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Abstract—In the current era of high precision monitoring
and big data, many public transit users are still suffering from
problems caused by transit delays. To help address this problem,
we design and develop an innovative fuzzy logic-based machine
learning algorithm for supporting predictive analytics on big
transportation data to helps detect and predict the delay of some
modes of public transport. To demonstrate the usefulness of our
machine learning algorithm as a solution to this problem, we
use it on heterogeneous data—namely, transit data and weather
data—to predict the expected delay of streetcars (aka trolley cars)
in the Canadian city of Toronto. To make accurate prediction, our
algorithm takes into account multiple factors such us rain, snow,
temperature, time of day, and season. Evaluation results show
the effectiveness and usefulness of our fuzzy logic based machine
learning algorithm for predictive analytics on big transportation
data, which is promising toward development of a predictive
intelligent transport system (ITS).

Index Terms—computational intelligence, fuzzy systems, tem-
poral data analysis, time series analysis, prediction, forecasting,
data mining, knowledge discovery, big data applications, Toronto,
streetcar, delay, weather, frequent pattern mining, random forest,
regression, intelligent transport system (ITS)

I. INTRODUCTION

In the current era of big data, high volumes of valuable
data have been generated and collected from a wide variety
of rich data sources. Examples of these big data include
disease reports, epidemic data and statistics [32], financial
data from stock market [27], genomic data [9], [29], music
records [24], shopper market basket transactions [2], [20],
[26], social media data [6], [14], [22], [23], [31], [34], transit
data [21], as well as and weather data. Embedded in these
data is implicit, previously unknown and potentially useful
information and knowledge that can be discovered—by ma-
chine learning and data mining algorithms [4]—for social
good. For example, analyzing and mining disease reports and
epidemic data (for outbreak or disease analytics) helps people
understand and predict the spread and severity of infectious
disease like coronavirus disease 2019 (COVID-19) [32]. As
another example, analyzing and mining shopper market basket
transactions (for market basket analysis) helps reveal customer
behaviour, which in turn could improve shopping experience.
As a third example, analyzing and mining transit data (for

predictive analytics in transportation industry) helps predict
delays of public transit, which in turn could improve transit
rider experience and enable intelligent transport system (ITS).

Usually, in numerous real-life applications, their associated
data are related and heterogeneous. For example, social dis-
tancing, quarantine, isolation, and pharmaceutical interven-
tions may affect the spread and severity of infectious disease
like COVID-19. Hence, having additional information about
these measures or interventions could enhance prediction
accuracy of the disease. Similarly, as weather and promotional
campaign may affect consumers’ shopping patterns (e.g., heat-
wave or discount offers may increase the sales of ice cream),
having this additional information could enhance accuracy
of the analysis. As a third example, weather may affect the
punctuality of public transit (e.g., heavy pouring rain reduces
driver visibility may delay streetcars). Hence, having weather
data in addition to transit data could enhance the prediction
accuracy of delays in public transit.

In this paper, we focus on predictive analytics on big
transportation data. Specifically, we present a fuzzy logic-
based machine learning algorithm to predict transit delays by
incorporating knowledge discovered from a wide variety of
heterogeneous data:

• transit data, and
• weather data.

We first categorize data based on fuzzy logic, which helps
capture the “degree of truth” of different categories of various
features in the data. Then, we mine frequent patterns from
integrated transit and weather data to determine important fea-
tures contributing to the transit delays. Afterwards, we apply
supervised learning—in particular, random forest regression—
to predict transit delays. To illustrate and evaluate our algo-
rithm, we conduct a case study on transportation data from
the Canadian city of Toronto:

• Toronto Transit Commission (TTC)’s delay data from
the City of Toronto’s Open Data Portal1, which capture
delays of different transit modes (e.g., bus, streetcar,
subway) and ridership information from 2014 to current.

1https://open.toronto.ca/
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• weather data (e.g., presence of snow on the ground,
temperature, occurrence of rain, etc.) from Weather Dash-
board for Toronto2, which capture weather information3

from the Canadian federal department of Environment
and Climate Change Canada4.

This study helps us examine what contributes to the streetcar
delays within Toronto, and whether the weather has an impact
as well. Hence, our key contribution of this paper is our
innovative fuzzy logic-based machine learning algorithm for
supporting predictive analytics on big transportation data.

The remainder of this paper is organized as follows. Next
section presents background and related works. In Section III,
we describe our fuzzy logic-based machine learning algorithm
for predictive analytics on big transportation data. In Sec-
tion IV, we illustrate key steps of our algorithm on a case
study for predicting streetcar delays in the Canadian city of
Toronto. Section V shows evaluation results, and Section VI
draws the conclusions.

II. BACKGROUND AND RELATED WORKS

In this section, we present background on fuzzy logic and
related works on transportation data analysis.

A. Fuzzy Logic

Fuzzy logic [5] is a form of multi-valued logic in which the
truth values of variables may be any real number between 0
and 1, i.e., [0, 1] ⊆ R. In other words, it uses the concept
of partial truth for uncertainty [15], where the truth value
may range between completely true and completely false. In
contrast, Boolean logic captures the truth values of variables,
which may only be the integer values 0 or 1. In contrast to the
commonly used Boolean logic operators (AND, OR, NOT),
fuzzy logic operators compute:

• MIN(x, y) for conjunction of two fuzzy logic values x
and y;

• MAX(x, y) for disjunction of two fuzzy logic values x
and y; and

• 1− x for negation of a fuzzy logic value x.
Fuzzy logic is operated based on fuzzy set [37], which is
often defined as (a) a trapezoid-shaped curve, or (b) a sigmoid
function like S(x) = 1

1+e−x .
When compared with the probabilistic-based approaches

that normally use (subjective) probability to express the likeli-
hood of the factors, the fuzzy logic-based approaches usually
use the concept of fuzzy logic and fuzzy set membership to
model uncertainty and vagueness by expressing how much an
observation on the factors falls within a vaguely defined set.

B. Analytics on Transportation Data

Over the past decade, researchers have proposed several
prediction algorithms and transportation data analysis [3], [18],
[19], [28], [33]. Many of them have focused on transport

2https://toronto.weatherstats.ca/
3https://weather.gc.ca/
4https://www.canada.ca/en/environment-climate-change.html

and traffic flow analytics [8], [35], [36]. A majority of these
related works describe sophisticated techniques, including
additive model [18], artificial neural network (ANN) [25],
automatic personality classification (APC) [30], mean absolute
percent error (MAPE), support vector regression (SVR) [17],
and vehicle ad-hoc networks (VANETs) [19]. Some related
works rely on dynamic data from advanced public transport
system (APTS) [35], automatic fare collection (AFC) [25], and
global position system [33]. Moreover, some related works
incorporate dynamic data into the aforementioned sophisti-
cated techniques through the use of Kalman filters [8], [25],
[30], [35]. However, dynamic data may not necessarily be
always available. Sophisticated techniques may incur costly
computations. In contrast, our presented solution:

• only requires historical data (i.e., no requiring real-time
tracking),

• takes advantage of widely tested and validated data
mining techniques,

• can be easily developed and widely applicable to various
transport data, as well as

• maintains a good fusion of computational complexity and
prediction accuracy.

III. OUR FUZZY LOGIC-BASED PREDICTIVE ANALYTICS
ALGORITHM

In this section, we describe our fuzzy logic-based machine
learning algorithm for predictive analytics on big transporta-
tion data. As an overview, our algorithm consists of three key
steps.

A. Key Step 1—Data Pre-Processing with Fuzzy Logic-Based
Categorization

Our algorithm first categorizes data based on fuzzy logic,
which helps capture the “degree of truth” of different cate-
gories of various features in the data. Specifically, we catego-
rize the data by grouping similar data into broader categories.
The main goal of this key step is to turn quantitative input
features into similar categorical groups. These categorical
groups can then be used for frequent pattern mining, data
visualization amongst a categorical group, and input features
for a machine learning model. Recall from Section I that we
gather and combine the following heterogeneous data from
multiple sources:

• For the transit data, the primary groups include the time
of day and the length of delay.

• For the weather data, the primary groups include the
amount of snow, average hourly temperature, the amount
of rain, visibility, and average wind speed.

Due to the subjective nature of some of these primary groups
(e.g., very poor, poor, moderate, and good visibility), we
incorporate the concept of fuzzy logic to capture their “degree
of truth”.

B. Key Step 2—Frequent Pattern Mining

Once the data are pre-processed with fuzzy-logic based
categorization, our algorithm then mines frequent patterns



from integrated transit and weather data to determine im-
portant features contributing to the transit delay. Specifically,
we apply association rule mining and/or frequent pattern
mining techniques to discover frequent patterns—in the form
of combinations of factors contributing to transit delays—
from these pre-processed transportation data. These frequent
patterns, in turn, give insight into the data to see what factors
are frequently associated with one another. A main goal of
this key step is to determine which combination of factors
contribute to the different delay categories and if these factors
were expected. Another main goal of this key step is to
form interesting association rules, which can be served for
associative classification, in which the antecedents of these
rules are collection of frequently occurring factors contributing
to the types/severity of transit delays in the consequents of
these rules.

C. Key Step 3—Transit Delay Prediction with Supervised
Learning

After mining frequent patterns in the form of combinations
of factors contributing to transit delays, our algorithm then
applies supervised learning to predict transit delay. The main
goal of this key step is to develop an accurate model to predict
the transit delay. Among different prediction approaches, a
decision tree approach is simple, but the resulting prediction
accuracy may be an issue. On the other hand, while a deep
learning approach (e.g., convolutional neural network) usually
leads to higher prediction accuracy, the prediction results
may not be easily explainable. This is a trade-off between
prediction accuracy and explainability. We hypothesized that
weather—especially during the winter—will have a clear and
statistically significant effect on the delay. We also observed
that the transportation data (i.e., transit data augmented with
weather data) are non-linear. Taking into consideration the
trade-off and observations, a random forest regression would
be a logical choice due to its reliability in inherently ranking
important features, its prediction accuracy, and its simplicity
for explaining the results. The resulting prediction is expected
to have massive implications for the city, as well as businesses.
For example, cities could use the accurately predicted delays
to allocate resources and inform riders. As another example,
businesses (e.g., peer-to-peer ride-sharing and ride hailing
services such as Uber or Lyft) could use the accurately
predicted delays to get a clear view of the actual demand
within an area for their services, and thus accordingly adjust
the price estimate for trips.

IV. ILLUSTRATION OF OUR ALGORITHM WITH A CASE
STUDY ON PREDICTING TORONTO STREETCAR DELAYS

In the previous section, we described the three key steps
of our fuzzy logic-based machine learning algorithm for
predictive analytics on big transportation data. Let us illustrate
these three key steps with a case study on predicting delays
based on transportation data on streetcars (aka trolley cars),
which are transit data from the Toronto Traffic Commission
(TTC) augmented with weather information.

A. Key Step 1—Transportation Data Pre-Processing with
Fuzzy Logic-Based Categorization

An example of our categorical pre-processing step can be
observed in Table I. This process was repeated for all cate-
gorical weather features, as well as time-based input features
from the TTC delay data. For the time of day (TOD), we split
the current time into four categories as outlined in Table I.

Besides the TOD, we also used many features from the
weather data. These features include snowfall, temperature,
rainfall, and visibility. While the quantity of these features
(e.g., 20 cm of snow, 50 mm of rain, visibility of 1 km) can
be “precisely” measured by sensors, human perception of the
categorization of these features (e.g., “heavy snow”, “heavy
rain”, “very poor visibility”) can be subjective. This explains
why we applied fuzzy logic in this key step of our algorithm
to helps capture the “degree of truth” of different categories
of the weather features. In our case study, snow categories are
labelled in a self-explanatory manner with group increments
ranging from 2-3 cm. We used the daily average snowfall. The
rainfall category was labelled in a similar manner, by using
the daily average rainfall. Visibility categories were based
on standardized aviation visibility categories in the following
manner—through the process of fuzzification—as outlined in
Table II.

Defining the categories for delay times is important because
different lengths of delays can have vastly different outcomes
on general traffic, public transportation ridership, and rider’s
commute times. The lower the overall delay in rider’s expe-
rience on their commute, the more is the rider’s satisfaction
of the public transport, which in turn leading to increases in
ridership. Ridership trends are important for cities to invest
money in their public transportation for future development.

TABLE I
CATEGORIZATION OF TIME OF DAY DATA (TOD)

Time of day (TOD) Time range
Morning 06:30-10:30

Late morning 10:30-15:30
After work 15:30-18:30

Evening 16:30-22:30
Night 22:30-06:30

TABLE II
CATEGORIZATION OF VISIBILITY (VISCAT)

Fuzzy set Visibility type Distance range
minVal to 0.25 Very poor visibility 0-10 km

0.25 to 0.5 Poor visibility 10-20 km
0.5 to 0.75 Moderate visibility 20-30 km

0.75 to maxVal Good visibility > 30 km

TABLE III
CATEGORIZATION OF DELAY DATA (DELAYCAT)

Fuzzy set Delay type Time range
minVal to 0.2 No to light delay 0-5 mins

0.2 to 0.4 Light to medium delay 5-15 mins
0.4 to 0.6 Medium to high delay 15-30 mins
0.6 to 0.8 Heavy delay 30-50 mins

0.8 to maxVal Extreme delay > 50 mins



In this case study, we defined any delays with less than five
minutes to be insignificant (No - light delay), and significant
delays were further broken down into four categories—through
the process of fuzzification—as outlined in Table III.

B. Key Step 2—Frequent Pattern and Association Rule Mining

After the data was categorized, we mine frequent patterns
and association rules by using classical algorithms like Apri-
ori [1] or FP-growth [16]. Specifically, we use FP-growth
to discover frequent patterns in the form of collections of
frequently co-occurring features. The following collections of
fuzzified features are some samples that were observed to
occur frequently in the TTC streetcar delay data:

• collections of a single fuzzified feature {“Medium-heavy
wind”}.

• collection of multiple fuzzified features {“Very light
snow” (2-5 cm of snow), “Poor visibility”}.

In addition, “Mechanical problem” is another frequent pattern.
Moreover, we also form interesting association rules (for

associative classification) by using the aforementioned dis-
covered frequent patterns as antecedents of the rules and the
fuzzified delay type as consequents of the rules. Examples of
these association rules include:

• {“Medium-heavy wind”} ⇒ “No to light delay”, which
reveals that medium-heavy wind is likely to lead to no
(to light) delays in streetcars.

• {“Very light snow” (2-5 cm of snow), “Poor visibility”}
⇒ “Heavy delay”, which reveals that very light snow
when combined with poor visibility is likely to lead to
heavy delays in streetcars.

C. Key Step 3—Transit Delay Prediction with Random Forest
Regression

After the frequent patterns were discovered from the pre-
processed and categorized data, we predict transit delays by
using supervised learning. Specifically, taken in consideration
the trade-off between prediction accuracy and explainability,
we uses random forest regression to predict fuzzified delay
types for streetcars:

• No (to light) delay, which ranges from 0 to 5 minutes;
• Light (to medium) delay, which ranges from 5 to 15 min-

utes;
• Medium (to high) delay, which ranges from 15 to 30 min-

utes;
• Heavy delay, which ranges from 30 to 50 minutes; and
• Extreme delay, which delays over 50 minutes.

The overall size of the input data set from the last five years
was approximately 77,000 samples. A 5-fold cross validation
with a 75-25% training/test split was used (meaning 75% of
our data was used for training and the remaining 25% was
used for testing in each fold). Using k-fold cross validation
helps generalize the model and reduce over-fitting, and thus
usually enhances the prediction accuracy for unseen test data.
We used an ensemble size of 40 estimators when building the
random forest regression model for making our prediction.

V. EVALUATION

In this section, we show our evaluation on our presented
fuzzy logic-based machine learning algorithm for predictive
analytics on big transportation data. Specifically, we focused
on three key aspects:

• data visualization
• frequent pattern mining
• prediction with random forest

A. Visual Analytics for Data Categorization

To get meaningful and explainable predictions, we first get
an insight about the streetcar delay data by visual analytics,
which provides us some valuable information about data
distribution in visual means. For instance, we plotted the
proportion of significant delays (i.e., delays over 5 minutes)
over the total delays, for each category of snowfall, in Fig. 1,
from which we observed the following:

• With 0-2 cm of snow on the ground, 59% of the total
delays were significant (i.e., over 5 minutes) and the
remaining 41% of time were insignificant (i.e., no delays
or delays within an acceptable range of 5 minutes).

• With more snow on ground, the portion of significant
delays increased (e.g., with 11-17 cm of snow on ground,
the portion of significant delays went up to over 90%).

• Then, with more than 17 cm of snow on the ground, the
portion of significant delays dropped from its peak (from
over 90% to below 50%).

Based on the observation on Fig. 1, readers could infer the
following:

• Streetcars run on the tracks (aka grooved rails) on street
surfaces (i.e., pavement) and through regular traffic lights
in Toronto. As snow would have an impact on general
traffic, streetcars would be affected by the overall increase
in traffic.

• Snow is often associated with colder temperatures, and
combining snow with colder temperatures can have an
impact on the machinery that streetcars rely on.

• Clearing snow can drain city resources, which can have
an impact on repair crews for public transportation as
well as resource allocation.

• With small amounts of snow (e.g., 0-2 cm) on the
ground, delays are likely to be caused by traffic on the
street shared by streetcars, other vehicles and pedestrian
crossing the streets.

• With more snow on the ground (e.g., 11-17 cm), tracks
may be blocked by snow and streetcars may be slowed
down by other slow-moving vehicles (which slowed down
due snow).

• With more than 17 cm of snow on the ground, city
may have been more prepare to clean the snow (when
compared with first snowfall within 17 cm of snow) and
less traffic on the street (as more people may work from
home). This explains why the portion of significant delays
dropped from its peak of over 90% to below 50%.



Fig. 1. Percentage of significant delays by the amounts of snow.

Fig. 2. Frequency of significant delays by time of day (TOD).

This evaluation result confirms our hypothesis that snow has
an impact of transportation delays.

Next, we plotted the frequency of significant delays as a
function of the time of day (TOD) in Fig. 2. It shows higher
delay duration occurred around 5:30-9:00 and 15:30-18:30 in
a major metropolitan city like Toronto, where people often
commute early and far in the city centers. We observed:

• Increased traffic on the major streets affect the routes that

streetcars take as they travel these same routes, and
• Increased ridership during peak times can have an affect

on the streetcar mechanical systems.
The effect of TOD on the frequency of significant streetcar
delays can be observed from the figure. Moreover, Fig. 2 helps
us to divide the TOD into the five categories listed in Table I.

Furthermore, it is clear that the public transportation system
is burdened before and after work during peak commute times.



Fig. 3. Frequency of significant delays by day of week (DOW) and time categories.

The frequency of severe delays peaks between 05:30-06:30
and 15:00-17:00. The proportion of each delay category is
relatively constant upon visual inspection with a slightly higher
proportion for “Light (to medium) delay” during the afternoon
commute when compared to the morning commute. This
becomes much clear when plotting the delay by categorized
TOD, grouped by day of the week (DOW), as shown in Fig. 3.
The figure shows that the night (22:30-06:30) and late morning
(10:30-15:30) were times when most of the significant delays
(especially, light to medium delays of duration 5-15 minutes)
occurred. Those are also non-peak (aka non-rush) hours when
the frequency of streetcars was lower (than those in the peak
hours).

In addition to examining the impact of snowfall on streetcar
delays (via visual analytics), we also examined the impact
of other features (e.g., temperature) on streetcar delays. The
results show that, different temperature does not have a
significant impact on the significant delays, except for the
extreme cold temperature of below −25◦C. Such an extreme
cold more likely to attribute to mechanical breakdowns, and
thus streetcar delays.

B. Mining of Frequent Delay Patterns

After the data was pre-processed and categorized, our algo-
rithm found frequent patterns in the form of combinations of
factors contributing to transit delays. Top-k frequent patterns
include:

• {“Poor visibility”}, which reveals that poor visibility
frequently occurs with streetcar delays (regardless of the
level/severity of delay).

• {“Medium-heavy wind”}, which reveals that medium-
heavy wind also frequently occurs with streetcar delays.

• {“Poor visibility”, “Heavy delay”}, which reveals that
poor visibility frequently occurs with heavy delays.

• {“Very light snow” (2-5 cm of snow), “Heavy delay”},
which reveals that very light snow frequently occurs with
heavy delays.

• {“West direction”, “Medium (to heavy) delay”}, which
reveals that westbound streetcars frequently occur with
medium delays.

• {“Mechanical problem”, “Light (to medium) delay”},
which reveals that mechanical problems frequently occur
with light delays.

• {“−5◦C to 0◦C”, “Heavy delay”}, which reveals that
temperature between −5◦C to 0◦C frequently occurs with
heavy delays.

Then, we formed interesting association rules by using the
aforementioned discovered frequent patterns as antecedents of
the rules and the fuzzified delay type as consequents of the
rules. Top-k interesting association rules include:

• “Poor visibility” ⇒ “Heavy delay”, which reveals that
poor visibility is likely to be associated with heavy delays.

• “Very light snow” (2-5 cm of snow) ⇒ “Heavy delay”,
which reveals that poor visibility is likely to be associated
with heavy delays.

• “West direction” ⇒ “Medium (to heavy) delay”, which
reveals that westbound streetcars are likely to be associ-
ated with medium delays.

• “Mechanical problem” ⇒ “Light (to medium) delay”,
which reveals that mechanical problems are likely to be
associated with light delays.

• “−5◦C to 0◦C” ⇒ “Heavy delay”, which reveals that
temperature between −5◦C to 0◦C is likely to be associ-
ated with heavy delays.



Fig. 4. Frequency of significant delays by routes and directions.

It is interesting to observe that westbound was the only
frequent pattern for the direction category. Such an obser-
vation reveals that, a major subway line in Toronto—namely,
Subway Line 1 (Yonge-University line)—runs on University
Ave, which is one of the busiest North-South streets in Toronto
and is slightly on the east side of the central business district of
Toronto. Much more east of a bulk of the residential areas of
the city. Hence, a large proportion of people transferring from
the Subway Line 1 would more likely to travel westbound
rather than eastbound. This means a higher burden would be
placed upon streetcar routes in the westbound direction. This
observation is consistent with the results shown in Fig. 4. It
shows the frequency of significant delays by route directions,
grouped by routes, for the top-13 frequently delayed routes
among 12 regular streetcar routes (numbered 501-506, 508-
512 & 514 covering 10 active, 1 suspended and 1 defunct
routes) together with four all-night streetcar routes (numbered
301, 304, 306 & 310).

C. Delay Prediction with Random Forest Regression

To evaluate our algorithm, we compared it with a mean
rule algorithm, which estimates the delay time based on the
mean delay of the training data. Such a mean rule algorithm
led to a mean prediction error (MPE) of 10.62 minutes. Note
that, in metropolitan city like Toronto, commuters often require
multiple transfers to get to work. An accumulative effect of
10 minute delay for each of the multiple transfers could lead
to a significant loss of productive working hours (e.g., over
30 minutes for a 3-transfer trip to work, in turn causing over
5 hours per week to/from work). Moreover, many commuters
often travel out of town and use public transport to get to
the Union Pearson (UP) Express (which is an airport rail

TABLE IV
5-FOLD CROSS VALIDATION WITH 75%-25% TRAINING/TEST SPLIT

k-fold Mean prediction error (MPE) in minutes
Fold 1 3.78
Fold 2 3.92
Fold 3 3.67
Fold 4 2.92
Fold 5 4.22
Mean 3.70

link running between downtown Union Station and Toronto
Pearson International Airport) for fast airport travel. A delay
of over 10 minutes could mean missing an UP train, causing
an even further delay of around 15 minutes to wait for the
next UP train, and in turn causing a missed flight.

In contrast, when using 5-fold cross validation (in which
each fold used a 75%-25% split for training/test data), the
ensemble of 40 decision trees in our random forest regression
led a MPE of only 3.70 minutes averaged over five folds, as
shown in Table IV. Hence, delay prediction with our random
forest regression led to a 70% reduction in the prediction
error when compared with the mean rule algorithm. This
demonstrates the usefulness and practicality of our prediction
algorithm.

VI. CONCLUSION

Hypothesizing the weather (especially, snow) pays a role
in causing delays in transit and affecting punctuality of the
transit system, we designed and developed—in this paper—
an innovative fuzzy logic-based machine learning algorithm
for supporting predictive analytics on big transportation data.
Our algorithm augments transit data (in particular, streetcar
delay data) with weather information, pre-processes them



with fuzzy-logic based categorization, visualizes and analyzes
the augmented data and their characteristics, mines frequent
patterns (i.e., collections of frequently co-occurring features
that contributing to the delays) and interesting association rules
(which can be applicable for associative classification), and
predicts delays with a random forest. The algorithm takes into
consideration the trade-off between prediction accuracy and
explainability, and leads to a reasonable mean prediction error
(MPE) of 3.70 minutes averaged over a 5-fold cross validation.
Such a result is promising toward development of a predictive
intelligent transport system (ITS).

In the current paper, we illustrated our algorithm with a
case study on real-life transportation data focusing the streetcar
delays in the Canadian city of Toronto. As ongoing and future
work, we are transferring our knowledge (via transfer learning)
and adapting our algorithm to other modes of transit in Toronto
(e.g., subway, bus), as well as other cities. Moreover, we are
also exploring fuzzification on additional features, as well as
incorporating alternative data mining and machine learning
techniques and/or other approaches (e.g., OLAP [7], [10]–
[13]), to further enhance predictive analytics on big transporta-
tion data. To a further extent, we plan to apply transfer learning
[22] for supporting predictive analytics on big epidemic data
like COVID-19 data.
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