
RAPDARTS: Resource-Aware
Progressive Differentiable Architecture Search

Sam Green§, Craig M. Vineyard‡, Ryan Helinski‡, Çetin Kaya Koç∗
§Semiotic AI, Los Altos, California, USA

sam@semiotic.ai
‡Sandia National Laboratories, Albuquerque, New Mexico, USA

{cmviney, rhelins}@sandia.gov
∗University of California Santa Barbara, Santa Barbara, California, USA

cetinkoc@ucsb.edu

Abstract—Early neural network architectures were designed
by so-called “grad student descent”. Since then, the field of
Neural Architecture Search (NAS) has developed with the goal of
algorithmically designing architectures tailored for a dataset of
interest. Recently, gradient-based NAS approaches have been cre-
ated to rapidly perform the search. Gradient-based approaches
impose more structure on the search, compared to alternative
NAS methods, enabling faster search phase optimization. In the
real-world, neural architecture performance is measured by more
than just high accuracy. There is increasing need for efficient
neural architectures, where resources such as model size or
latency must also be considered. Gradient-based NAS is also
suitable for such multi-objective optimization. In this work, we
extend a popular gradient-based NAS method to support one or
more resource costs. We then perform in-depth analysis on the
discovery of architectures satisfying single-resource constraints
for classification of CIFAR-10.

I. INTRODUCTION

THE optimal design of a neural architecture depends on 1)
the target dataset, 2) the set of primitive operations (e.g.

convolutional filters, skip-connections, nonlinearity functions,
pooling), 3) how the primitive operations are composed into a
neural architecture and optimized, and 4) resource constraints
like hardware cost, minimum accuracy, or maximum latency.
In this paper, we assume the target dataset has been provided,
and we provide guidelines and analysis for searching for neural
architectures under one or more hardware resource constraints.

Convolutional layers and fully-connected layers are
parameter-heavy operations. Those, along with other lighter
primitive operations, like pooling layers or batch normaliza-
tion, may be composed into an endless variety of neural
architectures. But what is the optimal neural architecture for
a given dataset? There is no existing closed-form solution to
that question.

Historically, the highest performing neural architectures
have been found by applying heuristics and a large amount of
compute. Some well known examples of modern hand-crafted
architectures include AlexNet [1], VGG16 [2], ResNet [3],
and the Inception series [4], [5], [6]. None of these examples
consider hardware, and they pursue classification performance
at all cost.
§ Research performed while author was employed by Sandia National

Laboratories.

"Locked"
Architecture
Parameters

"Locked"
Network

Parameters
Update

Architecture
Update
Network

Fig. 1. Gradient-based Neural Architecture Search (GBNAS) methods main-
tain two sets of parameters. Neural network parameters are represented by
θ and architecture parameters are represented by α. GBNAS algorithms
leverage differentiable functions, parameterized by architecture parameters, to
design deep neural networks, which are parameterized by network parameters.
First-order optimization alternates between “locking” one set of parameters
and updating the other.

Neural Architecture Search (NAS) methods automate strate-
gies for discovery of high performing neural architectures. A
reinforcement learning-based (RL) approach was the first post-
AlexNet NAS method with state-of-the-art performance on
CIFAR-10 [7], [8]. The RL approach was quickly followed
by a high performance Evolutionary Strategy (ES) based
method [9]. While both the RL and ES methods discovered
high performance architectures, their use came at the cost of
thousands of GPU hours.

Gradient-based NAS (GBNAS) methods have the benefit
of being directly optimized through gradient descent and
consequently complete the search faster than other NAS meth-
ods. The basic idea of GBNAS is given in Figure 1. The
search process alternates between temporarily fixing one set
of parameters, i.e. assuming they are constants, and updating
the other set of parameters. This approach has no convergence
guarantees, but it works well in practice.

Because neural models are now widely deployed on systems
like edge devices, in cars, and running in servers, available
hardware resources also have an impact on what may be
considered an “optimal” neural architecture design. Hardware
resource constraints are often summarized as size, weight,
and power (SWaP). Resource constraints could also include
maximum latency, minimum throughput, or a manufacturing
budget which will determine if a custom ASIC is an option,
if a COTS device is sufficient, or if something semi-custom,
like an FPGA, is an option. For example, during the design

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 2. The function of DARTS architecture parameters is to scale the output
of primitive operations. In this illustration the primitive operations include
3 × 3 and 5 × 5 convolutional filters parameterized by tensors θ1 and θ2
respectively. The output feature maps of the primitive operations are element-
wise scaled� by the softmax (sm) of architecture parameters α1 and α2. The
scaled output feature maps are then added, thereby creating a mixed operation.
This notional illustration shows a network with only two primitive operations,
followed by a nonlinearity, producing an output prediction ŷ. In practice, there
may be many mixed operations, each containing many primitive operations,
forming a deep network.

of Google’s TPUv1, architects were given a budget of 7 ms
per inference (including server communication time) for user-
facing workloads [10].

Recent efforts described below implement NAS strategies
incorporating hardware resource constraints into the search.
GBNAS methods capture hardware resource constraints within
a differentiable loss function. This approach enables the ar-
chitecture search to yield network architectures biased toward
satisfying resource constraints.

In this work we have modified P-DARTS [11], which in-turn
is based on another popular gradient-based NAS algorithm,
DARTS [12], to support resource costs. We use our modified
GBNAS algorithm to search for many neural architectures
under various resource consumption penalties. We then use our
results and observations to answer the following questions:

• What is the computational cost of searching for satisficing
architectures?

• What heuristics can be used to guide the search and
training process to reduce compute time?

• How reproducible are search results under random initial
conditions?

II. RELATED WORK

The first competitive NAS approach applied to modern
image classification tasks was based on reinforcement learning
(RL) [7]. In this work, an LSTM-based RL agent was trained
to output primitive operations which were then chained to-
gether into a directed acyclic graph. After training and evalu-
ating the graph, the agent was then encouraged or discouraged,
via a positive or negative reward derived from classification
accuracy, to generate similar graphs in the future or to explore
and make new graphs.

The reinforcement learning NAS approach worked well and
was able to achieve high accuracy, but at unheard of compu-
tational expense. It required 3,150 GPU-days to discover one
of their published architectures.

+

+

+

+

+

+

+

+

Fig. 3. The DARTS cell architecture has 14 mixed operations (represented by
Oi) distributed among four steps with skip-connections between each step.
At each step, the outputs of the mixed operations are element-wise added.
The sum is then passed as an input to a mixed operation in the next step. All
element-wise sums are concatenated as the cell output and fed forward to the
next cell in the network.

Related approaches to sampling neural architectures in-
clude Markov chain Monte Carlo methods [13], evolution-
ary strategies [14], and genetic algorithms [15]. Similar to
RL approaches, all of these optimization methods generate
populations of neural architectures. The populations are then
trained and a fitness value is derived from the classifier’s final
test performance. The fitness value is used to encourage or
discourage the design of the next population of architectures.

Reinforcement learning, Markov chain Monte Carlo meth-
ods, evolutionary strategies, and genetic algorithms discover
high-performance architectures, but they are incredibly ex-
pensive. These methods often require 100× to 1000× more
compute than gradient-based methods [16].

Gradient-based neural architecture search has recently be-
come popular because of its efficiency [12], [17], [18], [11].
GBNAS methods maintain two sets of parameters: network pa-
rameters θ and architecture parameters α. Previous GBNAS
methods have introduced various methods to optimize and
use the two parameter sets. In the simplest case, optimization
is achieved by optimizing one set of parameters and then
the other. This first-order optimization approach is further
explained and illustrated in Figure 1.

Differentiable Architecture Search (DARTS) is a GBNAS
technique that uses mixed operations to compute multiple
primitive operations in parallel, followed by element-wise
summation [12]. The mixed operations are scaled by architec-
ture parameters prior to summation. For example, as illustrated
in Figure 2, a 3×3 convolutional filter and a 5×5 convolutional
filter can be designed such that both receive the same input
feature map and both generate additively conformable output
feature maps.

Extending this technique, DARTS composes 14 mixed op-
erations into a cell. Eight cells are then chained to create
the network. Each cell shares the same connectivity and
architecture parameters (α) for mixed operations, but the
network parameters (θ) are learned independently in each
primitive operation and in each cell. An illustration of the
DARTS cell connectivity is given in Figure 3.

DARTS has a limitation which requires the entire neural

network (i.e. all cells and all mixed operations) to fit in GPU
memory. This limits the depth of the neural network as well
as the batch size during training. Progressive Differentiable
Architecture Search (P-DARTS) mitigates the memory limita-
tion of DARTS by 1) gradual growth in the depth of the neural
network, and simultaneously 2) gradual reduction in number of
primitive operations per mixed operation, thus reducing model
size [11].

ProxylessNAS also extended DARTS [18]. ProxylessNAS
treats the architecture parameters of each mixed operation
as a probability distribution. ProxylessNAS stores a large
overparameterized network in system memory, because the
network is too large to fit on a GPU. During evaluation,
a subnetwork is sampled and transferred to the GPU for
evaluation. Gradients are calculated and used to update the
shared-weights of the overparameterized network.

Addressing the need to search for architectures which not
only strive for high accuracy, but also meet additional perfor-
mance constraints, hardware-aware NAS techniques have been
pursued. ProxylessNAS is particularly relevant for hardware-
aware GBNAS, because it formalizes the approach to in-
corporating resource costs during the search. In the context
of classification, ProxylessNAS creates a loss function that
incorporates both a cross-entropy loss for the classification
accuracy as well as a resource loss for latency.

In this work we augment P-DARTS with a ProxylessNAS-
style resource loss and analyze its impact on architectures
discovered during the search phase.

III. METHOD

A. Resource-Aware Differentiable Neural Architecture Search

When training a convolutional neural network for classifi-
cation, the goal is to obtain a model that best predicts labels
from observations drawn from an underlying distribution of
interest. Fitting a neural model to an underlying distribution
is achieved by finding optimal network parameters θ∗ that
minimize expected prediction error on an available dataset:

θ∗ = argmin
θ

[
J(θ) = E(x,y)∼p̂data

L1(f(x;θ), y)
]
, (1)

where J is the objective function, x are dataset observations,
y are dataset labels, p̂data is the empirical distribution, L1 is
a prediction error loss function, and f is the neural network
parameterized by θ.

Gradient-based NAS methods introduce another set of ar-
chitecture parameters α, producing:

g(x;θ,α). (2)

We refer to g as a directed acyclic graph, or simply graph,
to highlight that it is composed of a neural network whose
control flow is modified by other non-network architecture
parameters. Note the distinction between f used in Equation
1, which is only parameterized by network parameters, and g
used in Equation 2, which is parameterized by both network
and architecture parameters.

Architecture parameters, like network parameters, are
scalar-valued tensors. Architecture parameters are used to
control either the weight of primitive operations, as in [12],

[11], or the probability primitive operations will take place,
as in [19], [18]. In both cases, the scalar values are at least
interpreted as one or more probability distributions through
processing by the softmax function. In our case, the probability
distribution is then used for evaluation of a mixed operation.

A mixed operation is illustrated in Figure 2, and it is
formalized as:

O(x) = E
[
o(x)

]
≈

N∑
i=1

exp(αi)∑
j exp(αj)

oi(x) =
N∑
i=1

pioi(x),

(3)
where oi(x) is a primitive operation, and O(x) is equivalent to
the expected value of the primitive operations. This formalism
extends the mixed operation to the inclusion of N primitive
operations that are evaluated in parallel and designed such
that their outputs are additively conformable. In practice many
mixed operations are used, with unique subsets of α and θ
used for the calculation of each expected value, but we show
only a single mixed operation here for clarity.

The inclusion of architecture parameters implies there are
now two objective functions to be optimized:

J1(θ) = E(x,y)∼p̂data
L1(g(x,α;θ), y),

J2(α) = E(x,y)∼p̂data
L1(g(x,θ;α), y). (4)

The graph evaluations in Equation 4 are now denoted
g(x,α;θ) and g(x,θ;α). This notation highlights that in
the case of J1(θ) the graph is evaluated at input and ar-
chitecture parameter constants (x,α) and optimized using
network parameters θ. In the second case of J2(α) the graph
is evaluated at input and network parameter constants (x,θ)
and optimized using architecture parameters α. Therefore the
following bilevel optimization must be solved:

θ∗ = argmin
θ

[
J1(θ) = E(x,y)∼p̂data

L1(g(x,α
∗;θ), y)

]
,

α∗ = argmin
α

[
J2(α) = E(x,y)∼p̂data

L1(g(x,θ
∗;α), y)

]
.

(5)

When using first-order differentiable methods, this bilevel
optimization is solved by alternatingly “locking” one set of
parameters and updating the other with gradient descent.
Second-order optimization methods, which involve calculation
of the Hessian, are also possible and slightly better in terms
of accuracy, but this comes at significant computational cost.
However, it is possible to approximate the second-order opti-
mization with reduced computational cost [12].

Our method extends P-DARTS to discover neural architec-
tures biased toward the satisfaction of resource constraints.
We do this by including one or more “expected resource cost”
loss terms. As mentioned previously, each of the primitive
operations in a mixed operation is associated with a unique
architecture parameter. P-DARTS uses 14 mixed operations in
the search phase of cell architecture discovery, and there are
eight primitive operations per mixed operation, so there are
14× 8 = 112 architecture parameters total.

Fig. 4. P-DARTS may be extended with the calculation of an expected
resource cost (C1) for each mixed operation. When the gradient of the
expected resource cost is calculated, the more expensive primitive operations
are penalized more heavily than the less expensive operations, but the penalty
is balanced by how much the primitive operation contributes to classification
accuracy.

The expected value of a single mixed operation was given
in Equation 3. We temporarily make index values of the mixed
operation explicit here for clarity:

Ok(xk) =
8∑
i=1

pk,i · ok,i(xk), (6)

where k is the mixed operation index. Note here that the
probability distributions, pk,i, are now tied to a particular
mixed operation. This calculation is equivalent to the addition
node in Figure 2.

As introduced in ProxylessNAS, the probabilities used in the
mixed operation calculation are also conducive to calculation
of the expected value of various resource costs. For example,
if there is a cost function that takes as input the description
of each primitive operation (including the input feature map
dimension information) and outputs a resource cost, it may be
used for the calculation of an expected resource cost of the
mixed operation:

E
[
cost(Ok(xk))

]
≈

8∑
i=1

pk,i · cost(ok,i(xk)). (7)

The cost function may be an analytical function, e.g. number
of bytes required by the model, or the cost function could be
based on a simulation or a surrogate model trained from data
collected from a physical device.

The expected cost of the mixed operation is differentiable
with respect to the mixed operation’s architecture parameters.
Accordingly, the partial derivative of the expected resource
cost with respect to architecture parameter αi is given as:

∂E
[
cost(O(x))

]
∂αi

≈
∂
[
p1c1 + p2c2 + · · ·+ p8c8

]
αi

,

=
8∑
l=1

∂
[

exp(αl)∑
j exp(αj)

· cl
]

∂αi
,

=
8∑
l=1

clpl(δi,l − pi). (8)

where we have abbreviated cost(oi(x)) as ci, δi,l = 1 if i
equals l and 0 otherwise, and we have dropped the mixed
operation index k for brevity.

10 10 10 9 10 8 10 7

1

2250000

2500000

2750000

3000000

3250000

3500000

3750000

4000000

4250000

Ar
ch

ite
ct

ur
e

pa
ra

m
et

er
 c

ou
nt

Effect of 1 on Parameter Count

Pub P-DARTS
Min P-DARTS
Limit

Fig. 5. Coarse-search for resource expected parameter count hyperparameter
λ1. As λ1 grows beyond 10−7, RAPDARTS increasingly identifies architec-
tures that require less than 3 M parameters. The publish P-DARTS architecture
is marked with the dashed line. The minimum P-DARTS architecture found
by us is marked with the dash-dot line. Our self-imposed budget is marked
with the solid line.

10 62 × 10 7 3 × 10 7 4 × 10 7 6 × 10 7

1

2400000

2600000

2800000

3000000

3200000

3400000

3600000

3800000

4000000
Ar

ch
ite

ct
ur

e
pa

ra
m

et
er

 c
ou

nt
Effect of 1 on Parameter Count (zoomed)

Pub P-DARTS
Min P-DARTS
Limit

Fig. 6. Fine-search focused 2 × 10−7 < λ1 < 10−6. At around λ1 =
6×10−6 architectures are frequently generated which meet the 3 M parameter
constraint.

We denote the sum of expected mixed operation costs as:

Cm =

14∑
k=1

E
[
costm(Ok(xk))

]
, (9)

Note that unique m correspond to unique resource costs, e.g.
C1 could be the sum of expected mixed operation parameter
sizes, and C2 could be the sum of expected mixed operation
latencies.

We denote the sum of the classification and resource losses
as:

L = L1 +
M∑
m=1

λmCm, (10)

where M is the number of resource costs to satisfy, and λm is
the resource-cost hyperparameter and controls how important
the resource cost m is compared to accuracy as well as other
resource costs.

The bilevel optimization in Equation 5 may now be slightly
rewritten as:

θ∗ = argmin
θ

[
J1(θ) = E(x,y)∼p̂data

L(g(x,α∗;θ), y)
]
,

α∗ = argmin
α

[
J2(α) = E(x,y)∼p̂data

L(g(x,θ∗;α), y)
]
,

(11)

where only L1 has been replaced by L. As before, this
may be optimized using first or second-order approaches. For
intuition on the continued use of a single loss function L,
consider Figure 4. Under the assumption that a change in
network parameters θ creates no change in cost (given a fixed
input feature map and primitive operation), the gradient of
C1 with respect to θ is zero. On the other hand, a change in
architecture parameters α creates a change in both L1 and C1.
So calculating the gradient of L = L1 +λ1C1 with respect to
both θ and α results in the correct values.

Using the method above, we created Resource-Aware P-
DARTS (RAPDARTS). Practically, the modification to P-
DARTS requires the total expected resource cost be returned
during the forward pass of an input tensor. To achieve this,
during calculation of each mixed operation (Equation 6), we
also calculate the expected resource cost (Equation 7). The
expected cost for all mixed operations is accumulated and
added to the classification loss (Equation 9). If multiple costs
are required, e.g. model size and latency, each cost requires
its own version of Equation 7, and must be accumulated
individually from other costs.

IV. EXPERIMENTS AND RESULTS

We use RAPDARTS to search for CIFAR-10 neural ar-
chitectures. We follow the architecture discovery algorithm
of P-DARTS and search for cell architectures containing the
same primitive operations as used by DARTS and P-DARTS,
namely:

• Zero*
• Skip-Connect*
• Avg-Pool 3× 3*
• Max-Pool 3× 3*

• Seperable 3× 3 Conv.
• Seperable 5× 5 Conv.
• Dialated 3× 3 Conv.
• Dialated 5× 5 Conv.

All of the above primitive operations are standard convolu-
tional layers except Zero which allows a cell to learn not to
pass information. Skip-connect is a parameter-free operation
which allows information to pass through the mixed operation
without modification. Parameter-free primitive operations are
marked with an asterisk.

In an effort to simulate a real-world constraint, we restrict
ourselves such that discovered CIFAR-10 architectures must
have less than 3× 106 parameters. This constrained optimiza-
tion problem may be captured as:

minimize
θ,α

L1(g(x;θ,α), y)

subject to Parameter count < 3× 106.
(12)

We perform NAS adhering to this constraint using the RAP-
DARTS framework above.

2750000 2800000 2850000 2900000 2950000
Architecture parameter count

2.7

2.8

2.9

3.0

3.1

3.2

CI
FA

R-
10

 v
al

id
at

io
n

er
ro

r (
%

)

Parameter Count vs. CIFAR-10 Validation Error

Fig. 7. Relationship between RAPDARTS model size and trained validation
error appears uncorrelated. Indicating that at this variation of model capacity,
model size is not a predictor of final classifier performance.

For the purpose of baseline calculations, we first consider
the unconstrained results from P-DARTS. The authors of P-
DARTS provided a reference architecture discovered through
their algorithm [20]. We trained and evaluated that architecture
eight times using the latest version of the P-DARTS code [21].
We then used the results from the repeated training to obtain
performance statistics of the published architecture.

The resulting trained models achieved 2.60± .13% error on
the CIFAR-10 validation dataset. Additionally, the published
P-DARTS architecture requires 3.4× 106 parameters.

We then executed the P-DARTS architecture search code
four times to test the ability to rediscover architectures with the
performance of the published architecture. The four searches
resulted in nine architectures. However, per the P-DARTS
algorithm, we eliminated one architecture with more than two
skip-connections in the normal cell (see P-DARTS paper for
details on the two cell types).

None of the eight valid architectures were the same as
the official P-DARTS CIFAR-10 architecture, but this is not
surprising, given the size of the P-DARTS architecture search
space. Because of this, we compare our results to the statistics
of various architectures discovered during our search, instead
of the statistics of the single published architecture. The
resulting trained models achieved 2.72±.22% error on CIFAR-
10. The architectures required 3.9 ± .3 M parameters. The
smallest P-DARTS model required 3.4 M parameters.

We now explore the impact of different hyperparameter val-
ues on the unconstrained multi-objective version of Equation
12:

L = L1 + λ1C1, (13)

where C1 is the sum of expected number of parameters in
the model. As introduced in Equation 10, the λ1 scalar is a
hyperparameter which determines the relative importance of
the resource cost explicitly and the relative importance of the
accuracy of the network implicitly.

As stated in this section’s introduction, our self-imposed
resource budget is 3 M parameters. The default P-DARTS

C10 Test Err (%)
Architecture Best Avg Params (M) Search Cost (GPU-days) Search Method
AmoebaNet+B + cutout [22] N/A 2.55± 0.05 2.8 3150 evolution
ASAP-Small [23] 1.99 N/A 2.5 .2 gradient-based
ASHA [24] 2.85 3.03± 0.13 2.2 9 random
DARTS [12] 2.94 N/A 2.9 .4 gradient-based
DSO-NAS [25] N/A 2.84± 0.07 3.0 1 gradient-based
SNAS + moderate constraint + cutout [17] 2.85 N/A 2.3 1.5 gradient-based
RAPDARTS + cutout (ours) 2.68 2.83± 0.05 2.8 12 gradient-based

TABLE I
RAPDARTS CIFAR-10 ERROR RATE VERSUS OTHERS FOR MODELS WITH LESS THAN 3× 106 PARAMETERS. WE ALSO INCLUDE NAS RESULTS FROM
RANDOMLY SEARCHED ARCHITECTURES [24] AS WELL AS RECENT RESULTS [23]. FOR RAPDARTS, SEARCH COST INCLUDES ACTUAL COST FOR ALL

EXPERIMENTS FOR FINDING THE 2.68% MODEL. IN TOTAL, THE SEARCH AND TRAIN PHASES REQUIRED 26 GPU-DAYS.

search does not generate models that small, however, by using
RAPDARTS we are able to satisfy this constraint. To achieve
this, we need to discover a λ1 value to guide the architecture
search. That is accomplished by finding a coarse range of
suitable λ1s and then identifying a refined λ1.

The coarse λ1 is identified by performing various archi-
tecture searches with λ1s sampled randomly from a uniform
distribution U([10−11, 10−6]). Each search requires .3 GPU-
days.

c_{k-2}

0

skip_connect 1
sep_conv_3x3

2
sep_conv_3x3 3

skip_connect

c_{k-1}

dil_conv_3x3

dil_conv_3x3

dil_conv_3x3

c_{k}

dil_conv_3x3

(a) Normal Cell

c_{k-2}
0

max_pool_3x3

1
avg_pool_3x3

2

avg_pool_3x3 3

avg_pool_3x3

c_{k-1}

max_pool_3x3

avg_pool_3x3

max_pool_3x3

avg_pool_3x3 c_{k}

(b) Reduce Cell

Fig. 8. Cells found by RAPDARTS achieving 2.68% CIFAR-10 validation
error. All primitive operations are low-cost operations.

Results from the coarse-search are shown in Figure 5. At
approximately λ1 > 10−7, architectures begin to be generated
which meet the 3×106 parameter count constraint. Parameter
counts reduce dramatically as λ1 approaches 10−6, but we
have observed that models with higher capacity tend to per-
form better than models with lower capacity, so it is unlikely

that architectures derived from λ1 > 10−6 are preferred over
those closer to the 3 M parameter threshold.

Figure 6 “zooms in” on the previous figure, focusing on
λ1 sampled uniformly from U [(2× 10−7, 10−6)]. Near λ1 =
6× 10−7 ≈ 1× 10−6.2, architectures are generated that often
require less than 3 M parameters.

One final search is then performed on λ1 sampled uniformly
from U([10−6.24, 10−6.2]). This test resulted in 48 valid ar-
chitectures with resulting models between 2.1 M and 2.96
M parameters. We then trained the 16 largest resulting archi-
tectures. The resulting best model achieved 2.68% CIFAR-10
validation error and required 2.8 M parameters. The results for
all 16 trained models are plotted in Figure 7. As can be seen,
there is no linear relationship at this scale between parameter
count and CIFAR-10 accuracy. For statistical confidence, we
retrained the best model eight times with different seeds and
obtained 2.83%± .05 validation error.

The discovered cells corresponding to the 2.68% CIFAR-
10 validation are shown in Figure 8. The DARTS-based
algorithms use two cell types: a “normal” cell, which maintains
input and output feature map dimensionality, and a “reduce”
cell, which decrease the output feature maps dimensionality.

The cell architectures discovered by RAPDARTS are note-
worthy in several respects. First, the normal cell has discovered
a “deep” design, similar to that discovered by P-DARTS, but
only lightweight convolutional operations are used. Second,
all pooling operations have been moved to the reduce cells.

Table I compares the RAPDARTS architecture with the
performance of recent architectures with parameter counts less
than 3 M. RAPDARTS competes favorably with the others.

We report the actual number of hours spent searching for
our winning architecture, not merely the search time for a
single architecture. Including both the coarse and fine-search
phases, 40 different λ1 values were used. This took a total of
12 GPU-days to compute.

We trained 16 of the fine-search phase models to comple-
tion. Each model required less than 20 hours to train, so the
16 fine-search models took less than 14 GPU-days total to
train. All experiments were performed using an NVIDIA V100
GPU.

V. CONCLUSION AND FUTURE WORK

Classification accuracy achieved by neural architecture
search methods now surpass hand-designed neural models.

First-generation NAS methods include those based on evo-
lutionary search and reinforcement learning. Second gener-
ation NAS methods use gradient-based optimization. In this
work we present RAPDARTS, which augments a popular
gradient-based NAS method with the ability to target neural
architectures meeting specified resource constraints. We use
RAPDARTS to identify a neural architecture achieving 2.68%
test error on CIFAR-10. This is competitive with other existing
results for models with less than 3 M parameters.

We believe third-generation methods will be gradient-based
and attempt to make more aspects of the search differentiable.
For example, the P-DARTS (and RAPDARTS) search begins
with five cells, then grows the search network to 11 cells,
and finally 17 cells. At the same time, as the network grows,
less important primitive operations are dropped. The “gradual”
adjustments introduced by this technique enable architecture
parameters learned by gradient-descent in one phase to be
useful in another. It would be preferable to make these changes
even more gradually. We leave that for future work.

In conclusion, we have presented an example that optimizes
two objectives: minimizing accuracy loss while keeping the
number of model parameters below a resource constraint
threshold. A limitation of our work is that the number of
parameters required by our discovered models may not op-
timize other constraints, e.g. minimum latency. To address
this concern, future work will focus on multiple resource
constraints guided by more hardware-specific costs.

ACKNOWLEDGMENT

Sandia National Laboratories is a multi-mission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

The views expressed in the article do not necessarily repre-
sent the views of the U.S. Department of Energy or the United
States Government.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[5] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[6] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[7] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[8] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute
for advanced research).” [Online]. Available: http://www.cs.toronto.edu/
∼kriz/cifar.html

[9] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V.
Le, and A. Kurakin, “Large-scale evolution of image classifiers,” in
Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, 2017, pp. 2902–2911.

[10] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2017, pp. 1–12.

[11] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable archi-
tecture search: Bridging the depth gap between search and evaluation,”
arXiv preprint arXiv:1904.12760, 2019.

[12] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” arXiv preprint arXiv:1806.09055, 2018.

[13] S. C. Smithson, G. Yang, W. J. Gross, and B. H. Meyer, “Neural
networks designing neural networks: multi-objective hyper-parameter
optimization,” in Proceedings of the 35th International Conference on
Computer-Aided Design. ACM, 2016, p. 104.

[14] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective
neural architecture search via lamarckian evolution,” arXiv preprint
arXiv:1804.09081, 2018.

[15] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and
W. Banzhaf, “Nsga-net: neural architecture search using multi-objective
genetic algorithm,” in Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2019, pp. 419–427.

[16] M. Wistuba, A. Rawat, and T. Pedapati, “A survey on neural architecture
search,” arXiv preprint arXiv:1905.01392, 2019.

[17] S. Xie, H. Zheng, C. Liu, and L. Lin, “Snas: stochastic neural architec-
ture search,” arXiv preprint arXiv:1812.09926, 2018.

[18] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” arXiv preprint arXiv:1812.00332,
2018.

[19] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, “Single
path one-shot neural architecture search with uniform sampling,” arXiv
preprint arXiv:1904.00420, 2019.

[20] “P-darts published cifar-10 genotype,” https://github.com/chenxin061/
pdarts/blob/b1575e101aedb7396a89d8a7f74d0318877a1156/genotypes.
py, accessed: 2019-10-24.

[21] “P-darts source code,” https://github.com/chenxin061/pdarts/tree/
05addf3489b26edcf004fc4005bbc110b56e0075, accessed: 2019-10-24.

[22] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 4780–4789.

[23] A. Noy, N. Nayman, T. Ridnik, N. Zamir, S. Doveh, I. Friedman,
R. Giryes, and L. Zelnik-Manor, “Asap: Architecture search, anneal and
prune,” arXiv preprint arXiv:1904.04123, 2019.

[24] L. Li and A. Talwalkar, “Random search and reproducibility for neural
architecture search,” arXiv preprint arXiv:1902.07638, 2019.

[25] X. Zhang, Z. Huang, and N. Wang, “You only search once: Single shot
neural architecture search via direct sparse optimization,” arXiv preprint
arXiv:1811.01567, 2018.

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/chenxin061/pdarts/blob/b1575e101aedb7396a89d8a7f74d0318877a1156/genotypes.py
https://github.com/chenxin061/pdarts/blob/b1575e101aedb7396a89d8a7f74d0318877a1156/genotypes.py
https://github.com/chenxin061/pdarts/blob/b1575e101aedb7396a89d8a7f74d0318877a1156/genotypes.py
https://github.com/chenxin061/pdarts/tree/05addf3489b26edcf004fc4005bbc110b56e0075
https://github.com/chenxin061/pdarts/tree/05addf3489b26edcf004fc4005bbc110b56e0075

