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Abstract—In this work, time-dependent linear and nonlinear
inequalities system (TDLNIS) is studied and solved. First, using
zeroing neural network (ZNN) method twice, a continuous time-
dependent ZNN (CTDZNN) model is proposed to solve the
continuous TDLNIS. Subsequently, explicit linear dual-multistep
methods, i.e., explicit linear dual-4-step, dual-3-step, and dual-
2-step methods, are presented and studied. Afterwards, by
applying the explicit linear dual-4-step method to the proposed
CTDZNN model, a 4-step discrete time-dependent ZNN (4S-
DTDZNN) model is proposed to solve the discrete TDLNIS. For
comparison, 3-step discrete time-dependent ZNN (3S-DTDZNN)
and 2-step discrete time-dependent ZNN (2S-DTDZNN) models
are also developed for solving the discrete TDLNIS. In addition,
theoretical analyses and results indicate the effectiveness and su-
periority of the proposed 4S-DTDZNN model. Finally, numerical
experimental results further substantiate the effectiveness and
superiority of the proposed 4S-DTDZNN model.

Keywords—Time-dependent linear and nonlinear inequalities
system, zeroing neural network, explicit linear dual-multistep meth-
ods, discrete time-dependent zeroing neural network model.

I. INTRODUCTION

Inequality is the mathematical modeling of unequal rela-
tion, which is the basis of further mathematical study and an
important tool for mastering modern scientific technology [1],
[2]. Some researches on the extensions and applications of
inequality have been performed over the past few decades [3],
[4], [5]. For example, Reference [3] formulated an impulsive
delay differential inequality and obtained an estimated decay
rate of the inequality solutions. Reference [4] derived a new
stability criteria with delay dependence in regard to linear ma-
trix inequalities for load frequency control systems. Reference
[5] presented two new sufficient conditions on global asymp-
totic synchronization for the drive-response inertial delayed
neural networks by using constructed integrating inequality and
inequality techniques.

Compared with static (or saying, time-invariant) inequality,
time-dependent one is more complicated, because it is required
to acquire the solution at each instant of time so as to satisfy
the real-time computational requirement [6], [7], [8]. In terms
of solving time-dependent inequality problems, zeroing neural
network (or termed, Zhang neural network, ZNN) method,
is a great alternative [2], [9], [10], [11], [12]. The ZNN is

a special class of recurrent neural network [6], [7], [11],
and it inherits the merits of conventional neural networks,
e.g., parallel computing [6]. Existing literatures indicate that
the ZNN method is also effective for solving other time-
dependent problems [6], [7], [8], [13], such as time-dependent
matrix inversion [8], [13]. References [9], [10], [11], and
[12] mainly studied time-dependent linear inequality or time-
dependent nonlinear inequality by adopting the ZNN method
once. Differing from the study subjects in [9], [10], [11], [12],
this work considers time-dependent linear inequality and time-
dependent nonlinear inequality as a whole, i.e., time-dependent
linear and nonlinear inequalities system (TDLNIS). Then, by
adopting the ZNN method twice, a continuous time-dependent
ZNN (CTDZNN) model is proposed to solve the continuous
TDLNIS.

Considering the fact that analog/continuous variables to be
processed by computer must be converted into digital/discrete
ones [6], [8], developing discrete models/algorithms is es-
sential for solving the corresponding discrete time-dependent
problems (including discrete TDLNIS). Generally speak-
ing, discrete models can be developed by adopting time-
discretization (or saying generally, numerical differentiation)
formulas, such as Euler forward formula and Zhang et al.
discretization (also termed, Zhang time-discretization, ZTD)
formulas, to discretize continuous models [6], [14], [15], [16],
[17], [18]. For instance, Reference [6] proposed a 7-step ZTD
formula, and utilized it to develop a 7-step ZTD-type discrete
time-dependent ZNN (DTDZNN) model for solving discrete
time-dependent different-layer nonlinear and linear equation-
s. Reference [15] proposed and studied 3-step ZTD-type
DTDZNN models to solve discrete time-dependent equality-
constrained quadratic programming problem. In addition to
ZTD formulas, References [17] and [18] presented the 4-step
Adams-Bashforth (AB) method, and used it to acquire 4-step
AB-type DTDZNN models for discrete time-dependent matrix
inversion, matrix pseudoinversion, and nonlinear minimization.
On the basis of the previous-mentioned CTDZNN model, this
work further presents and studies an explicit linear dual-4-step
method. By applying the method to the proposed CTDZNN
model, a 4-step DTDZNN (4S-DTDZNN) model is thus pro-
posed to solve the discrete TDLNIS. For comparison, explicit
linear dual-3-step and dual-2-step methods are also presented
and studied. By applying them to the proposed CTDZNN
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model, 3-step DTDZNN (3S-DTDZNN) and 2-step DTDZNN
(2S-DTDZNN) models are developed.

The remainder of this work is organized into six sections.
The discrete TDLNIS is introduced in Section II. A CTDZNN
is proposed to solve the continuous TDLNIS in Section III.
The explicit linear dual-4-step, dual-3-step, and dual-2-step
methods are presented and studied, respectively, and then by
applying them to the proposed CTDZNN model, the corre-
sponding DTDZNN models are proposed in Section IV. The
theoretical analyses and results of the DTDZNN models are
provided for solving the discrete TDLNIS in Section V. Two
numerical examples are provided to validate the effectiveness
of DTDZNN models and the superiority of the 4S-DTDZNN
model in Section VI. The work is summed up with final
remarks in Section VII. Note that the main contributions and
novelties of this work are listed as follows.

1) A CTDZNN model is proposed to solve the contin-
uous TDLNIS.

2) An explicit linear dual-4-step method is first applied
to combine with the proposed CTDZNN model, and
thus a 4S-DTDZNN model with high precision is
proposed to solve the discrete TDLNIS.

3) Comparative numerical experimental results substan-
tiate the effectiveness (or saying, validity) and supe-
riority of the proposed 4S-DTDZNN model.

II. PROBLEM FORMULATION

The discrete TDLNIS is formulated as the following ex-
pression group, with xk+1 = x(tk+1) ∈ R

n to be acquired dur-
ing computational interval [tk, tk+1) = [kι, (k+1)ι) ⊆ [0, tf):

{

Wk+1xk+1 ≤ vk+1, (1)

ψ(xk+1, tk+1) ≤ 0, (2)

in which ι denotes the length of sampling period, and tf
denotes the final instant of time. Besides, Wk+1 ∈ R

r×n is a
time-dependent full-row-rank matrix with r ≤ n; vk+1 ∈ R

r

and ψ(xk+1, tk+1) ∈ R
l are time-dependent vectors with

l ≤ n. Wk+1, vk+1, and ψ(xk+1, tk+1) are assumed to be
generated from W (t), v(t), and ψ(x(t), t), respectively, by
sampling at tk+1. We need to acquire the future unknown
solution xk+1 during [tk, tk+1) based upon the already known
data information, such as Wk, vk , and xk . Thus, the stringent
real-time computational requirement is guaranteed [6], [8].

To solve the discrete TDLNIS (1)-(2), the corresponding
continuous TDLNIS needs to be first studied, which is formu-
lated as follows (i.e., the so-called continuation technique):

{

W (t)x(t) ≤ v(t), (3)

ψ(x(t), t) ≤ 0, (4)

with x(t) denoting the unknown time-dependent solution of
the continuous TDLNIS (3)-(4).

III. CTDZNN MODEL

By adopting the ZNN method twice, a CTDZNN model
is proposed to solve the continuous TDLNIS (3)-(4) in this
section.

First of all, by introducing a time-dependent nonnegative
vector y.2(t) = [y21(t), y

2
2(t), · · · , y

2
r(t)]

T ∈ R
r, with the

superscript T denoting the transpose operator, (3) can be
converted into an equality as below:

W (t)x(t) − v(t) + y.2(t) = 0,

where slack variable vector y(t) = [y1(t), y2(t), · · · , yr(t)]
T ∈

R
r is unknown and needs to be acquired in the solution

process of (3)-(4). Afterwards, a vector-valued error function
(or termed, zeroing function) is defined [2], [6], [10], [13]:

e(t) =W (t)x(t) − v(t) + y.2(t), (5)

where y.2(t) is equivalent to Λ(t)y(t), with Λ(t) =
diag{y1(t), y2(t), · · · , yr(t)} ∈ R

r×r [10]. The following
equation can be obtained by applying the ZNN method, i.e.,
the ZNN design formula, ė(t) = −λe(t), to (5):

W (t)ẋ(t) + 2Λ(t)ẏ(t) = −Ẇ (t)x(t) + v̇(t)

− λ(W (t)x(t) − v(t) + y.2(t)),
(6)

in which the design parameter λ > 0. About inequality (4),
another vector-valued error function is defined as

ê(t) = [ê1(t), ê2(t), · · · , êl(t)]
T ∈ R

l,

where êi(t) = (max{0, ψi(x(t), t)})
2/2 with i = 1, 2, · · · , l

[9], [12]. Applying the ZNN method once more, one can obtain

J(x(t), t)ẋ(t) = −
1

2
λmax{0, ψ(x(t), t)} − ψ̇t(x(t), t), (7)

where

J(x(t), t) =













∂ψ1(x(t),t)
∂x1(t)

∂ψ1(x(t),t)
∂x2(t)

· · · ∂ψ1(x(t),t)
∂xn(t)

∂ψ2(x(t),t)
∂x1(t)

∂ψ2(x(t),t)
∂x2(t)

· · · ∂ψ2(x(t),t)
∂xn(t)

...
...

. . .
...

∂ψl(x(t),t)
∂x1(t)

∂ψl(x(t),t)
∂x2(t)

· · · ∂ψl(x(t),t)
∂xn(t)













,

and

ψ̇t(x(t), t) =
[

∂ψ1(x(t),t)
∂t

, ∂ψ2(x(t),t)
∂t

, · · · , ∂ψl(x(t),t)
∂t

]T

,

with J(x(t), t) ∈ R
l×n and ψ̇t(x(t), t) ∈ R

l. Let z(t) =
[xT(t),yT(t)]T ∈ R

n+r, and combine (6) with (7) together.
We further have

Q(t)ż(t) = q(t),

in which

Q(t) =

[

W (t) 2Λ(t)
J(x(t), t) Ol×r

]

∈ R
(r+l)×(n+r),

and

q(t) =
[

v̇(t)− Ẇ (t)x(t) − λ(W (t)x(t) − v(t) + y.2(t))

−λmax{0, ψ(x(t), t)}/2− ψ̇t(x(t), t)

]

∈ R
r+l.

ż(t) = [ẋT(t), ẏT(t)]T ∈ R
n+r denotes the first-order time

derivative of z(t), and Ol×r denotes an l × r zero matrix. By
assuming that Q(t) is of row full rank, the following CTDZNN
model is ultimately developed:

ż(t) = Q†(t)q(t), (8)

with the superscript † denoting the pseudo-inverse operator.
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Fig. 1. Trajectories of xk+1 = [x1,k+1, x2,k+1, x3,k+1, x4,k+1, x5,k+1, x6,k+1]
T, yk+1 = [y1,k+1, y2,k+1, y3,k+1]

T, and R̂k+1 generated by 4S-
DTDZNN model (12) with ι = 0.01, respectively, when solving discrete TDLNIS in Example 1.
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(c) With ι = 0.001

Fig. 2. Trajectories of R̂k+1 synthesized by 4S-DTDZNN model (12), 3S-DTDZNN model (13), and 2S-DTDZNN model (14), respectively, with different
values of ι, when solving discrete TDLNIS in Example 1.

IV. EXPLICIT LINEAR DUAL-MULTISTEP METHODS AND

DTDZNN MODELS

In this section, explicit linear dual-multistep methods, i.e.,
explicit linear dual-4-step, dual-3-step, and dual-2-step meth-
ods are presented and studied. Afterwards, the explicit linear
dual-multistep methods are applied to the proposed CTDZNN
model (8), with the corresponding DTDZNN models proposed.

First, we have the following lemma with its proof given
in Appendix A, developed essentially with the aid of ZTD-
involved techniques [2], [6], [8], [15], [18].

Lemma 1: With ι ∈ (0, 1), the explicit linear dual-4-step
(i.e., in terms of indices of variables and derivatives) method
is presented as (with O(ι5) as its truncation error [14], [15]):

ςk+1 = ςk −
5

6
ςk−1 +

5

7
ςk−2 +

5

42
ςk−3 (9)

+
ι

126
(285ς̇k − 256ς̇k−1 + 263ς̇k−2 − 46ς̇k−3) +O(ι5).

For comparison purposes, the explicit linear dual-3-step
and dual-2-step methods are also respectively presented as

ςk+1 =
10

7
ςk −

8

7
ςk−1 +

5

7
ςk−2

+
ι

28
(47ς̇k − 32ς̇k−1 + 21ς̇k−2) +O(ι4),

(10)

and

ςk+1 =
3

2
ςk −

1

2
ςk−1 +

ι

4
(5ς̇k − 3ς̇k−1) +O(ι3), (11)

where O(ι4) and O(ι3) as the truncation errors, respectively.

Then, by applying the explicit linear dual-4-step method
(9) to the CTDZNN model (8), the following 4S-DTDZNN
model is proposed:

zk+1
.
= zk −

5

6
zk−1 +

5

7
zk−2 +

5

42
zk−3

+
ι

126
(285żk − 256żk−1 + 263żk−2 − 46żk−3),

(12)

where
.
= stands for assigning one result on the right to a vari-

able on the left, and żk = Q†
kqk with Q†

k denoting the pseudo-
inverse matrix of Q(t) at tk (i.e., using the conventional static
pseudo-inverse operation). Besides, the truncation error of (12)
is O(ι5) with every entry being O(ι5). About the proposed 4S-
DTDZNN model (12), four initial state vectors, i.e., z0, z1, z2,
and z3, are necessary to start it up. Thereinto, z0 is relatively
arbitrarily set, and the remaining three initial state vectors can
be generated by zk+1

.
= zk + ιżk with k = 0, 1, and 2.

Similarly, by respectively applying the explicit linear dual-
3-step method (10) and the explicit linear dual-2-step method
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Fig. 3. Trajectories of xk+1 = [x1,k+1, x2,k+1, x3,k+1, x4,k+1, x5,k+1, x6,k+1, x7,k+1, x8,k+1, x9,k+1]
T, yk+1 = [y1,k+1, y2,k+1, y3,k+1, y4,k+1]

T,

and R̂k+1 generated by 4S-DTDZNN model (12) with ι = 0.001, respectively, when solving discrete TDLNIS in Example 2.

(11) to the CTDZNN model (8), the following 3S-DTDZNN
and 2S-DTDZNN models are developed:

zk+1
.
=

10

7
zk−

8

7
zk−1+

5

7
zk−2+

ι

28
(47żk−32żk−1+21żk−2),

(13)
and

zk+1
.
=

3

2
zk −

1

2
zk−1 +

ι

4
(5żk − 3żk−1), (14)

with the corresponding truncation errors being O(ι4) and
O(ι3), respectively.

V. THEORETICAL ANALYSES AND RESULTS

In this section, the theoretical analyses and results of
the DTDZNN models are provided for solving the discrete
TDLNIS (1)-(2).

Theorem 1: With ι ∈ (0, 1), the 4S-DTDZNN model (12)
is 0-stable, consistent, and convergent, and it converges with
the order of truncation error being O(ι5).

Proof: The proof is given in Appendix B. �

Corollary 1: With ι ∈ (0, 1), the 3S-DTDZNN model (13)
and the 2S-DTDZNN model (14) are 0-stable, consistent, and
convergent, and they converge with the orders of truncation
errors being O(ι4) and O(ι3), respectively.

Defining the total residual error as R̂k+1 = ‖Wk+1xk+1−
vk+1 + y.2k+1‖2 + ‖max{0, ψ(xk+1, tk+1)}‖2, with ‖ · ‖2 de-
noting the 2-norm of a vector, one has the following theorem.

Theorem 2: With ι ∈ (0, 1), the total maximal steady-state

residual error (TMSSRE) limk→+∞ sup R̂k+1 synthesized by
the 4S-DTDZNN model (12) is O(ι5).

Proof: The proof is given in Appendix C. �

Corollary 2: With ι ∈ (0, 1), the TMSSREs synthesized
by the 3S-DTDZNN model (13) and the 2S-DTDZNN model
(14) are O(ι4) and O(ι3), respectively.

VI. NUMERICAL EXPERIMENTS AND RESULTS

In this section, two numerical examples are provided to
validate the effectiveness of DTDZNN models and the supe-
riority of the 4S-DTDZNN model (12), specific as follows.

Example 1: One considers the following discrete TDL-
NIS with xk+1 to be obtained during computational interval
[tk, tk+1), of which the entries (or saying, elements) of coef-
ficient matrix Wk and vector vk are respectively

wi,j(tk) =























cos(0.1(i− j)tk)

i− j
, if i > j

cos(0.1itk) + 2i, if i = j

sin(0.1(j − i)tk)

j − i
, if i < j

(15)

and

vi(tk) =

{

cos(3tk) + 2, if i is odd

sin(tk), if i is even
(16)

with i = 1, 2, and 3 and j = 1, 2, · · · , 6. Besides, ψ(xk, tk) ≤
0 is presented via the following expression group:



















x1(tk)x2(tk)− 1/(tk + 1)3 + cos(tk)x3(tk)

+ x4(tk)− x25(tk) ≤ 0,

− sin(tk)x2(tk)− exp(−2tk) + x23(tk)

+ exp(−tk) sin(2tk) + 2x5(tk)x6(tk) ≤ 0.

The task duration is T = 60 s, the sampling period is ι =
0.01, and the design parameter is λ = 20. The initial state
vector is x0 = [0, 0, 0, 0, 0, 0]T, and the initial slack vector is
y0 = [1, 1, 1]T. The corresponding numerical results are shown
in Fig. 1. Thereinto, Figs. 1(a) and 1(b) show the elemental
trajectories of xk+1 and yk+1, respectively. Besides, Fig. 1(c)

shows the trajectory of R̂k+1 (i.e., the total residual error).
It converges toward zero quickly and the convergence time is
approximately 0.25 s. Distinctly, the 4S-DTDZNN model (12)
is able to solve the above discrete TDLNIS effectively.

To provide further evidence on the superiority of the 4S-
DTDZNN model (12), the 3S-DTDZNN model (13) and the
2S-DTDZNN model (14) are adopted to solve the discrete

TDLNIS as well. The trajectories of R̂k+1 are shown in Fig.
2, with ιλ = 0.2. As indicated in the figure, when ι varies
from 0.1 to 0.01 to 0.001, the TMSSREs synthesized by
(12) vary from 10−3 to 10−8 to 10−13. Comparatively, the
TMSSREs synthesized by (12) and (14) vary from 10−2 to
10−6 to 10−10 and from 10−2 to 10−4 to 10−7, respectively.
That is, the TMSSREs synthesized by (12), (13), and (14)



TABLE I. TMSSRES SYNTHESIZED BY DTDZNN MODELS IN

EXAMPLE 2

Sampling period Model (12) Model (13) Model (14)

ι = 0.1 2.70 × 10−3 1.10 × 10−1 1.35 × 10−1

ι = 0.05 1.49 × 10−4 1.20 × 10−3 1.90 × 10−2

ι = 0.01 6.72 × 10−8 2.75 × 10−6 2.14 × 10−4

ι = 0.005 2.46 × 10−9 2.13 × 10−7 2.30 × 10−5

ι = 0.001 7.36 × 10−13 2.86 × 10−10 2.24 × 10−7

approximately vary in the manners of O(ι5), O(ι4), and O(ι3),
respectively. The superiority of the 4S-DTDZNN model (12)
is substantiated.

Example 2: One considers another discrete TDLNIS, of
which wi,j(tk) and vi(tk) with i = 1, 2, 3, and 4 and
j = 1, 2, · · · , 9 are defined as those in Example 1 correspond-
ing to the entries of Wk and vk, respectively. Furthermore,
ψ(xk, tk) ≤ 0 is presented as follows:






































cos(tk)x1(tk)− 1/(tk + 1)2

+ x4(tk)− x35(tk) + x27(tk) ≤ 0,

sin(tk)x1(tk)x2(tk)− 3 exp(−tk) + exp(−tk) sin(4tk)

+ x23(tk) + 2 cos(tk)x5(tk)x6(tk) + x8(tk)x9(tk) ≤ 0,

2x2(tk)− exp(−tk) sin(4tk)− cos(tk)

+ x6(tk)x7(tk)− 2x29(tk) ≤ 0.

The relevant parameters and initial values are respectively
set as T = tf − 0 = 40 s, ι = 0.001, λ = 200,
x0 = [0, 0, 0, 0, 0, 0, 0, 0, 0]T, and y0 = [2, 1, 1, 1]T. The corre-
sponding numerical results are displayed in Fig. 3. Specifically,
the elemental trajectories of xk+1 and yk+1 are respectively
displayed in Figs. 3(a) and 3(b). Besides, the trajectories of

R̂k+1 synthesized by (12), (13), and (14) are displayed in
Fig. 3(c), of which the TMSSREs are of orders 10−13, 10−10,
and 10−7, respectively. It is evident that the three DTDZNN
models can effectively solve the discrete TDLNIS, with the
4S-DTDZNN model (12) having the best computational per-
formance.

Moreover, Table I displays the TMSSREs synthesized by
the three DTDZNN models, with ιλ = 0.2 and different values
of ι. The table indicates that, when τ decreases by a factor of
10, the TMSSRE synthesized by (12) approximately improves
the precision by a factor of 105. Meanwhile, the TMSSREs
synthesized by (13) and (14) approximately improve the pre-
cision by factors of 104 and 103, respectively. These findings
substantiate that the computational precision of (12), (13), or
(14) is approximately O(ι5), O(ι4), or O(ι3), respectively.

VII. CONCLUSION

In this work, we have studied the TDLNIS. First of all,
we have proposed the CTDZNN model (8) for solving the
continuous TDLNIS (3)-(4) by using the ZNN method twice.
Subsequently, we have respectively presented and studied the
explicit linear dual-4-step method (9), the explicit linear dual-
3-step method (10), and the explicit linear dual-2-step method
(11). Afterwards, we have proposed the 4S-DTDZNN model
(12) for solving the discrete TDLNIS (1)-(2) by applying
the explicit linear dual-4-step method (9) to the proposed

CTDZNN model (8). For comparison purposes, we have
also developed the 3S-DTDZNN model (13) and the 2S-
DTDZNN model (14) for solving the discrete TDLNIS (1)-
(2). In addition, theoretical analyses and results have indicated
the effectiveness and superiority of the proposed 4S-DTDZNN
model (12). Finally, two specific numerical examples have
been given to further validate the effectiveness and superiority
of the proposed 4S-DTDZNN model (12). The research on
general explicit linear dual-multistep methods combining with
CTDZNN models for solving various discrete time-dependent
problems can be future work.
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APPENDIX A

According to the Taylor expansion theorem [6], [14], the
following seven equations are yielded:

ςk+1 = ς ((k + 1)ι) = ςk + ις̇k +
ι2

2
ς̈k

+
ι3

6

...
ς k +

ι4

24
ς
(4)
k +

ι5

120
ς
(5)
k +O(ι6),

(17)

ςk−1 = ς ((k − 1)ι) = ςk − ις̇k +
ι2

2
ς̈k

−
ι3

6

...
ς k +

ι4

24
ς
(4)
k −

ι5

120
ς
(5)
k +O(ι6),

(18)

ςk−2 = ς ((k − 2)ι) = ςk − 2ις̇k + 2ι2ς̈k

−
4ι3

3

...
ς k +

2ι4

3
ς
(4)
k −

4ι5

15
ς
(5)
k +O(ι6),

(19)

ςk−3 = ς ((k − 3)ι) = ςk − 3ις̇k +
9ι2

2
ς̈k

−
9ι3

2

...
ς k +

27ι4

8
ς
(4)
k −

81ι5

40
ς
(5)
k +O(ι6),

(20)

ς̇k−1 = ς̇((k − 1)ι) = ς̇k − ις̈k +
ι2

2

...
ς k

−
ι3

6
ς
(4)
k +

ι4

24
ς
(5)
k +O(ι5),

(21)

ς̇k−2 = ς̇ ((k − 2)ι) = ς̇k − 2ις̈k + 2ι2
...
ς k

−
4ι3

3
ς
(4)
k +

2ι4

3
ς
(5)
k +O(ι5),

(22)

ς̇k−3 = ς̇ ((k − 3)ι) = ς̇k − 3ις̈k +
9ι2

2

...
ς k

−
9ι3

2
ς
(4)
k +

27ι4

8
ς
(5)
k +O(ι5).

(23)

Let us multiply (17), (18), (19), (20), (21), (22), and (23) by
1, 5/6, −5/7, −5/42, 256ι/126, −263ι/126, and 46ι/126,



respectively. Subsequently, the following equation can be ob-
tained by adding these results together:

ςk+1 = ςk −
5

6
ςk−1 +

5

7
ςk−2 +

5

42
ςk−3

+
ι

126
(285ς̇k − 256ς̇k−1 + 263ς̇k−2 − 46ς̇k−3) +O(ι5),

which is just the explicit linear dual-4-step (i.e., the indices
of variables and derivatives from k − 3 to k + 1) method (9).
Hence, the proof is completed. �

APPENDIX B

Based on [14], the first and second characteristic polyno-
mials of the 4S-DTDZNN model (12) are presented as











̺(γ) = γ4 − γ3 +
5

6
γ2 −

5

7
γ −

5

42
,

σ(ν) =
1

126
(285ν3 − 256ν2 + 263ν − 46).

There are three roots, namely, γ1 = −0.1396, γ2 = 0.0698 +
0.9208i, and γ3 = 0.0698 − 0.9208i inside the unit circle,
and only one root, namely, γ4 = 1, on the unit circle.
Evidently, the first (or saying, left) characteristic polynomial
̺(γ) satisfies the root condition [6], [14]; hence the 4S-
DTDZNN model (12) is 0-stable. Besides, ̺(1) = 0 and
̺′(1) = σ(1) = 41/21 6= 0 are obtained, indicating that
the 4S-DTDZNN model (12) is consistent [14]. In accordance
with the definition of consistency of order O(ιµ) in [14], one
knows that the 4S-DTDZNN model (12) is consistent of order
O(ι5). Considering the fact that 0-stability plus consistency
guarantees convergence [14], [18], the 4S-DTDZNN model
(12) is convergent, and its convergence order is O(ι5). Hence,
the proof is completed. �

APPENDIX C

Suppose x∗
k+1 to be the theoretical solution of the discrete

TDLNIS (1)-(2). Based on Theorem 1, xk+1 = x∗
k+1+O(ι5).

Thereafter, the following expression is obtained:

lim
k→+∞

sup ‖Wk+1xk+1 − vk+1 + y.2k+1‖2

= lim
k→+∞

sup ‖Wk+1(x
∗
k+1 +O(ι5))− vk+1 + y.2k+1‖2

= lim
k→+∞

sup ‖Wk+1O(ι5)‖2 = O(ι5),

with Wk+1 being uniformly bounded. When ψ(xk+1, tk+1) <
0, ‖max{0, ψ(xk+1, tk+1)}‖2 = 0 is obtained. The TMSSRE
synthesized by the 4S-DTDZNN model (12) is O(ι5) + 0 =
O(ι5). When ψ(xk+1, tk+1) ≥ 0, ψ(x∗

k+1, tk+1) = 0 is
obtained, and the following expression is further obtained:

lim
k→+∞

sup ‖max{0, ψ(xk+1, tk+1)}‖2

= lim
k→+∞

sup ‖max{0, ψ(x∗
k+1 +O(ι5), tk+1)}‖2

= lim
k→+∞

sup ‖ψ(x∗
k+1 +O(ι5), tk+1)‖2

= lim
k→+∞

sup

∥

∥

∥

∥

∂ψ(x∗
k+1, tk+1)

∂x∗
k+1

O(ι5) +O(ι10)

∥

∥

∥

∥

2

= O(ι5),

with ∂ψ(x∗
k+1, tk+1)/∂x

∗
k+1 being uniformly bounded. The

TMSSRE synthesized by the 4S-DTDZNN model (12) is
O(ι5) +O(ι5) = O(ι5). Hence, the proof is completed. �
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