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Abstract—This paper proposes a reinforcement learning based
semi-supervised training approach for sequence-to-sequence au-
tomatic speech recognition (ASR) systems. Most recent semi-
supervised training approaches are based on multi-loss functions
such as cross-entropy loss for speech-to-text paired data and
reconstruction loss for speech-text unpaired data.

Although these approaches show promising results, some
considerations still remain: (a) different loss functions are used
for paired and unpaired data separately even though the purpose
is classification accuracy improvement, and (b) several methods
need auxiliary networks that increase the complexity of a semi-
supervised training process.

To address these issues, a reinforcement learning based ap-
proach is proposed. The proposed approach focuses on rewarding
ASR to generate more correct sentences for both paired and
unpaired speech data. The proposed approach is evaluated on the
Wall Street Journal task domain. The experimental results show
that the proposed method is effective by reducing the character
error rate from 10.4% to 8.7%.

Index Terms—automatic speech recognition, semi-supervised
learning, reinforcement learning

I. INTRODUCTION

Recently, automatic speech recognition (ASR) systems us-
ing sequence-to-sequence (seq2seq) models have become pop-
ular because of their simplicity and state-of-the-art perfor-
mance. They can integrate separate acoustic, pronunciation,
and language models into a single neural network [1], [2],
[3], and outperform conventional ASRs in some general tasks
[2].

Despite their popularity, these systems have some problems
in practical use. Among these problems, this work focuses on
the shortage of a speech-to-text paired training corpus. A large
amount of speech-to-text paired data is necessary for seq2seq
model-based ASR systems to achieve high performance [4],
[51, [6], [7]1, [8]. However, it is expensive and time consuming
job to collect a large amount of paired corpus, whereas it is
cheap and easy to collect speech-text unpaired corpus in pub-
lic. Therefore, to handle the shortage of paired corpora, semi-
supervised training approaches have been actively conducted
as a way to exploit unpaired corpora.

Various semi-supervised training methods for seq2seq mod-
els have been proposed, and these methods can be broadly
classified into three categories. The first category is the meth-
ods generating machine transcriptions for unlabeled speech
data using a pre-trained ASR system. The self-training meth-
ods [9], [10], [11], [12], [13], and teacher/student learning
based approaches [14] fall under this category. The second
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category is the methods minimizing multi-loss functions for
paired and unpaired data. Examples are the speech-chain
framework [15] and adversarial training schemes [16], [17].
The third category are the methods minimizing cycling loss.
These methods propose an end-to-end differentiable loss
composed of cross-entropy loss and reconstruction loss by
integrating ASR and Text-to-Speech (TTS) or Text-to-Encoder
(TTE) [6], [18]. The methods show that reducing the cycling
loss contributes to the decrease in recognition errors.

Although these methods show promising results, some con-
siderations still remain: (a) different loss functions are used
for paired data and unpaired data (e.g., cross-entropy loss
for paired data and reconstruction loss for unpaired data),
(b) reconstruction loss is not directly related to recognition
accuracy, and (c) several methods need auxiliary networks
(e.g., a TTS or TTE network is required to train unpaired
data).

Therefore, to address these issues, we propose a method
that focuses on using the same loss function for the paired and
unpaired data using reinforcement learning (RL). We conduct
the following:

o formulate semi-supervised seq2seq ASR training from the
aspect of RL
« investigate hard and soft rewards
« investigate the modified REINFORCE [19] training strat-
egy
The rest of this paper is organized as follows. Section
2 briefly describes seq2seq-based ASR. Section 3 discusses
the conventional semi-supervised training methods. Section 4
presents our proposed approach in detail. Section 5 explains
the experimental setting and Section 6 presents the experimen-
tal results. Section 7 concludes the paper and discusses future
works.

II. SEQUENCE-TO-SEQUENCE ASR

Most seq2seq ASR systems are composed of encoder
and decoder networks as depicted in Fig. 1. This model
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Fig. 1. Block diagram of an encoder-decoder based seq2seq ASR
estimates the posterior probability Py(y|X), where X =



{X1,X2,...,x7} is a sequence of input feature vectors,
vy = {vy1,%2,...,yn} is a sequence of output characters,
and 6 denotes the model parameters. The posterior probability
Py(y|X) is factorized as follows:

N
Po(yX) =[] Po(wnlyrin—1,X) (0
1=1
where yi.,—1 is the sub-sequence {y1,¥y2,...,Yn—1}, and
Py(ynly1.n—1,X) is calculated by the encoder-decoder net-
work as follows [6]:

h; = Encoder(X) (2)
o = Attention(qy,—1, hy,a,-1) 3)

T
r, = Z anthy “4)
t=1

qn = DeCOder(rn, qn-1, yn—l) (5)
Po(yn|y1:n—1,X) = Softmax(LinB(q,)) (6)

where a,,; is the attention weight, a, is the corresponding
weight vector, h; and q,, are the hidden states of the encoder
and decoder networks, respectively, and r,, is the character-
wise hidden vector. LinB() represents a linear layer with
trainable matrix and bias parameters.

In the recognition stage, inference is usually conducted
through beam search using an external language model,
prm(y), as follows [20], [21]:

y = argmaxlog P (y|X) + ~logPrum (y) (7
where 7 is the language model scale.

III. SEMI-SUPERVISED ASR TRAINING

Semi-supervised seq2seq ASR model training can be treated
as a general optimization problem to find the model parameters
0, which minimizes the loss function, L(0), for the given
speech-to-text paired data, (X;,Y;), unpaired speech data,
(X,), and text data (Y,), as follows:

0 = argmin, £(6) (8)

where the argmin operation is usually conducted using a
gradient descent algorithm as follows [22]:

9t+1 = Ot - atVE(Ot) (9)

where «; is the learning rate.

The semi-supervised seq2seq ASR model training can be
dealt with using the loss function design problem. Before
describing the proposed approach, we review the two most
widely used approaches.

A. Shared encoder loss

The first method is shared encoder loss [8]. This loss aims
to learn both the speech-to-text mapping for the paired data,
and the shared inter-domain feature extraction between the
unpaired speech and text as shown in Fig. 2. Therefore, the
method uses cross-entropy loss for speech-to-text paired data
and reconstruction loss for unpaired speech/text data, and
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Fig. 2. Shared encoder learning

divergence loss for embedding space between speech and text
as follows:

L = Leg(Dec(Enc(X;)), YY) (10)
+ Lyrse(Dec(Enc(Emb(Yy,))), Yy,) (11)
+ Lx1p(Enc(Emb(Y,))), Enc(X,,)) (12)

where Dec(-), Enc(-), and Emb(-) are the decoder,
encoder, and embedding components, respectively, and
Leg, Lyvse, LkLp are cross entropy loss, mean square error
loss and KullbackLeibler divergence loss, respectively.

B. Cycle consistency loss

The second method is cycle consistency loss [6], [18]. This
loss focuses on minimizing the cycle loss between speech-to-
text (STT) and text-to-speech (TTS) or text-to-encoder (TTE)
as shown in Fig. 3. Therefore, this method requires an auxiliary
TTS or TTE network that does the reverse work of ASR.

ASR TTS

X - Encoder Decoder Encoder —| Dncoder X

Consistency loss

Fig. 3. Cycle consistency learning

Cycle consistency loss has several variants [6], [23]. Fig. 3
shows one example of the variants that minimizes the cycle
loss between ASR-to-TTE and TTE-to-ASR as follows:

L = Lop(Dec®R (Enc*R (X)), Y1)
+ Lase(Enc*(X), X)

(13)
(14)

C. Considerations on the conventional approaches

Both methods use different loss functions for paired and un-
paired data separately, especially reconstruction loss, L5k,
for unpaired data. In addition, cycle consistency loss based
methods require auxiliary networks, which increases the com-
plexity of the training process.



IV. REINFORCEMENT LEARNING

In this section, we briefly review RL, which concerns how
software agents take actions in an environment to maximize
the cumulative reward. RL differs from supervised learning
in that it does not need labelled input/output pairs to be pre-
sented, and does not need sub-optimal actions to be explicitly
corrected. [24], [25]

Fig. 4 illustrates the general interaction between an agent
and an environment in an RL setting.
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Fig. 4. Block diagram of the RL setting

A. Policy gradient

An agent interacts with the environment via its actions and
receives a reward. This transitions the agent into a new state,
so that it gives a sequence of states and actions known as a
trajectory, T [25], [26], [27].

(15)

7 = (80,00 - -+ 5T+1)

If the total reward for a given trajectory 7 is represented
as R(7), the goal of RL is to maximize the expectation of
the reward that it receives from the actions or minimize the
negative expectation of the reward as follows:

0 = argminy £(0) (16)
where L£(0) = —E,_p(-jo)[R(7)], and P(7|0) is a policy
which is a probability distribution of actions given the state
as follows:

T

P(r|6) = po(so) [ [ P(seralse, ar)
t=0

a7

The gradient of the loss function VL(#) can be derived using
the log-trick as follows [27]:

VL) = -V / P(r|0)R(r) (18)
_ / VP(r[6)R(r) (19)
_ / P(7|0)ViogP(+]8) R() (20)
— _E, o0 [ViogP(r|0)R(r)] @1
= —E.p(:|0) ivelogpg(at|st)R(T) (22)
=

V. SEMI-SUPERVISED SEQ2SEQ ASR TRAINING USING RL
A. Motivation

RL is used for semi-supervised training for two reasons.
First, RL does not require speech-to-text paired corpus but
requires a reward function, which is a much relaxed condition.
Second, supervised training can be handled in terms of RL
because the gradient of cross-entropy loss for a 1-hot target
output can be a special case of policy gradient, in which the
reward R(7) is 1.0 as follows:

Vologme(y:|xt) = Vglogme(as|st) - 1.0 (23)

B. Semi-supervised training using RL

In the proposed RL-based semi-supervised training, seq2seq
ASR is considered an agent that takes an action to select a
character for an input feature, and a reward is assigned for
the generated character sequence as depicted in Fig. 5. In the
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Fig. 5. ASR from the aspect of RL

figure, action space is composed of discrete characters, state
space S is composed of paired and unpaired speech features
S = {X},X,}, and policy P(7]0) is defined by a seq2seq
model. Therefore, an action and a reward must be taken for
the action sequence.

The sampling-based approach, y ~ P,(y|X) is common
in RL. However, we use the beam search-based inference (7)
because it is the more common decoding action in ASR. For
the reward, we use a normalized value in [0.0,1.0] because
supervised training is the same as setting the reward R(7)
to 1.0 as shown in (23). Disabling the model updating by
setting R(7) to 0.0 is reasonable if the generated sentence is
completely erroneous.

Table I summarizes the action and reward of the proposed
semi-supervised training from the aspect of RL.

TABLE 1
SEMI-SUPERVISED TRAINING FROM THE ASPECT OF RL

Paired Unpaired
S XeX; | XeXy,
T yeyY; y = argmaxlogPy (y|X) + ylogpra (y)
R(r) 1.0 00<QF) <1.0

1) Paired corpus: As shown in Table I, in the case of paired
data (X,y) € (X;,Y;), action and reward are straightforward
because text y is the ground truth action for an input state
X. In other words, ASR is assumed to take the exact correct
action y for X, and thus it is reasonable to reward the highest
value 1.0 for the paired data.



2) Unpaired corpus: In the case of unpaired speech data
X € (X,), a beam search-based inference is used for the
agent’s action, and two types of rewards are investigated to
reward the generated character sequences y that contain errors.
The first scheme is the hard reward, which assigns a constant
value as a reward regardless of the number of errors in the
generated character sequence. The second scheme is the soft
reward, which attempts to assign a lower value as more errors
are included in the generated character sequence to make ASR
generate sentences with fewer errors. For this purpose, we use
the perplexity-based soft reward. In this work, the following
reward function is used to combine these two schemes:

. min(PPL(Y))) 5
where PPL(y) = P(31,¥2,...,yn)" /N is the perplexity

[28], [29], min(PPL(Y;)) is the lowest perplexity in the
paired text for normalization purpose, and « and [ control
contribution of the hard and soft rewards. The hard reward
is investigated by setting 5 = 0.0 and controlling «, and the
soft reward is investigated by setting o = 1.0 and controlling
8. Fig. 6 shows the relation between the perplexity-based
reward Q(y) and the character error rate (CER) used in our
experiments. The higher the error rate is, the lower the reward.
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Fig. 6. Relation between the perplexity based reward and the error rate

C. Semi-supervised training procedure

Algorithm 1 describes the proposed semi-supervised train-
ing procedure. The algorithm consists of pre-training, inter-
leaved training, and fine-tuning. Pre-training performs super-
vised training using the paired data to generate a seed model,
and interleaved training performs semi-supervised learning
[14], [30]. For the paired data, gradients of cross entropy loss
are used to update the model parameters and the gradients
of reward loss are used for unpaired speech data. In this
work, (X;,Y;)" and (X,)? indicate the ith mini-batch, and

Ni, and N, are the number of paired and unpaired batches,
respectively.
The proposed algorithm is affected by k, 7, «, and 3, where
e k controls the number of top-k generated character se-
quences.
o 7y controls the weight of language model.
e (a, 8) controls the contribution of the rewards.

Algorithm 1 Semi-supervised training procedure
A training set (X;,Y;), (X,,), initial values 6y

Require:

1. Pre-training

1: while not converged do

2 for i =0 to N; do

3 Select paired data (X,y) € (X;,Y))"
4: TY

5: G+ 1.0

6 9t+1 «— Ht — OétGVZOgPQ(T|X)

7 end for

8: end while

2. Interleaved training

9: while not converged do
10: for i =0to N, do

11: Select unpaired data X € (X, )

12: y = argmax;, Py (y|X) + ylogpra (y)
13: for j =0to k do

14; T Y

15: G+ Q(1)

16: 0t+1 — Ht — O[tGVIogPQ(T|X)
17: end for

18: end for

19: for 1 =0 to N; do

20: Select paired data (X,y) € (X;,Y;)!
21: Ty

22: G+ 10

23: 9t+1 — Gt - atGVlong(ﬂX)

24: end for

25: end while

3. Fine-tuning

26: for : =0 to N; do
27: Select paired data (X,y) € (X, Y;)"

28: TY
29: G+ 1.0
30: 0t+1 — 9t — OLtGVZOgPQ (T‘X)
31: end for

VI. EXPERIMENTS
A. Settings

We used the Wall Street Journal (WSJ) dataset LDC93S6B
and LDC94S13B [31] to evaluate the proposed training ap-
proach. The dataset is composed of a small 15-hour (7138
utterances) dataset called si84, and a large 81-hour (37416
utterances) dataset called si284. We use si84 as a paired dataset
and si284 as unpaired dataset, respectively. We employ the



official test dataset dev93 for a hyper-parameter and decoding
parameter search and eval92 for performance evaluation.

An 83-dimensional filter-bank with pitch features are used
as the input feature. The encoder-decoder network utilizes
location-aware attention [1], [32]. The encoder comprises 6
bi-directional Long Short Term Memory (LSTM) layers [3],
[33], [34] each with 320 units and the decoder comprises
1 (uni-directional) LSTM layer with 300 units. The cross
entropy and Connectionist Temporal Classification (CTC) [4],
[35], [36] objective is optimized using AdaDelta [37] with an
initial learning rate set to 1.0. The training batch size is 5
and the number of training epochs is 15. ESPnet [38] is used
to implement and execute all our experiments. We pre-train
a seed model with the si84 dataset in a supervised manner
and then retrain the model with si84 and unpaired si284 in
a semi-supervised manner. The performance is measured by
character error rates (CER), and the performance is compared
between two conventional methods: shared encoder [8] and
cycle consistency loss [7].

B. Baseline performance

Table II shows the performance of the baseline systems
or seed models trained only on the si84 corpus in a super-
vised manner. The shared encoder [8] and cycle consistency
[7] reported 15.8% and 10.2% CER, respectively. Our re-
implementation of the seq2seq model for the shared encoder
is achieved at 10.4%.

TABLE 11
CERS(%) OF BASELINE SYSTEMS TRAINED USING WSJ-SI84 CORPUS

System dev93  eval92
Shared encoder [8] 254 15.8
Cycle consistency [7] - 10.2
This work 15.2 10.4

The different CERs are due to the different numbers of
encoder layers, numbers of decoder units, batch sizes and
numbers of epochs. Although the proposed seq2seq model
architecture is the same as that of the shared encoder model
[8], its performance is better because different batch shuffling
schemes, learning rate scheduling, and batch size are used.
Table III summarizes the differences.

TABLE III
DIFFERENCES AMONG BASELINE SETTINGS

System #. Enc #. Dec Batch # of
layers units size epochs
Shared encoder [8] 6 300 15 15
Cycle consistency [7] 8 320 30 20
This work 6 300 5 15

C. Semi-supervised training performance

Table IV shows the performance of semi-supervised train-
ing. The shared encoder and cycle consistency methods

achieve 14.4% and 9.1% CER, respectively for the eval92
testset. The proposed method achieves 8.7% CER at the best
hyper-parameter setting.

TABLE IV
BEST CERS(%) OF THE PROPOSED SEMI-SUPERVISED TRAINING METHOD
AT BEST HYPER-PARAMETER SETTINGS

System dev93  eval92
Shared encoder [8] 24.8 14.4
Cycle consistency [7] - 9.1
« kv B

Hard reward 005 1 0.0 0.0 | 143 9.8
Top-k 0.05 2 0.0 0.0 | 13.6 9.3
Language model 0.05 2 0.02 0.0 | 131 9.3
Soft reward 1.00 2 0.02 6.0 | 13.0 8.7

The hyper-parameters are tuned sequentially. The steps are
shown in Table IV. The hard reward is first tuned by varying «
with the g fixed at 0.0. It obtains the lowest CER at o = 0.05.
Then, the number of actions is tuned by changing the k& while
fixing the a to 0.05. The CER decreases from 9.8% to 9.3%
when using the 2-best actions. During fixing «, k, -, is tuned,
but there is no improvement for the eval92 test set. Then, S is
tuned to reflect perplexity. CER is further reduced from 9.3%
to 8.7%.

VII. CONCLUSIONS

Although conventional semi-supervised seq2seq ASR train-
ing approaches report promising results, there are still some
considerations when using reconstruction loss for classification
improvement of ASR systems.

To deal with this problem, we propose an RL based semi-
supervised training approach. In RL, the speech-to-text paired
corpus for training is not a mandatory condition and only
reward is sufficient. This is the relaxed condition, and it makes
semi-supervised training straightforward to handle both paired
and unpaired speech data. We evaluate the proposed approach
on the WSJ domain. The experimental results show that
the proposed method outperforms the conventional methods.
The experimental results show that the proposed method is
effective by reducing the CER from 10.4% to 8.7%.

The proposed approach is characterized by a top-k action
selection, a language model integration, and a perplexity-based
reward. The top-k action and soft reward are important factors
for improvement. We consider the improvement is because
top-k action helps to solve the exploitation and exploration
issues in RL, and give a reasonable reward.

In future studies we intend to investigate more suitable
reward functions and action schemes.
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