
Simulation of Autonomous UAV Navigation with
Collision Avoidance and Space Awareness

1st Jian Li
School of Aerospace,

Transport and Manufacturing
Cranfield University

Bedford, UK
jian.li@cranfield.ac.uk

2nd Hongmei He
School of Aerospace,

Transport and Manufacturing
Cranfield University

Bedford, UK
h.he@cranfield.ac.uk

3rd Ashutosh Tiwari
Department of Automatic Control

and Systems Engineering
University of Sheffield

Sheffield, UK
a.tiwari@sheffield.ac.uk

Abstract—This research developed a safe navigation system of
an autonomous UAV within a comprehensive simulation frame-
work. The navigation system can find a collision-free trajectory
to a randomly assigned 3D target position without any prior
map information. It contains four main components: mapping,
localisation, cognition and control, where the cognition system
makes execution command based on the perceived position
information about obstacles and the UAV itself from mapping and
localisation system respectively. The control system is responsible
for executing the input command made from the cognition sys-
tem. Three case studies for real-life scenarios, such as restricted
area avoidance, static obstacle avoidance and dynamic obstacles,
are conducted. The experiments demonstrate that the UAV is
capable of determining a collision-free trajectory under all three
cases of environments. All simulated components are designed to
match their real-world counterparts’ dynamics and properties.
Ideally, the simulated navigation framework can be transferred
to a real UAV without any changes. As the navigation system
of a drone is implemented in a modular way, it is easier to test
and validate to ensure the system’s performance. Moreover, the
system has good readability, maintainability and extendability.
Hence, the simulation framework provides a good platform for
future robotic research.

Index Terms—Cognition, control system, dynamic obstacle
avoidance, localisation, mapping, offline navigation, safe navi-
gation, space awareness, static obstacle avoidance.

I. INTRODUCTION

The ongoing trend towards the integration of robotics and
UAV(Unmanned Aerial Vehicle) systems has attracted signif-
icant interest in a wide range of applications and became a
major research topic in recent years. Compared to manned
aircraft, UAVs were originally used for missions that are
“dull, dirty or dangerous” for humans [1]. In December
2016, Amazon had completed the first trial of its futuristic
UAV-based delivery plan, to utilise UAV technology to fly
individual packages autonomously to customers. More re-
cently, in the opening ceremony of the 2018 PyeongChang
Winter Olympics, Intel used more than 1200 purpose-built
UAVs, which feature built-in LED lights, to fly simultaneously
and formed a larger-than-life choreographed snowboarder. It
transformed UAV technology into an entirely new form of
entertainment and created a memorial experience at one of
the most-watched events in the world.

However, most of the deployed automation systems utilise
the online navigation solution, which only works with on-
board communication unit [2], [3]. For instance, Intel uses
the traditional centralised solution to control the UAVs by
sending command according to the feedback flight status from
UAVs. Although Intel can control over 1200 UAVs with the
assistance of sophisticated programme by a single pilot, It
will be more challenging to keep track each UAV within
the increasingly crowded airspace and jeopardise the flight
mission when there are only limited signals [4], [5]. On the
other hand, most of the available offline navigation solutions
have a minimal perception of the working area, which only
operates within known or partially known environment [6]. It
can be tedious and impractical to get access to a full map
of all possible working area. Hence, the system needs to be
capable of performing navigation without any prior map data.

Furthermore, in order to test algorithms on UAVs, it costs
the researchers both financially and timely to get access
to expensive hardware and to train safety-pilots. Most of
the available navigation solutions are tested as stand-alone
scenarios and sub-systems rather than a complete navigation
system. Additionally, Most of the behaviours occurring on
real UAVs are hard to replicate, and often cause harm to
UAV’s safety. This motivates the revolution to simulate the
behaviours of UAVs. A well-implemented simulator should
provide accurate graphical and physical simulation to emulate
the real-world with appropriate models and dynamics. Fur-
thermore, the simulator should provide the necessary tools
to behave in a similar manner of its real-world counterparts;
ideally, the simulated navigation system can be implanted to
a real UAV with minimum efforts, thus to provide a platform
for easy development of algorithms to implement trustworthy
UAV systems.

A well-implemented simulation system can facilitate the
development of the navigation system. Therefore, we de-
velop a simulation framework of offline autonomous naviga-
tion system for UAVs, regarding three essential cases: space
awareness, static obstacle avoidance and dynamic obstacle
avoidance.

• For space awareness, the UAV should be able to avoid
restricted areas, defined by regulators. It should fly along

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

with the restricted areas by searching the shortest path
regarding the UAVs current position, target position, and
the geometric shape of the restricted area.

• For static obstacle avoidance, the UAV should be able
to avoid static obstacles, which arbitrarily appear within
an unknown 3D environment, while approaching to a
randomly assigned target position.

• For dynamic obstacle avoidance, the UAV should be
able to avoid a dynamic obstacle and plan its trajectory
regarding the movement of the obstacle.

II. SIMULATION FRAMEWORK

The simulation framework is developed based on Rotors
simulator package developed by Autonomous Systems Lab
at ETH Zurich [7], which is based on the integration of
ROS (Robot Operating System) and Gazebo simulator. ROS
provides libraries and tools to facilitate software development
for the navigation system. Gazebo provides physics engine,
graphics, programmatic and graphical interfaces. Here, Gazebo
provides simulated models for UAV dynamics, sensors, as well
as the working environment. The simulated components are
designed to match their real-world counterparts on the right
block (Fig. 1).

Fig. 1. Simulation framework overview

A. Navigation System Framework

Autonomous navigation is described as the process of
generating a map representation of the UAV’s immediate
working environment, detecting potential hazard to the UAV’s
movement, and navigating within the immediate working
environment to a target position [8]. Safe navigation of UAVs
may be affected by various factors, such as communication
and weather; even cyber-attacks could jeopardise the safety
of UAV. However, all of these are out of the scope of the
research. Fig. 2 shows the four interrelated components for
the navigation framework. The cognition system takes the
inputs from both the mapping and localisation systems; then
produces execution command for the control system. This
paper focuses on the development of high-level tasks for the
cognition system.

Fig. 2. Navigation system overview

1) Mapping: The degree of autonomous navigation systems
is highly linked to their capability of mapping the environment.
The mapping system should be able to distinguish between
the free and occupied space of the immediate working envi-
ronment; identify the moving obstacles and keep a record of
their historical trajectories; update the map information to keep
track of new entered obstacles; and if possible, predicting the
moving obstacles’ future position. For this paper, mapping is
necessary for the following reasons: (1) to localise the UAV
itself and the target position; (2) to plan a path between the
UAV’s current position and the target position; (3) to support
UAV’s collision avoidance.

2) Localisation: Localisation refers to the strategy to es-
timate the UAV’s position and dynamics within the spatial
map that occurs simultaneously during navigation, to assist
the UAV in planning and executing movements, and build-
ing a correct map of the environment. It is the process
of determining the UAV’s position, velocity and orientation
information related to the constructed map of the environment.
Interestingly, the map building process requires knowledge
of the UAV’s position, and the localisation requires a map,
which led to another important technique: Simultaneous Lo-
calisation And Mapping (SLAM), which intends to tackle two
challenges. The first challenge is the map errors related to
the real environment due to the limited range of observation
or imperfection of the sensory system, and another is the
dynamic environment modelling due to the change in the
object’s position or shape.

3) Cognition: In this paper, the cognition system is respon-
sible for generating a trajectory towards a target position from
a specific starting point, without colliding to any obstacles
detected by the system, within minimum time. Moreover, in
order to avoid the dynamic obstacle, the cognition system
should be able to make the appropriate decision by predicting
action into the future based on the characteristics of both the
UAV and obstacle’s current and potential behaviour. Lastly,
the path planning system should also avoid some predefined
regions that will not physically cause damage to the UAV,
such as military restricted fly zone or any area that UAVs are
prohibited.

4) Control: In autonomous UAV systems, the navigation
system must implement the approach to controlling the vehicle
in an uncertain environment throughout the mission [9]. It
involves the process of combining the outputs of mapping,

localisation, path planning, and translating them into actu-
ator commands for UAVs’ mobility and payload response
[8]. Therefore, the UAV should have the capability of self-
governance in the performance of the control function in a
very unstructured environment. The specific behaviours will
vary with the operational requirement. In this paper, the UAV
should be able to perform the essential flight operations such
as taxi, take-off, climb, cruise, glide, landing, etc.

III. NAVIGATION SYSTEM DESIGN

A. Low-level Tasks

1) Mapping: The mapping system utilises a depth camera
to convert the simulated environment into ROS-compatible
point cloud data, and then converted into Octomap representa-
tion, an efficient probabilistic 3D mapping framework devel-
oped by Hornung et al. [10]. In Octomap, the environment
is segmented into multiple spaces, and each space can be
further segmented into eight sub-spaces with the same size.
The segmentation process can be applied recursively until the
map reaches the desired resolution to represent more complex
parts of the environment.

2) Localisation: An ideal odometry sensor is used to mimic
a generic on-board tracking system. The localisation system
is responsible for detecting and publishing UAV’s position,
orientation, linear and angular velocity.

3) Cognition: Due to the inherent nature between space
awareness, static obstacle avoidance and dynamic obstacle
avoidance, the implementation of these high-level tasks is
integrated into a cognition system.

4) Control: A geometric control approach proposed by
Lee et al. [11] is chosen to directly calculate the thrust and
moments required, with different types of commands, such as
position, orientation, or angular rate.

B. Space Awareness

For restricted area avoidance, the UAV requires prior in-
formation about the size, position of the restricted area.
Secondly, the UAV needs to monitor its position continually
and determine an appropriate trajectory to the target without
intruding into the restricted area. However, it is futile and a
waste of computer resource to check for potential intrusion
during the whole navigation process. A condition is given to
the algorithm to ensure intrusion checking are only executed
when the UAV is relatively close to the restricted area. Fig.
3 shows the flowchart of implementing the restricted area
avoidance algorithm.

Fig. 3. Flowchart for restricted area avoidance

1) Intrusion Checking: In order to evaluate potential in-
trusion into the restricted area, a 2D rectangle bounding box
was constructed, in terms of the coordinates of the specified
restricted area. The length of the box is extended with two
metres in each axis to compensate the system errors, and the
distance travelled during intrusion checking stage. As the UAV
will only start to check the restricted area when the UAV is
approaching any one of the four restricted boundaries, it is
safe to assume the trajectory will not intrude the restricted
area when both the UAV and target position are located at
the same side out of the box. Otherwise, the algorithm judges
whether the UAV could potentially intrude the restricted area,
in terms of the UAV’s current position, next waypoint and the
geometry of the bounding box.

(a) The trajectory intersects with two
adjacent boundaries

(b) The trajectory intersects with two
parallel boundaries

Fig. 4. 2D overview of restricted area scenarios, where the dashed arrow
represents the po

2) Exiting Strategy: There are two cases of how the UAV
fly away from the restricted area, but towards the target, the
trajectory could potentially intersect with either two adjacent
or two parallel boundaries (Fig. 4). Assuming there is no
obstacle around the restricted area, different exiting strategies
will be applied to avoid the intrusion to a restricted area for
these two cases. For two adjacent boundaries, the UAV will
always choose to exit the rectangle by moving towards the
intersection point between those two adjacent boundaries for
a quick exit. Otherwise, the UAV will calculate the distance
to each safe-corner and exit by the closer one. If the distances
to the two corners are the same, the UAV will pick a corner
randomly to fly away from the restricted area.

C. Static Obstacle Avoidance

As it is shown in the flowchart (Fig. 5), the implementation
of static obstacle avoidance starts by searching for the next
intermediate waypoint. A potential collision is evaluated with
the Octomap data from the mapping system by constructing a

3D bounding box, with respect to the position of the UAV and
the proposed intermediate waypoint. The task can be roughly
broken down into three steps:

Fig. 5. Flowchart for static obstacle avoidance

1) Next Waypoint Calculation: The next waypoint is calcu-
lated based on the geometrical difference between the UAV’s
current position and the target position in each axis; the
algorithm will increase or decrease with a configurable step
size in the corresponding axis according to the difference.

2) Collision Checking: Instead of acquiring the exact posi-
tion of the obstacle, the algorithm finds the necessary region
for the UAV to pass through, which is the aforementioned
bounding box. The box is constructed from the UAV current
position to the proposed intermediate waypoint, with bidirec-
tional extension in each axis to account for the system error,
any occupied or unknown region within the bounding box
triggers the algorithm search for an alternative collision-free
waypoint.

3) Alternative Waypoint Searching: The default strategy
of searching for an alternative waypoint is to look for free
space above the UAV’s current position. When the up space
is occupied, the system will divide the UAV’s near-space into
five different bounding boxes (“front”, “back”, “left”, “right”,
“down”) and evaluate them in the order base on their distances
to the target position.

D. Dynamic Obstacle Avoidance

For dynamic obstacle avoidance, the UAV is required to
reach a randomly assigned target position by avoiding dynamic
obstacle which the UAV has no prior knowledge of its move-
ment. In a real-world scenario, the navigation system needs
to classify the types of objects detected from the perception
system, identify the dynamic objects by comparing the change
of position between the UAV and obstacles. This process
typically requires the mapping system to have segmentation
and feature extractor algorithm [12], [13], which is beyond
the scope of this paper. The dynamic obstacle avoidance
is implemented separately as a stand-alone scenario without
the segmentation and feature extractor process. One dynamic
obstacle is implemented to test the algorithm’s feasibility to
work within a dynamic environment.

Fig. 6. Flowchart for dynamic obstacle avoidance

Fig. 6 shows the flowchart of dynamic obstacle avoidance
implementation. It starts with calculating a waypoint towards
the target position; then check for a potential collision based
on the predicted range of obstacle’s future position; Lastly, the
algorithm will search for an alternative waypoint if the initial
waypoint is dangerous. The implementation can be described
in the following steps:

1) Collision Checking: With access to the obstacle’s his-
torical position, its velocity can be estimated by comparing its
historical displacement at t second(s) ago. Hence, the potential
collision can be determined by whether the UAV’s trajectory
intrudes the 3D bounding box constructed from obstacle’s
current position and predicted future position. Lastly, the
algorithm will apply SAT (Separating Axis Theorem) to check
whether the trajectory interferes with the interesting region.
The theorem states that two polygons do not collide if it is
possible to draw a line to separate them. An explanation can
be found in [14].

2) Alternative Waypoint Searching: The algorithm searches
for an alternative trajectory by assigning a waypoint towards
one of the four corners of the constructed bounding box in 2D.
The waypoint in the z-axis is assigned towards the opposite z-
axis direction of the estimated obstacle’s. The safe-corners can
be determined by calculating the distance from UAV’s current
position to each of the four corners, where the shortest two
are the safe options. For the exceptional cases when there
are three safe-corners, the algorithm chooses randomly two of
the shortest ones. Fig. 7 shows the eight possible scenarios
of how the UAV locates outside of the bounding box in 2D,
with the corresponding direction vectors to each safe-corner in
both axes. For example, [++,++,++] indicates the UAV travels
in a positive direction in both x and y-axis towards any of
the three safe-corners. Lastly, the algorithm determines the
appropriate corner based on the number of safe-corners and the
relationship between the UAV’s potential travel direction and
the estimated moving obstacle’s trajectory direction in each
axis.

Fig. 7. 2D overview of potential intrusion scenarios

a) Three safe-corners: The algorithm compares the dis-
tance from the UAV towards these two safe-corners, the one
with a shorter distance is chosen as the alternative waypoint,
except for the cases when the corresponding trajectory towards
the corner results in the UAV travelling in the opposite
direction of the moving obstacle in both x and y-axis (Fig.
8a).

b) Two safe-corners: The algorithm determines the alter-
native waypoint depending on the number of opposite direction
between the UAV’s potential trajectory and the estimated
obstacle’s trajectory. The preferable corner could have two
opposite directions; the less preferable choice is the one with
only one opposite sign. In this way, it allows the UAV to travel
in the opposite direction of the moving obstacle to avoid the
potential collision.

(a) chose the longer distance corner
to maximise safety when the obstacle
is moving towards the UAV

(b) chose the shorter distance corner
to avoid the obstacle

Fig. 8. Determine the safe-corner when there are three safe-corners, where
the solid arrow represents the predicted obstacle’s future trajectory, the dashed
arrow represents the proposed UAV’s trajectory

IV. EXPERIMENTS AND EVALUATION

A. Space Awareness

1) Experiment Setup: Table I includes the experiments
designed to test the algorithm’s ability to avoid the restricted
area, with four scenarios of how the potential trajectory
intersects with the restricted area. Each scenario is given with
a 3D target point and a restricted rectangle area defined by
xmin, xmax, ymin, ymax, the UAV is expected to avoid the
restricted area and reach the target point from the original
point (0, 0, 0). Cases 1.1 and 1.4 include the scenario that the
potential trajectory intersects with two parallel boundaries, and
the difference is the implemented shortest path exit strategy.
In case 1.1, it is the equal distance for the UAV to avoid

the area by taking any of the two corners. In case 1.4, the
UAV is expected to calculate the distance from its current
position towards each safe-corner, and take the short path to
exit the restricted area. Case 1.2 covers the scenarios that
the trajectory intersects with two adjacent boundaries, and
the UAV is expected to avoid the area by approaching to
the corner where those two boundaries intersect. Lastly, case
1.3 represents the scenario that the UAV is located on the
boundary of the restricted area, and the potential trajectory will
not intersect with the restricted area, the ideal result would be
the UAV to keep a safe distance from the boundary.

TABLE I
RESTRICTED AREA EXPERIMENT SCENARIOS

Case
No

Target Restricted Area

x y z xmin xmax ymin ymax

1.1 30 0 2 10 15 -4 4

1.2 10 3 2 5 15 -4 0

1.3 20 8 2 10 25 -4 4

1.4 25 3 2 10 15 -4 4

2) Results and Evaluation: As it is shown in Fig. 9, the
restricted area is represented as the dashed line, the solid
line represents the executed trajectory in 2D, and the target is
marked with the asterisk sign. The UAV reached the target by
finding the appropriate corner when the trajectory intersects
with two adjacent boundaries (Fig. 9b), and kept a safe
distance from the restricted area when the UAV is too close
to the area (Fig. 9c). When the potential trajectory intersects
with two parallel boundaries, the UAV reached the target by
avoiding the restricted area with a shorter distance (Fig. 9d).

In Fig. 9a and 9d, the trajectory went over the safe distance
when the UAV was trying to turn at approximately 8 in the
x-axis, which is due to the implemented position controller
restricts the initial attitude error less than 90 degrees to
obtain the stability of the complete system. The properties
of the position controller can be found in [11]. A possible
solution to improve the controller instability is to introduce an
intermediate waypoint with smaller turning angle when a sharp
manoeuvre is required. However, this restricts the flexibility of
the UAV’s movement.

B. Static Obstacle Avoidance

1) Experiment Setup: For static obstacle avoidance, poten-
tial collision is evaluated by constructing a 3D axis-aligned
bounding box from the UAV’s current position to the proposed
intermediate waypoint. Ideally, In an open space with fewer
obstacles, large waypoint step size results in faster converging
to the target position. However, in a crowded working environ-
ment, a small step size is needed to detect all obstacles without
missing any obstacles. This potentially increase the converging
time of the navigation. Secondly, higher map resolution gives
a better representation of the complicated part of the working

(a) Case1.1: two parallel boundary
with equal distance to safe-corners

(b) Case1.2: two adjacent boundary

(c) Case1.3: the trajectory does not
intersect with the bounding box

(d) Case1.4: two parallel boundaries
with a shorter corner to exit

Fig. 9. Restricted Area results in 2D

environment but requires more computation capacity. Fig. 10
illustrats a 3D outdoor environment, the UAV is expected
to find a collision-free trajectory to the user-defined target
(30, 10, 2) from (0, 0, 0). Experiments are designed to evaluate
how Octomap resolution and waypoint step size can affect the
performance of the algorithm. Additionally, as the primary
solution of searching for alternative waypoint is to ’look-up’,
a roofed environment is introduced to test the algorithm’s
feasibility.

Fig. 10. 3D map with static obstacles and user-defined target

2) Results and Evaluation: Fig. 11 shows the executed
trajectory for both outdoor and roofed environment. The
trajectory is concluded to be collision-free as the UAV has
successfully detected and avoided the surrounding obstacles
during the navigation. The performance of the algorithm is
evaluated by recording the total flight duration consumed for
the UAV to reach the target position, with the results given in
Table II.

(a) open space trajectory (b) roofed environment trajectory

Fig. 11. The executed trajectory in 3D

TABLE II
ALGORITHM PERFORMANCE WITH DIFFERENT OCTOMAP RESOLUTION

AND NEXT WAYPOINT STEP SIZE

Case
No

Waypoint
step (m)

Map resolu-
tion (m)

Duration
(s)

2.1 0.5 0.05 297

2.2 0.5 0.1 65

2.3 0.5 0.15 53

2.4 0.5 0.2 51

2.5 0.5 2 49

2.6 0.5 3 failed

3.1 0.1 0.5 failed

3.2 0.5 0.5 47

3.3 1 0.5 29

3.4 1.5 0.5 23

The results show that the algorithm’s performance is im-
proved significantly when the resolution changes from 0.05
to 0.1, a large number of iterations for obstacle detection
takes much time with a low-resolution value (high resolution);
hence, the duration has a big jump. The duration changes
slightly when the resolution value increases from 0.1 to 2;
the number of iterations for collision is reduced. However, in
Case 2.6, it failed to find an initial waypoint at the beginning of
the simulation. This is because the perception unit in mapping
system detects the ground land as an obstacle, and marked
the space as occupied with large resolution value. The size
of the obstacle is larger than its actual size; hence no initial
waypoint at the beginning of the simulation, even the UAV is
in an open space. An ideal solution would be the improvement
in the mapping system, to segment the ground land from the
rest of the static obstacles.

For the waypoint step size, the results show that a large
step size improves on the converging time of the algorithm.
However, in Case 3.1, the algorithm failed to find a trajectory
when the step size is 0.1 metre. This is because the bounding
box used for collision checking is constructed from UAV’s
current position towards the next waypoint with the length of
step size; due to rounding and discretisation effects, nodes may
be traversed that have float coordinates appearing outside of
the float bounding box.

C. Dynamic Obstacle Avoidance

1) Experiment Setup: In order to determine the appropriate
t for velocity estimation, the dynamic obstacle is simulated
as a second UAV; The velocity of the dynamic obstacle is
evaluated in terms of the global coordinates of the obstacle
at the current time and last time as well as the time interval.
From the result, the estimated maximum velocity is extremely
larger than its true value when the duration is shorter than
0.035s. A possible explanation would be the selected duration
of t is shorter than the minimum time Tp required to process
the velocity estimation, which results in the system failed to
update the obstacle’s position. On the other hand, the estimated
velocity is smaller than the actual velocity when the t exceeds
approximately 0.5s. This is due to the obstacle is programmed
to reach a sequence of intermediate waypoints rather travelling
straight between two waypoints with a constant velocity, which
involves acceleration and deacceleration. Larger t does not
provide a good representation of the obstacle’s instantaneous
velocity. Hence, the duration of 0.04s is chosen for the
obstacle’s velocity estimation.

TABLE III
CASES DESIGNED FOR DYNAMIC OBSTACLE AVOIDANCE

WITH START AND ENDING COORDINATES FOR BOTH THE UAV
AND THE MOVING OBSTACLE

CASE UAV start UAV tar-
get

Obstacle
start

Obstacle
target

No. x, y, z (m) x, y, z (m) x, y, z (m) x, y, z (m)
4.1 [0, -6, 2] [0, 4, 2] [-6, 0, 2] [6, 0, 2]

4.2 [0, -6, 2] [0, 10, 2] [0, 0, 2] [0, 6, 2]

4.3 [0, -6, 2] [0, 10, 2] [0, 6, 2] [0, 0, 2]

4.4 [0, -10, 2] [0, 10, 2] [-3, -3, 2] [3, 3, 2]

4.5 [0, -10, 2] [0, 10, 2] [3, 3, 2] [-3, -3, 2]

(a) case 4.1 (b) case 4.2 (c) case 4.3

(d) case 4.4 (e) case 4.5

Fig. 12. 2D overview of the obstacle’s trajectory and UAV’s potential
trajectory, where the dashed arrow denotes the UAV’s potential trajectory and
solid arrow denotes the obstacle’s trajectory

Fig. 12 shows the five-set experiments designed to test the
algorithm’s feasibility of dynamic obstacle avoidance. The
obstacle’s trajectory is designed to be different from the UAV’s
potential trajectory, with different start and ending coordinates

(Table III). The UAV is expected to reach the target position
without colliding with the moving obstacle.

2) Results and Evaluation:
a) Case 4.1: As it is shown in Fig. 13, the obstacle

travelled in positive x-axis direction from -6 to +6; the UAV
is flying in the direction of y-axis, and they have the same
altitude in z-axis. As shown in Fig.13a, when the UAV found
the potential collision with a dynamic obstacle, it flies to
the opposite direction of the obstacle towards negative x-axis.
Another solution, as shown in Fig.13b, is when the UAV found
the dynamic obstacle, it slightly drops its altitude in z-axis, and
then back to original altitude.

(a) 2D trajectory comparison (b) 3D trajectory comparison

Fig. 13. Case 4.1: 2D and 3D trajectory of obstacle and UAV

b) Case 4.2: As it is shown in Fig. 14, the UAV and the
identified obstacle are flying in the parallel directions, but their
boundary boxes intersect each other. To avoid the potential
collision, the UAV must move out of the boundary box of the
obstacle. As shown in Fig. 14a, in the 2D space, the UAV is
parallel with the obstacle along y-axis; hence, the UAV moves
towards positive x-axis. In the 3D space, shown in Fig.14b,
the UAV is parallel with the obstacle along z-axis, to avoid
the potential collision, the UAV is moving towards positive
x-axis.

(a) 2D trajectory comparison (b) 3D trajectory comparison

Fig. 14. Case 4.2: 2D and 3D trajectory of obstacle and UAV

c) Case 4.3: As it is shown in Fig. 15, Similarly to
Case 4.2, the algorithm determined the corner with a shorter
distance.

d) Case 4.4: As it is shown in Fig. 16, the UAV will fly
to the bounding box corner with a higher number of opposite
direction to the obstacle’s velocity. Hence, the UAV is slightly
flying away from its original direction but along the opposite
direction of the identified obstacle. As shown in Fig. 16a and
16b, the UAV is flying towards negative x-axis and y-axis,
while the obstacle is flying towards positive x-axis and y-axis.

(a) 2D trajectory comparison (b) 3D trajectory comparison

Fig. 15. Case 4.3: 2D and 3D trajectory of obstacle and UAV

(a) 2D trajectory comparison (b) 3D trajectory comparison

Fig. 16. Case 4.4: 2D and 3D trajectory of obstacle and UAV

e) Case 4.5: As it is shown in Fig. 17, similarly to case
4.4, the algorithm found a collision-free path by going to the
negative direction on both x and y axes, which is the opposite
direction of obstacle’s movement.

(a) 2D trajectory comparison (b) 3D trajectory comparison

Fig. 17. Case 4.5: 2D and 3D trajectory of obstacle and UAV

V. CONCLUSION

We have developed a comprehensive navigation system for
an autonomous UAV. The navigation system consists of four
sub-systems: mapping, localisation, cognition and control sys-
tems. Three case studies were designed to verify the feasibility
of the algorithms to avoid a restricted area, static obstacle
and dynamic obstacle. The experiments on the three cases
demonstrate that the UAV is able to reach the target under all
the three cases of environments. All simulated components are
designed to match their real-world counterparts’ dynamics and
properties. Ideally, it can be transferred to a real UAV without
any changes. The simulation system provides a platform for
future robotic research.

As the simulation system is implemented in a modular
way, it provides an easy platform for adding on modulars of
designed algorithms. This will benefit for test and verifica-
tion of the designed algorithms for autonomous navigation.

Moreover, the system has good readability, maintainability and
extendability. In this work, we did not address the obstacle
detection. In future, we will investigate obstacle detection with
machine learning and vision techniques, as well as multiple
dynamic obstacles avoidance in an uncertain environment.

REFERENCES

[1] B. Yenne, Attack of the drones: A history of unmanned aerial combat.
Zenith Imprint, 2004.

[2] F. Gao, W. Wu, and S. Shen, Flying on point clouds: Online trajec-
tory generation and autonomous navigation for quadrotors in cluttered
environments, Journal of Field Robotics, 36(4), pp.710-733, 2019.

[3] J. Peterson, H. Chaudhry, K. Abdelatty, J. Bird, and K. Kochersberger,
Online aerial terrain mapping for ground robot navigation. Sensors,
18(2), p.630, 2018.

[4] C. Xia, Intelligent Mobile Robot Learning in Autonomous Navi-
gation, Ph.D. dissertation, Ecole Centrale de Lille, 2015. [Online].
Available:https://tel.archives-ouvertes.fr/tel-01298608

[5] T. Yu, J. Tang, L. Bai, and S. Lao, Collision Avoidance for Cooperative
UAVs with Rolling Optimization Algorithm Based on Predictive State
Space, Applied Sciences, vol. 7, no. 4, p.329, 2017.

[6] T. Mac, C. Copot, R. De Keyser, and C. Ionescu, The development of an
autonomous navigation system with optimal control of an UAV in partly
unknown indoor environment, Mechatronics, 49, pp.187-196, 2018.

[7] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Rotors – a modular
gazebo MAV simulator framework, in Robot Operating System (ROS).
Springer, pp. 595–625, 2016.

[8] A. Finn and S. Scheding, Developments and challenges for autonomous
unmanned vehicles. Springer, 2012.

[9] T. Shima and S.Rasmussen, UAV cooperative decision and control:
challenges and practical approaches, SIAM, 2009.

[10] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W.
Burgard, Octomap: An efficient probabilistic 3D mapping framework
based on octrees, Autonomous Robots, 2013, software available at
http://octomap.github.com.

[11] T. Lee, M. Leoky, and N. H. McClamroch, Geometric tracking control
of a quadrotor uav on SE (3), in 49th IEEE Conference on Decision
and Control, pp. 5420-5425, IEEE, 2010.

[12] R. V. Kulkarni and G. K. Venayagamoorthy, Bio-inspired algorithms
for autonomous deployment and localization of sensor nodes, IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 40, no. 6, pp. 663-675, 2010.

[13] A. Nguyen and B. Le, 3d point cloud segmentation: A survey, in
2013 6th IEEE Conference on Robotics, Automation and Mechatronics
(RAM), pp. 225-230, Nov 2013.

[14] G.Szauer, Game Physics Cookbook, Packt Publishing Ltd, pp. 116-120,
2017.

