
P-DNN: An Effective Intrusion Detection Method
based on Pruning Deep Neural Network

Mingjian Lei, Xiaoyong Li, Binsi Cai, Yunfeng Li, Limengwei Liu, Wenping Kong
Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education

Beijing University of Posts and Telecommunications
Beijing, China

Email: {chnleimingjian, lxyxjtu, cbsbupt, liyfbupt, mwdoublel, kwenping}@163.com

Abstract—Today, the scale of global Internet users continues
to grow; the Internet has become the main driver of global
economic growth; IoT technology is also constantly pushing the
process of the Internet of Everything. However, the ever-changing
cybersecurity situation is not optimistic and the people’s demand
for secure network is also increasing. In this paper, for the biggest
challenge of building anomaly-based Network Intrusion Detec-
tion System: building a high-performance intrusion detection
classifier model, we first propose an effective intrusion detection
method based on pruning deep neural network: P-DNN. Firstly,
we train a deep neural network with complex structure and good
intrusion detection performance. Secondly, through the pruning
operation, only the connections with more important information
in the weight are reserved, reducing the complexity of the model.
Finally, retrain the deep neural network to find the best model.
We use the KDD Cup 99 dataset to evaluate the effectiveness of
the method and achieve exciting results. The model constructed
by P-DNN achieves a detection rate of 0.9904 for known attacks
and a detection rate of 0.1050 for unknown attacks. By comparing
with related work, the model achieves the best intrusion detection
performance: COST is reduced to 0.1875 and ACC is increased
to 0.9317.

Index Terms—pruning, deep neural network, intrusion detec-
tion

I. INTRODUCTION

In 2018, the number of Internet users worldwide had
reached 3.8 billion, accounting for 51% of the global total [1].
As of December 2018, 7 of the 10 companies with the highest
market capitalization were Internet technology companies,
namely Microsoft, Amazon, Apple, Alphabet, Facebook, Al-
ibaba, and Tencent [1]. By 2020, NB-IoT will achieve deep
coverage in China for indoor, traffic network and underground
pipe network; the base station scale will reach 1.5 million [2].
In 2018, National Internet Emergency Center handled about
106,000 network security incidents and captured more than
100 million computer malware samples [3].

Today, the scale of global Internet users continues to grow;
the Internet has become the main driver of global economic
growth; IoT technology is also constantly pushing the process
of the Internet of Everything. However, the ever-changing
cybersecurity situation is not optimistic and the people’s de-
mand for secure network is also increasing to protect systems,
services and data from unexpected threats. Since it was first
proposed by Heberlein in 1991 [4], the Network Intrusion De-
tection System (NIDS) has received continuous attention from

academia and industry. According to the detected technology,
NIDS can be divided into signature-based NIDS and anomaly-
based NIDS. Signature-based NIDS maintains a signature
database, and compares the signature of the traffic with the
signature database to determine whether it is normal traffic
or attack traffic. Anomaly-based NIDS models normal and
abnormal network traffic, and distinguishes normal traffic and
abnormal traffic by calculating the similarity between the
traffic and the model. Signature-based NIDS (such as the well-
known open source NIDS: Snort [5] and Suricata [6]) has
high detection rate when detecting known attacks. However,
it cannot detect unknown attacks (0-day attacks and variants
of attacks) that are not included in the signature database.
Anomaly-based NIDS can overcome this weakness. On the
basis of achieving a high detection rate for known attacks,
anomaly-based NIDS can detect unknown attacks, increasing
the probability of detecting high-risk attacks. In summary,
anomaly-based NIDS has a greater possibility to build a more
secure network environment and meet people’s demand for a
secure network.

Contributions. The contributions of this paper are summa-
rized as follows:

1) The relationship between the importance of the infor-
mation owned by the connection and the absolute value of
the weight. Through comparative experiments of three pruning
methods, we prove that in the deep neural network under the
intrusion detection environment, the connections with a larger
absolute value of the weight have more important information
than the connections with a smaller absolute value of the
weight.

2) Application of pruning deep neural network in the
field of intrusion detection. For the biggest challenge of
building anomaly-based NIDS: building a high-performance
intrusion detection classifier model, we first propose an effec-
tive intrusion detection method based on pruning deep neural
network: P-DNN. We use the KDD Cup 99 dataset to evaluate
the effectiveness of the method and achieve exciting results.
The model constructed by P-DNN achieves a detection rate of
0.9904 for known attacks and a detection rate of 0.1050 for
unknown attacks. By comparing with related work, the model
achieves the best intrusion detection performance: COST is
reduced to 0.1875 and ACC is increased to 0.9317.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

II. RELATED WORK

In 2000, of the 24 entries in the KDD Cup 99 competition,
the top three winners used some variants of the decision tree.
The winner of the competition made use of an ensemble
of 50 × 10 C5 decision trees, using cost-sensitive bagged
boosting [7]. The runner-up first constructed a set of decision
trees and then a problem-specific global optimization criterion
was used to select an optimal subset of trees to give the
final prediction [8]. The third-placed approach used two-layer
decision trees. The first layer was trained on the connections
which cannot be classified by security experts, and the second
layer was built on the connections which cannot be classified
by the first layer [9].

In 2001, Ramesh Agarwal et al. proposed a new framework,
PNrule. The main idea is learning a rule-based model in two
stages: First, find P-rules to predict the presence of a class
and then find N-rules to predict the absence of the class. this
strategy helps in overcoming the problem of small disjuncts
often faced by other sequential covering based algorithms.
Another key point in PNrule is the mechanism used for
scoring. It allows to selectively tune the effect of each N-
rule on a given P-rule. Experimental results showed that the
PNrule framework held promise of performing well for real-
world multiclassification problems with widely varying class
distributions [10].

In 2003, Maheshkumar Sabhnani et al. studied the per-
formance of classical machine learning algorithms on the
KDD Cup 99 dataset. They found that some machine learning
algorithms performed better for a given attack category. They
then built a multi-classifier model in which a specific detection
algorithm was associated with an attack category for which it
was the most promising. The experimental results showed that
significant improvements had been achieved in the detection
of Probe, DoS, and U2R [11].

In 2004, Nahla Ben Amor et al. studied the application of
Naive Bayes in intrusion detection and proved that even with a
simple structure, Naive Bayes could provide very competitive
results. In addition, they also compared Naive Bayes with the
decision tree. The experimental results showed that the results
of using naive Bayes or decision trees were slightly better than
those of the KDD Cup 99 winner [12].

In 2005, Chi-Ho Tsang et al. proposed a multi-objective
genetic fuzzy system called MOGFIDS for anomaly intrusion
detection. The system extracted accurate and interpretable
fuzzy rule-based knowledge from network data using an agent-
based evolutionary computation framework. The experimental
results showed that MOGFIDS achieved robust performance
for classifying both intrusion attacks and normal network
traffic. In addition, it could search for a reduced feature subset
and obtain interpretable fuzzy systems [13].

In 2008, Jiong Zhang et al. used the random forest algorithm
to construct the intrusion mode for the limitations of rule-based
intrusion detection systems in detecting new attack traffic.
By learning the training data, the random forest algorithm
could automatically build patterns instead of manual coding

rules. The experimental results showed that this method out-
performed the winner of the KDD Cup 99 competition [14].

In 2012, Khaled Badran et al. presented a multi-dimensional
multi-objective genetic programming feature extraction ap-
proach that maps the input feature space into a multi-
dimensional decision space to maximize the discrimination
between classes. A simple, normal-discriminant-function clas-
sifier was used for multi-category classification in the trans-
formed decision space. They applied this approach to the KDD
Cup 99 dataset and obtained results that are highly competitive
with the KDD Cup 99 winner but with a significantly simpler
classification framework [15].

In 2014, Saman Masarat et al. presented a new multi-step
framework for intrusion detection systems. In the random
feature selection step, features with a higher gain ratio are
obtained by using Using Roulette Wheel based on Gain
Ratio of features. In classifiers’ combination step, adding the
fuzzy weighted combiner can tag weights to classifiers related
to their cost and performance. Experimental results showed
that this approach returned better results than other similar
methods [16].

In 2019, R Vinayakumar et al. explored a deep learning
model DNN and proposed a highly scalable and hybrid DNNs
framework. In this framework, network attacks were detected
and classified by learning the abstract and high-dimensional
feature representation of the IDS data by passing them into
many hidden layers. The experimental results showed that
DNN performs well compared to the classic machine learning
classifier on the KDD Cup 99 dataset [17].

Since the KDD Cup competition in 1999, researchers have
explored many techniques for building intrusion detection
classifier model using the KDD Cup 99 dataset. These have
promoted more comprehensive development of research on
intrusion detection. But there is still a lot of room for research
on high-performance classifier models. On the basis of these
investigations, we first propose an effective intrusion detection
method based on pruning deep neural network: P-DNN, which
aims to build a higher performance intrusion detection classi-
fier model and promote the further development of intrusion
detection research.

III. METHODOLOGY

The subsections below describe the proposed intrusion
detection framework and the details of how P-DNN works
in the framework.

A. Intrusion detection framework

As shown in Figure 1, in the proposed intrusion detection
framework, in order to protect demilitarized zone (DMZ) and
internal network, the anomaly-based NIDS plays the following
role by using port mirroring technology on the key switches:
First, detect and alert in real time before the intrusion causes
damage. Second, when the intrusion occurs, dynamic defense
is performed through linkage with the firewall. Third, after
the invasion, the forensic analysis is performed through the
logs. Among it, we use P-DNN to complete the biggest

Internet
Classifier

NIDS

Training dataset

Extending feature's
dimension

Training DNN

Pruning

Retraining

Pre-processing

Deduplication
Character digitization

Normalization
Oversampling

P-DNN

Mirror

Mirror

Alerts

DMZ

Internal network

Logs

Iptable rules

Database

Web server Mail server FTP server

Server Computer A Computer B

Fig. 1. Intrusion detection framework.

challenge of building an anomaly-based NIDS: building a
high-performance intrusion detection classifier model.

B. Why choose the KDD Cup 99 dataset

In 1998, The Defense Advanced Research Projects Agency
conducted an intrusion detection assessment project at the MIT
Lincoln Laboratory to investigate and evaluate intrusion detec-
tion research. They built a network environment that simulates
the US Air Force LAN and simulated various user types,
various network traffic, and attack methods. Then the DARPA
1998 dataset [18] was constructed with 7 weeks of training
data and 2 weeks of testing data. Subsequently, Professor Sal
Stolfo and Professor Wenke Lee used data mining technology
to perform feature analysis and data preprocessing on this
dataset to form a new dataset, namely the well-known KDD
Cup 99 dataset [19]. In 2011, Vegard Engen et al. stated that
“despite the criticisms, researchers continue to use the data due
to a lack of better publicly available alternatives [20].” In 2018,
Serhat PEKER et al. investigated the application of neural
network in network intrusion detection in the past decade and
found that 19 of the 43 articles surveyed used the KDD Cup
99 dataset (44.2%, the largest proportion) [21]. In 2018, Hindy
et al. investigated the most cited NIDS researches in the past
decade and found that 44 of the 69 articles surveyed used the
KDD Cup 99 dataset (63.8%, the largest proportion) [22].

The KDD Cup 99 dataset has been criticized by some
network intrusion detection researchers [23] [24] [20], but the
authority of the birth and the recognition of many related
researchers indicate that it is still the most suitable dataset
for evaluating the effectiveness of network intrusion detection
methods. This is why we chose the KDD Cup 99 dataset.

C. Selection of data

As shown in Table I, the training dataset includes 494021
instances (kddcup.data 10 percent corrected [19]), and the
testing dataset includes 311029 instances (corrected [19]). The
five data types in the table are as follows:
• Normal: normal network connections.

TABLE I
TRAINING DATASET AND TESTING DATASET

training % testing %
Normal 97278 19.691 60593 19.481
Probe 4107 0.831 4166 1.339
DoS 391458 79.239 229853 73.901
U2R 52 0.011 228 0.073
R2L 1126 0.228 16189 5.205
Total 494021 100 311029 100

• Probe: attackers attempt to collect information about a
computer network to circumvent its security controls.
• DoS: attackers prevent certain services from processing

legitimate requests because memory resources are exhausted.
• U2R: attackers attempt to exploit certain vulnerabilities

to gain root access to the system after getting normal access
• R2L: attackers exploit certain vulnerabilities to get access

as local users of the computer through a remote connection.

D. Pre-processing

Data pre-processing includes deduplication, character digi-
tization, normalization and oversampling.

1) Deduplication. As shown in Table II, after the train-
ing dataset is deduplicated, the number of instances is re-
duced from 494021 to 145585. Deduplication preserves non-
repeating instances and provides baseline data for subsequent
oversampling operation.

TABLE II
DEDUPLICATION OF TRAINING DATASET

Number of record in training dataset
All % Distinct %

Normal 97278 19.691 87832 60.330
Probe 4107 0.831 2130 1.463
DoS 391458 79.239 54572 37.484
U2R 52 0.011 52 0.036
R2L 1126 0.228 999 0.686
Total 494021 100 145585 100

2) Character digitization. The classifier based on deep neural
network only uses numerical data for calculation. Therefore,
two tasks need to be completed: First, convert non-numeric

features of the dataset instance to numbers. Second, convert the
attack type of the dataset instance to the number corresponding
to its category. As shown in Table III, there are a total of 3
protocol types, 70 service types, 11 connection states, and 5
attack types converted into corresponding digital identifiers.

TABLE III
CHARACTER DIGITIZATION

Example Number
Protocol tcp, udp, icmp 0,1,2

Service aol, auth, bgp, courier, csnet ns, ctf,
daytime, discard, domain, domain u, echo, . . . 0-69

Connection OTH, REJ, RSTO, RSTOS0, RSTR,
S0, S1, S2, S3, SF, SH 0-10

Normal Normal network connections 0
Probe ipsweep, mscan, nmap, portsweep, saint, satan 1

DoS apache2, back, land, mailbomb, neptune,
pod, processtable, smurf, teardrop, udpstorm 2

U2R buffer overflow, httptunnel, loadmodule,
perl, ps, rootkit, sqlattack, xterm 3

R2L
ftp write, guess passwd, imap, multihop, named,

phf, sendmail, snmpgetattack, snmpguess, spy,
warezclient, warezmaster, worm, xlock, xsnoop

4

3) Normalization. Data normalization is the process of
scaling the value of each feature to a uniform range, thereby
eliminating the bias caused by large numerical features, which
is defined as (1).

x′
i =

xi√
x2
1 + x2

2 + . . .+ x2
n

(1)

where the vector x(x1, x2, . . . , xn) represents the original
value of the instance feature, and the vector x

′
(x

′

1, x
′

2, . . . ,
x

′

n) represents the value of the instance feature after the
normalization operation.

4) Oversampling. It is easy to see from Table II that the
training dataset is highly unbalanced, which is one of the data
distribution characteristics of the intrusion detection environ-
ment. According to analysis [24], the main reason for the poor
performance of low-frequency data by the classifier trained by
the KDD Cup 99 dataset is the imbalance of the dataset. In
view of this situation, in order to improve the classification
effect of low frequency data and the overall performance of the
classifier, this paper integrates the oversampling technique [25]
into the pre-processing operation. As shown in Figure 2, Probe,
U2R, and R2L are oversampled with the number of instances
of DOS as the baseline to construct a new relatively balanced
training dataset. In new dataset, the number of instances of
Probe, U2R, and R2L has been expanded by 25 (54572/2130),
1049 (54572/52), and 54 (54572/999) times respectively.

Normal,

87832,

60.33%

Probe, 2130, 1.46%

DoS,

54572,

37.48%

U2R, 52, 0.04% R2L, 999, 0.69%

Normal,

87832,

28.89%

Probe,

53250,

17.51%

DoS,

54572,

17.95%

U2R,

54548,

17.94%

R2L,

53946,

17.74%

Fig. 2. Oversampling

E. Extending feature’s dimension

A lot of research has shown an important conclusion: By
training a larger and more complex neural network model, and
then gradually pruning to get a smaller and simpler model, the
results are better than those obtained by directly training such
a small and simple model [26]. Our idea is that by expanding
the original feature‘s dimension of the dataset, the dimension
of the input layer of the neural network becomes larger and
the complexity of the model becomes higher. This operation
prepares for the next pruning operation, which aims to reduce
the complexity of the model. As shown in Figure 3, the
feature’s dimension of the input data is expanded by repeating
the original features in order.

F1 F2 F41

Extended features：

Original features：

F1 F2 F41 F1 F2 F41 F1 F2 F41

 Repeate in order

Fig. 3. Extending feature’s dimension.

F. Deep neural network

The details of the proposed deep neural network (DNN)
architecture are shown in Table IV. The key points are as
follows:

TABLE IV
DNN ARCHITECTURE

Layers Type units Activation
function param

0 Input layer 820 / /
0-1 Full connected 512 ReLU 420352
1-2 Dropout=0.5 / / 0
2-3 Full connected 256 ReLU 131328
3-4 Dropout=0.5 / / 0
4-5 Full connected 128 ReLU 32896
5-6 Dropout=0.5 / / 0
6-7 Full connected 64 ReLU 8256
7-8 Dropout=0.5 / / 0
8-9 Full connected 32 ReLU 2080

9-10 Dropout=0.5 / / 0
10-11 Full connected 5 Softmax 165

� Structure: The input layer includes 820 neurons. The
five hidden layers include 512, 256, 128, 64, and 32 neurons
respectively. The output layer includes 5 neurons.
� Connection mode: Full connection. Each neuron in the

current layer is connected to all neurons in the next layer.
� Hidden layer activation function: ReLU. ReLU is a

nonlinear activation function. Compared with the linear ac-
tivation function, it can better express complex classification
boundaries and more closely related to the signal excitation
principle of neurons, which can improve the performance of
the model [27]. In addition, ReLU can helps to reduce the
state of vanishing and error gradient issue [28].
� Output layer activation function: Softmax. In the five-

category environment of this experiment, Softmax that solves
the multi-classification problem is more suitable than Logistic
that solves the two-category problem. In addition, we can get

the probability distribution that the prediction result belongs
to a certain class through Softmax.
� Loss function: Categorical cross-entropy. Combining the

output layer with Softmax as the activation function, we
choose categorical cross-entropy as the loss function, which
is defined as (2).

loss(pd, ed) = −
∑

x
pd(x) log(ed(x)) (2)

where ed is true probability distribution, pd is predicted
probability distribution.
� Optimizer: Adam. It is designed to combine the advan-

tages of two recently popular methods: AdaGrad [29], which
works well with sparse gradients, and RMSProp [30], which
works well in on-line and non-stationary settings. Experiments
have shown that Adam performs better than other stochastic
optimization methods [31].
� Training algorithm: Back Propagation algorithm. The

algorithm compares the error generated by the theoretical
output with the actual output, and reversely adjusts the weight
and bias of each layer connection to optimize the parameters
of the whole network [32]. From a mathematical point of
view, the training of neural network is the iterative process
of each layer input under the nonlinear activation function.
The process of this iteration is similar to the process of
biological growth and evolution. This further explains why
neural network can simulate part of human brain function and
succeed in many fields.
� Dropout: This is a powerful technique to reduce overfitting

and improve the generalization of neural network [33]. The
key idea is that when the forward propagation, the activation
value of the neuron stops working with a fixed probability, so
that the neuron does not rely too much on some local features,
and the generalization ability of the model is stronger.

G. Pruning

Pruning neural network has excellent performance in the
field of deep learning model compression [34]–[36]. The
field is dedicated to reducing the storage requirements of

the model while maintaining the accuracy of classical neural
network models (such as LeNet-5 [37], AlexNet [38], VGG-
16 [39]), and promoting the algorithm to be efficiently applied
to resource-constrained hardware platforms. Different from the
goal of deep learning model compression field, This paper is
dedicated to the application of pruning technology in the field
of intrusion detection to build a higher performance intrusion
detection classifier model, and promote the construction of a
more secure network environment. By predicting the parame-
ters of the neural network, Misha Denil et al. pointed out that
there are significant redundancy in the parameters used in the
neural network [40]. Brandon Reagen et al. also acknowledge
the fact that most neural network contain far more information
than is needed for precise reasoning [41]. Min Lin et al.
also showed that in the neural network, the fully connected
layer is easy to cause over-fitting, and the simplification of
the fully-connected layer contributes to the improvement of
precision [42]. As shown in Figure 4, the idea of pruning in
this paper is that by pruning the DNN, only the connections
with more important information in the weights are reserved,
and the complexity of the model is reduced, thereby improving
the intrusion detection performance of the model. Assuming
that there are 3 input neurons in a layer and 4 output neurons
in the next layer, and the weight matrix is 3 × 4. The details
of the pruning are as follows:
. Step 1: Sort. The weights between each neuron in the

DNN and all neurons in the next layer are sorted by absolute
value.
. Step 2: Prune. According to the pruning rate P (represent-

ing the proportion of all pruned connections in all connections
of the DNN), the connections with smaller absolute value of
the weight are pruned (the weights are assigned to 0). The
position information of the pruned connections in the original
neural network is recorded during the pruning process.
. Step 3: Retrain. Retrain DNN. Using the position infor-

mation of the pruning, the weights of the pruned connections
are assigned 0 after each round of retraining.
. Step 4: Complete. Get the best model or go to Step 3.

Standard DNN:

After pruning: Reduce complexity

Reserve important
connections

1.376

0

0

0

0.764

-1.039

-0.755

-0.851

0

0

0

1.036

0.151

0.051

0.029

0.571

-0.498

0.475

-0.755

0.764

1.036

1.376

-0.851

-1.039

1.376

-0.498

0.029

0.571

0.764

-1.039

-0.755

-0.851

0.475

0.151

0.051

1.036

1

0

0

0

1

1

1

1

0

0

0

1

Best model

1

2

4

3

Step 1: Sort

Step 2: Prune

Step 3: Retrain

Step 4: Complete

Pruning:

Fig. 4. Pruning.

IV. EXPERIMENTAL RESULTS

This section will first introduce the performance indica-
tors used to evaluate the effectiveness of intrusion detection
method. Then, the experimental results of this paper are
presented and analyzed. Finally, compare our method with the
excellent related work.

A. Performance indicators

In order to evaluate the effectiveness of our proposed
method, we propose to use three evaluation indicators: COST,
accuracy (ACC), detection rate (DR). Among them, COST
is the most important, ACC is the second, and DR is the
reference. As shown in Table V, we will explain the calculation
details of the three evaluation indicators through an example
of confusion matrix.

TABLE V
AN EXAMPLE OF CONFUSION MATRIX

Predicted
Normal Probe DoS U2R R2L

A
ct

ua
l

Normal x00 x01 x02 x03 x04

Probe x10 x11 x12 x13 x14

DoS x20 x21 x22 x23 x24

U2R x30 x31 x32 x33 x34

R2L x40 x41 x42 x43 x44

1) COST. As shown in (3), the smaller the COST value,
the better the model. Where N represents the total number
of instances tested. CM represents the confusion matrix, and
CM(i, j) represents the number of instances originally belong-
ing to class i that are classified as class j. C represents the
cost matrix, and C(i, j) represents the cost that the instances
originally belonging to class i are classified as class j.

COST =
1

N

4∑
i=0

4∑
j=0

CM(i, j) ∗ C(i, j) (3)

TABLE VI
KDD CUP 99 COST MATRIX

Predicted
Normal Probe DoS U2R R2L

A
ct

ua
l

Normal 0 1 2 2 2
Probe 1 0 2 2 2
DoS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0

As shown in Table VI, the official provided a cost matrix
for evaluating entries in the KDD Cup 99 competition [19].
This is also the cost matrix used by COST. In the cost matrix,
the magnitude of these cost values are proportional to the
impact of the attack on the computing platform. Therefore, we
think that COST is the most important evaluation indicator for
analyzing the performance of a model from the perspective of
detecting intrusion.

2) ACC. As shown in (4), the larger the ACC value, the
better the model. Among them, x00, x11, x22, x33 and x44

represent the number of instances belonging to Normal, Probe,
DoS, U2R and R2L that are finally classified correctly.

ACC =
x00 + x11 + x22 + x33 + x44∑

(X)
(4)

Although ACC is a widely used classifier performance eval-
uation indicator. But when the data is unbalanced (as shown in
Table I, the testing dataset is extremely unbalanced), the ACC
will be misleading to the researcher. Assuming that the testing
dataset with 90 class A instances and 10 class B instances are
classified. If the model predicts all instances as class A, the
ACC is as high as 0.9. However, the model does not predict
any class B instances, which is undoubtedly an unsuccessful
classifier. Therefore, we think that ACC is the second most
important indicator for analyzing model performance from the
perspective of data classification.

3) DR. As shown in (5)-(9), the larger the DR value, the
better the model. Among them, the DR is represented by the
proportion of the number of correctly classified instances to
the total number of instances of this type.

DRNormal =
x00∑
x0i

(5)

DRProbe =
x11∑
x1i

(6)

DRDoS =
x22∑
x2i

(7)

DRU2R =
x33∑
x3i

(8)

DRR2L =
x44∑
x4i

(9)

DR shows the model’s ability to detect a certain type of
data in detail. Therefore, we think that DR can be used as a
reference indicator to analyze the performance of the model.

B. Details of experimental results

1) The relationship between the importance of the infor-
mation owned by the connection and the absolute value of
the weight. After sorting the weights between each neuron in
the DNN and all the neurons in the next layer in absolute
order, in the process of reducing the same complexity of the
model, we set up three pruning methods to compare, where the
pruning rate P represents the proportion of pruned connections
in all connections of the DNN. Method 1: According to
the value P, prune the connections with a larger absolute
value of the weight. Method 2: In the order of absolute
values from small to large, every other connection, prune x
connections (x=1, P=0.5; x=2, P=0.667; ...), reserving some
connections with a smaller absolute value of the weight and
some connections with a larger absolute value of the weight.
Method 3: According to the value P, prune the connections
with a smaller absolute value of the weight.

As shown in Figure 5, in contrast, the performance of
the model is best under the effect of the pruning method 3
represented by the red line. The model achieves a lower COST,
which is more stable and reduces the possibility of losing
important information of the model caused by pruning and can

0.0
00

 (x
=0)

0.5
00

 (x
=1)

0.6
67

 (x
=2)

0.7
50

 (x
=3)

0.8
00

 (x
=4)

0.8
33

 (x
=5)

0.8
57

 (x
=6)

0.8
75

 (x
=7)

0.8
89

 (x
=8)

0.9
00

 (x
=9)

0.9
09

 (x
=10

)

0.9
17

 (x
=11

)

0.9
23

 (x
=12

)

0.9
29

 (x
=13

)

0.9
33

 (x
=14

)

0.9
38

 (x
=15

)

0.9
41

 (x
=16

)

0.9
44

 (x
=17

)

0.9
47

 (x
=18

)

0.9
50

 (x
=19

)

Pruning rate

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CO
ST

KDD Cup 99 winner
Pruning method 1
Pruning method 2
Pruning method 3

0.0
00

 (x
=0)

0.5
00

 (x
=1)

0.6
67

 (x
=2)

0.7
50

 (x
=3)

0.8
00

 (x
=4)

0.8
33

 (x
=5)

0.8
57

 (x
=6)

0.8
75

 (x
=7)

0.8
89

 (x
=8)

0.9
00

 (x
=9)

0.9
09

 (x
=10

)

Pruning rate

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

CO
ST

KDD Cup 99 winner
Pruning method 1
Pruning method 2
Pruning method 3

Fig. 5. Comparison of three pruning methods

not be retrained to recover. The second is pruning method 2,
and the last is pruning method 3. This proves that in the DNN
under the intrusion detection environment, the connection with
a larger absolute weight value has more important information
than the connection with a smaller absolute weight value. By
adopting the P-DNN combined with the pruning method 3
which only the connections with more important information
in the weight were reserved and reduce the complexity of the
model, we found the best intrusion detection classifier model.

2) Best model. As shown in Figure 6, during the change of
the pruning rate P in steps of 0.001, we found the best model
when P equals 0.885. The confusion matrix and performance
evaluation indicators of the model are shown in Table VII.
From the perspective of detecting intrusion, the COST of the
model is 0.1875. From the perspective of data classification,
ACC of the model is 0.9317. From the perspective of eval-
uation reference indicator DR, DRnormal, DRprobe, DRDoS ,
DRU2R and DRR2L are 0.964, 0.886, 0.968, 0.272 and 0.313
respectively.

0.5
00

0.5
30

0.5
60

0.5
90

0.6
20

0.6
50

0.6
80

0.7
10

0.7
40

0.7
70

0.8
00

0.8
30

0.8
60

0.8
90
0.9

09

Pruning rate

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

CO
ST

(0.885, 0.1875)

Fig. 6. Find the best model

TABLE VII
BEST MODEL

Predicted
Normal Probe DoS U2R R2L DR

A
ct

ua
l

Normal 58385 992 96 409 711 0.964
Probe 93 3689 366 3 15 0.886
DoS 5162 403 222595 1064 629 0.968
U2R 21 44 91 62 10 0.272
R2L 8650 127 7 2344 5061 0.313

ACC 0.9317
COST 0.1875

As shown in Table IX, the model performs well on known
attacks (the attack instances exist in the training dataset and
testing dataset) with a detection rate as high as 0.9904.
The model performed poorly on unknown attacks (the attack
instances only exist in the testing dataset) with a detection
rate of only 0.1050. But the model exhibits high value for
detecting the 0-day attack and variants of attacks. We think that
the main reasons for poor performance include the following
two points: First, it is difficult to detect application layer
attacks, such as mailbomb, through the connection features of
the network layer. Second, the features of the dataset are not
sufficient to distinguish between the normal connections and
the connections of certain attack; as shown in Table VIII, in the
testing dataset, there is case where the snmpgetattack instance
and the normal instance have exactly the same features.

TABLE VIII
DIFFERENT CONNECTION INSTANCES WITH THE SAME FEATURES

0, udp, private, SF, 105, 146, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 0.00, 0.00, 0.00, 0.00, 1.00, 0.00, 0.00, 255,
254, 1.00, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, normal.
0, udp, private, SF, 105, 146, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 0.00, 0.00, 0.00, 0.00,1.00, 0.00, 0.00, 255,
254, 1.00, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, snmpgetattack.

TABLE IX
PERFORMANCE ON KNOWN ATTACKS AND UNKNOWN ATTACKS

Known attacks Unknown attacks
Attack Detected Total DR Attack Detected Total DR

Probe

ipsweep 303 306 0.9902

0.9945

0.9904

mscan 591 1053 0.5613

0.7406

0.1050

nmap 84 84 1 saint 734 736 0.9973
portsweep 344 354 0.9718

satan 1633 1633 1

DoS

back 0 1098 0

0.9942

apache2 169 794 0.2129

0.0911

land 3 9 0.3333 mailbomb 0 5000 0
neptune 57943 58001 0.9990 processtable 427 759 0.5626

pod 44 87 0.5058 udpstorm 1 2 0.5000
smurf 163996 164091 0.9994

teardrop 12 12 1

U2R

buffer overflow 22 22 1

0.8205

httptunnel 5 158 0.0317

0.1587loadmodule 2 2 1 ps 14 16 0.8750
perl 2 2 1 sqlattack 2 2 1

rootkit 6 13 0.4615 xterm 9 13 0.6923

R2L

ftp write 1 3 0.3333

0.848

named 7 17 0.4118

0.0015

guess passwd 3726 4367 0.8532 sendmail 6 17 0.3529
imap 0 1 0 snmpgetattack 0 7741 0

multihop 4 18 0.2222 snmpguess 0 2406 0
phf 0 2 0 worm 0 2 0

warezmaster 1315 1602 0.8209 xlock 2 9 0.2222
xsnoop 0 4 0

C. Comparison

In order to locate our research, we have made a comparison
as shown in table X.The comparison included recent research
using the KDD Cup 99 dataset and achieving satisfactory
results. Evaluation indicators include COST, ACC, and DR.
Regrettably, due to the different indicators used by different
researchers, only incomplete evaluation data can be collected
in some research. However, we still include these research in
the scope of comparison because of their excellent research
results.

As can be seen from Table X, the model constructed by
P-DNN is superior in performance to all other related work in
the table. From the perspective of detecting intrusion, COST
is greatly reduced to 0.1875, and from the perspective of
data classification, ACC is slightly increased to 0.9317. These
reflect the excellent intrusion detection performance of the
model. Maheshkumar Sabhnani et al. stated that all the classic
machine learning algorithms tested on the KDD Cup 99 dataset
offered an acceptable level of detection performance only for
DoS and PROBE attacks and demonstrated poor performance
on the U2R and R2L [43]. However, from the perspective
of the reference indicator detection rate, compared with other
research works, the method we proposed can not only get
satisfactory results on DRNormal, DRProbe, and DRDoS but
also make DRU2R and DRR2L achieve some improvement.

V. CONCLUSIONS

We first propose an effective intrusion detection method
based on pruning deep neural network: P-DNN. Firstly we
train a deep neural network with complex structure and good
detection performance through extending feature’s dimension.
Then, through comparative experiments of three pruning meth-
ods, it is proved that in the deep neural network under the
intrusion detection environment, the connections with a larger
absolute value of the weight have more important information
than the connections with a smaller absolute value of the
weight. On this basis, through the pruning operation, the
weights of the deep neural network with a smaller absolute
value are assigned to 0, which only reserve the connections
with more important information in the weight, reducing
the complexity of the model. Finally, retrain the remaining
connections with a larger absolute value of the weight to find
the best model. We use the KDD Cup 99 dataset to evaluate
the effectiveness of the method and achieve exciting results.
The model constructed by P-DNN achieves a detection rate
of 0.9904 for known attacks and a detection rate of 0.1050
for unknown attacks. At the same time, we explain two main
reasons why the model performs poorly on unknown attacks:
First, it is difficult to detect application layer attacks through
the connection features of the network layer. Second, the
features of the dataset are not sufficient to distinguish between

TABLE X
COMPARISON WITH RELATED WORK

DRNormal DRProbe DRDoS DRU2R DRR2L ACC COST
KDD Cup 99 winner [7] 0.995 0.833 0.971 0.132 0.084 0.9272 0.2331

KDD Cup 99 runner-up [8] 0.994 0.845 0.975 0.118 0.073 0.9292 0.2356
PNrule [10] 0.995 0.732 0.969 0.066 0.107 0.9259 0.2381

Multi-Classifier [11] / 0.887 0.973 0.298 0.096 / 0.2285
Decision Trees [12] 0.994 0.779 0.966 0.136 0.005 0.9280 0.2371
Naive Bayes [12] 0.977 0.883 0.967 0.110 0.087 0.9210 0.2441
MOGFIDS [13] 0.984 0.886 0.972 0.158 0.111 0.9277 0.2317

Random Forests [14] / / / / / 0.9293 0.2280
Multi-Objective Genetic Programming [15] 0.995 0.780 0.970 0.114 0.056 0.9240 0.2431

Tree Classifier + Fuzzy Ensemble [16] / / / / / 0.9300 0.2179
DNN [17] 0.995 0.764 0.942 0.089 0.243 0.9129 /

P-DNN 0.964 0.886 0.968 0.272 0.313 0.9317 0.1875

the normal connections and the connections of certain attack.
By comparing with related work, the model built by P-DNN
achieves the best intrusion detection performance: From the
perspective of detecting intrusion, COST is greatly reduced
to 0.1875; from the perspective of data classification, ACC
is slightly increased to 0.9317; from the perspective of the
reference indicator detection rate, in addition to the satisfactory
results in DRNormal, DRProbe, and DRDoS , it also achieves
some improvement in DRU2R and DRR2L.

ACKNOWLEDGMENT

This work was supported by NSFC-General Technology
Fundamental Research Joint Fund (No. U1836215), and the
National Key Research and Development Program of China
(No. 2016QY03D0605).

AVAILABILITY

Codes are available at: https://github.com/BydRay/P-DNN

REFERENCES

[1] “Internet Trends 2019,” https://www.bondcap.com/.
[2] “China Internet of Things Application Research Report 2018,” http://

www.clic.org.cn/xdwlgyl/296885.jhtml.
[3] “A Summary of China’s Internet Network Security Situation in 2018,”

http://www.cac.gov.cn/2019-04/17/c 1124379080.htm.
[4] L. T. Heberlein, B. Mukherjee, K. Levitt, G. Dias, and D. Mansur,

“Towards detecting intrusions in a networked environment,” Ph.D.
dissertation, U. of Calif., Davis, 1991.

[5] “Snort,” https://www.snort.org/.
[6] “Suricata,” https://suricata-ids.org/.
[7] B. Pfahringer, “Winning the kdd99 classification cup: bagged boosting,”

SIGKDD explorations, vol. 1, no. 2, pp. 65–66, 2000.
[8] I. Levin, “Kdd-99 classifier learning contest: Llsoft’s results overview,”

SIGKDD explorations, vol. 1, no. 2, pp. 67–75, 2000.
[9] M. Vladimir, V. Alexei, and S. Ivan, “The mp13 approach to the kdd’99

classifier learning contest,” SIGKDD Explorations. ACM SIGKDD,
vol. 1, no. 2, pp. 76–77, 2000.

[10] R. Agarwal and M. V. Joshi, “Pnrule: a new framework for learning
classifier models in data mining (a case-study in network intrusion
detection),” in Proceedings of the 2001 SIAM International Conference
on Data Mining. SIAM, 2001, pp. 1–17.

[11] M. Sabhnani and G. Serpen, “Application of machine learning al-
gorithms to kdd intrusion detection dataset within misuse detection
context.” in MLMTA, 2003, pp. 209–215.

[12] N. B. Amor, S. Benferhat, and Z. Elouedi, “Naive bayes vs decision
trees in intrusion detection systems,” in Proceedings of the 2004 ACM
symposium on Applied computing. ACM, 2004, pp. 420–424.

[13] C.-H. Tsang, S. Kwong, and H. Wang, “Anomaly intrusion detection
using multi-objective genetic fuzzy system and agent-based evolutionary
computation framework,” in Fifth IEEE International Conference on
Data Mining (ICDM’05). IEEE, 2005, pp. 4–pp.

[14] J. Zhang, M. Zulkernine, and A. Haque, “Random-forests-based network
intrusion detection systems,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 38, no. 5, pp. 649–
659, 2008.

[15] K. Badran and P. Rockett, “Multi-class pattern classification using single,
multi-dimensional feature-space feature extraction evolved by multi-
objective genetic programming and its application to network intrusion
detection,” Genetic Programming and Evolvable Machines, vol. 13,
no. 1, pp. 33–63, 2012.

[16] S. Masarat, H. Taheri, and S. Sharifian, “A novel framework, based on
fuzzy ensemble of classifiers for intrusion detection systems,” in 2014
4th international conference on computer and knowledge engineering
(ICCKE). IEEE, 2014, pp. 165–170.

[17] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-
Nemrat, and S. Venkatraman, “Deep learning approach for intelligent
intrusion detection system,” IEEE Access, vol. 7, pp. 41 525–41 550,
2019.

[18] “DARPA 1998 dataset,” https://www.ll.mit.edu/r-d/datasets.
[19] “Kdd Cup 99 dataset,” http://kdd.ics.uci.edu/databases/kddcup99/.
[20] V. Engen, J. Vincent, and K. Phalp, “Exploring discrepancies in findings

obtained with the kdd cup’99 data set,” Intelligent Data Analysis, vol. 15,
no. 2, pp. 251–276, 2011.

[21] M. U. ÖNEY and S. PEKER, “The use of artificial neural networks in
network intrusion detection: A systematic review,” in 2018 International
Conference on Artificial Intelligence and Data Processing (IDAP).
IEEE, 2018, pp. 1–6.

[22] H. Hindy, D. Brosset, E. Bayne, A. Seeam, C. Tachtatzis, R. Atkinson,
and X. Bellekens, “A taxonomy and survey of intrusion detection
system design techniques, network threats and datasets,” arXiv preprint
arXiv:1806.03517, 2018.

[23] J. McHugh, “Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed
by lincoln laboratory,” ACM Transactions on Information and System
Security (TISSEC), vol. 3, no. 4, pp. 262–294, 2000.

[24] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE Symposium on Com-
putational Intelligence for Security and Defense Applications. IEEE,
2009, pp. 1–6.

[25] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge & Data Engineering, no. 9, pp. 1263–1284,
2008.

[26] “Deep learning pruning,” https://blog.csdn.net/jacke121/article/details/
79450321.

[27] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural
networks for lvcsr using rectified linear units and dropout,” in 2013 IEEE
international conference on acoustics, speech and signal processing.
IEEE, 2013, pp. 8609–8613.

[28] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the fourteenth international conference on
artificial intelligence and statistics, 2011, pp. 315–323.

[29] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[30] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop, coursera: Neural
networks for machine learning,” University of Toronto, Technical Report,
2012.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[32] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning
representations by back-propagating errors,” Cognitive modeling, vol. 5,
no. 3, p. 1, 1988.

[33] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[34] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[35] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[36] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” ACM Journal on Emerging Technologies
in Computing Systems (JETC), vol. 13, no. 3, p. 32, 2017.

[37] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[40] M. Denil, B. Shakibi, L. Dinh, N. De Freitas et al., “Predicting param-
eters in deep learning,” in Advances in neural information processing
systems, 2013, pp. 2148–2156.

[41] B. Reagen, U. Gupta, R. Adolf, M. M. Mitzenmacher, A. M. Rush, G.-
Y. Wei, and D. Brooks, “Weightless: Lossy weight encoding for deep
neural network compression,” arXiv preprint arXiv:1711.04686, 2017.

[42] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[43] M. Sabhnani and G. Serpen, “Why machine learning algorithms fail in
misuse detection on kdd intrusion detection data set,” Intelligent data
analysis, vol. 8, no. 4, pp. 403–415, 2004.

