wheels right and 
left, some of these rules are as presented in Table II. 

IV. STUDY CASES

A.  CASE 1: BENCHMARK FUNCTIONS
Also for the comparison of the proposed method with respect 
to other methods, we considered benchmark mathematical 
functions, defined in [42], which are a total of 27 functions and 
and in each one it is tried to find values that give us the global 
minimum of each function. In Fig. 15 there is a sample of the 
functions that are used.  
The problem that is considered (Benchmark mathematical 
functions) [21] is illustrated in Fig. 15, and the proposed 
methodology is as shown in Fig. 16, where we can notice that 
fuzzy parameters are adjusted by SSO, and in turn this “SSO” 
searches for the optimal parameters for the membership 
functions of the fuzzy input-output sets. 

Fig. 15 Benchmark mathematical functions. 

Fig. 16 proposed methodology. 

B. CASE 1: FUZZY CONTROLLER OF A MOBILE ROBOT
We propose the optimization for a fuzzy controller of an 
Autonomous Mobile Robot of differential type, using the 
proposed SSO for this specific problem; below, the fuzzy 
controller is explained in more detail. 
The controller for the autonomous mobile robot is as used in 
[40],[43]. The main objective of the controller is the better 
search of a desired trajectory, and it has 9 rules that define the 
relationships between the linguistic variables of the fuzzy 
system. The linguistic variables are as follows: in the first 
input, it is the linear velocity error ( ); the second input, it is 
the angular velocity error ( ). The two inputs have the same 
linguistic values: big positive (BP), zero (Z), and small 
negative (SN), with the same membership functions in both 
fuzzy input sets. The outputs are Parmotor 1 ( ) and 
Parmotor 2 ( ) they represent the change of direction when 
the robot's wheels interact, and each of these outputs has three 
triangular functions. Fig. 17 represents the desired trajectory 
that the robot should follow. In this figure, the Y-axis shows 
the desired Y displacement, and the X-axis represents the X 
displacement. Fig. 18 describes the red line as the desired 
trajectory, and the real trajectory of the robot in blue, and as 
we can see, the robot is not lost, since it generates an error of 
4.64 x   and a standard deviation 1.03 x  . 
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Fig. 17 Desired trajectory normalized axis 
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Fig. 18 Obtained mean square error (MSE). 



V.SIMULATION RESULTS

In the case of the results obtained with the optimization of 
benchmark functions using the shark smell method, this is 
presented in the first part of this section. The results with the 
optimization of the membership functions of the fuzzy 
controller used with the autonomous mobile robot platform are 
presented in the second part of the section. This optimization 
generates a vector of values that are defined as the dynamic 
parameters of the optimized membership functions. 

A. CASE 1 RESULTS: BENCHMARK FUNCTIONS
Table III shows the parameters used in the optimization of 
Benchmark functions. Table IV column 1 shows the used 
functions; column 2 represents the minimum of the functions; 
column 3 shows the obtained average; column 4 represent the 
standard deviations respectively obtained  with the SSO;  To 
conclude columns 5 and 6 show the results of the SSO method. 
This was evaluated 30 times for each of these functions with 
the same parameters to obtain the averages and standard 
deviations. Table IV above shows the optimization results of 
benchmark functions where the minimum of functions , , 

, and  is different from zero. With the evaluation with 
different minima, the performance of the optimization in the 
function with the SSO can be better observed. 

TABLE III 
PARAMETERS USED IN THE EXPERIMENTS 

Population Iterations Dimensions 
100 500 30 

TABLE IV 
RESULTS FOR 40 DIMENSIONS 

W D O S S O 
Funct Average Standard 

Deviation 
Average Standard 

Deviation 

0 

  

6.97 x 

0 3.05 x 

0 3.12 x 

0 4.17 x 

0 28.569 4.70 x 

0 3.12 x 

0 9.44 x 

0 -118.27 0 1.05 x 

0 
9.53 x 1.23 x 

3.65 x 

0 0 0 3.36 x 

0.000 
3.07 x 2.18 x 

4.70 x 

-
1.031 1.0316 

6.78 x 
1.07 3.44 x 

0.398 0.3979 
6.78 x 

6.0 x 3.73 x 

3 7.783 
3.61 x 

3.80 x 

B. CASE 2 RESULTS: DYNAMIC ADJUSTMENT OF FUZZY
CONTROLLER PARAMETERS

Table V shows the parameters used in the WDO, and SSO 
methods,  Table VI and Table VII shows some the 30 
experiments performed to obtain the best optimized fuzzy 
system, using as metric the MSE, where it can be observed that 
the best error found is of 0.00169, and in general, the values 
only varied from   to . 
In Fig. 20 to Fig. 21, the dynamic adjustment that was made in 
the parameters of the membership functions of the   inputs of 
the fuzzy controller is observed, where the uncertainty that is 
generated between each of them can be observed, and with 
this, the error that shows the fuzzy controller in the simulation 
is considerably improved. Fig. 22 and Fig. 23 show the outputs 
of the controller optimized by the SSO method, respectively. 
Fig. 19–23 show the optimized movement of the parameters of 
the membership functions of the inputs evl, ewl and the outputs 

 and , respectively. In addition, as can be noted from 
Fig. 20 to Fig.23, the overlap between existing functions helps 
the robot to have a better tracking of the desired trajectory, in 
comparison with the other method used in this work. 

TABLE V 
PARAMETERS USED WDO AND SSO METHOD FOR FUZZY 

CONTROLLER 
Population Iterations Dimensions 

30 1500 30 

TABLE VI 
RESULTS OF THE EXPERIMENTS WITH THE FUZZY CONTROLLER 

OBTAINED WITH SSO 
Experiment MSE Experiment MSE 

1 1.26 X 16 6.35 X 
2 1.39 X 17 1.30 X 
3 6.76 X 18 4.70 X 
4 1.13 X 19 8.40 X 
5 3.72 X 20 4.70 X 
6 2.41 X 21 1.47 X 
7 2.99 X 22 5.15 X 
8 5.01 X 23 7.00 X 
9 2.95 X 24 3.70 X 
10 5.69 X 25 5.90 X 
11 6.55 X 26 2.70 X 
12 4.08 X 27 8.25 X 
13 1.84 X 28 6.50 X 
14 1.15 X 29 2.80 X 
15 3.67 X 30 5.44 X 

It can be noted in Tables VI and VII, that there is a variation in 
the results obtained with the SSO method, since it has the best 
MSE of 0.00000126, but the worst is 0.05150. Unlike WDO 
where there is a big variation in the results; the best MSE with 



0.000019, the worst of 0.057094. For this reason, on average, 
this method can be the best at optimizing this specific problem. 
Table VIII summarized the results of the optimization 
methods. 

Fig. 19 Particles vector for optimizing the membership functions of the fuzzy 
controller. 

TABLE VII 
RESULTS OF THE EXPERIMENTS WITH THE FUZZY CONTROLLER. 

OBTAINED WITH WDO 
Experiment MSE Experiment MSE 

1 1.90 X 16 1.64 X 
2 1.90 X 17 1.64 X 
3 5.40 X 18 2.60 X 
4 5.40 X 19 2.93 X 
5 6.20 X 20 4.33 X 
6 6.20 X 21 1.62 X 
7 6.90 X 22 1.65 X 
8 8.70 X 23 6.21 X 
9 8.70 X 24 6.35 X 

10 9.10 X 25 7.73 X 
11 9.80 X 26 1.67 X 
12 1.05 X 27 1.67 X 
13 1.15 X 28 2.65 X 
14 1.38 X 29 2.92 X 
15 1.60 X 30 5.7 X 

TABLE VIII 
RESULTS OF THE OPTIMIZATION METHODS 

WDO SSO 
Average 6.00 X 4.6 X 
Standard Deviation 1.26 X 1.10 X 

VI. CONCLUSIONS

The proposed methodology was created to optimize problems, 
and was tested with the unimodal and multimodal benchmark 
functions and comparing to the SSO and WDO methods. This 
was done with 30 experiments as the limitation; each of them 
was put into competition with the same parameters for a fair 
competition. It was obtained that SSO was better for 
benchmark functions. On the other hand, for the optimization 

of the parameters of the membership functions, the SSO 
method was the metaheuristic that found the data vector that 
managed to optimize the functions of the fuzzy controller in 
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Fig. 20 Optimized input 1: linear speed error . 
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Fig. 21 Optimized Input 2: Angular velocity error . 
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Fig. 22 Optimized Output 1: Parmotor 1 . 
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Fig. 23 Optimized Output 2: Parmotor 2 . 

such a way that the robot approached the desired trajectory. As 
future work, we plan to perform more experimentation with 
other optimization problems. In addition, it is worth 
mentioning that in the path following by the robot with T1FLC 
and T2FLC, it is possible to observe how the values of the 
parmotor1 and parmotor2 are changing when analyzing the 
results with the integral parameters applied and the times of 
path. The proposed approach implements a type-1 and type-2 
fuzzy controller that produces the parmotor forces in the 
wheels for path tracking, with the ability for path tracking that 



arise in the environment  so that the robot can travel the path 
without losing it and with the least possible error. 
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