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Abstract—In this paper a novel nonlinear logistic regression
model based on a simplex basis function neural network is
introduced that outputs probability of categorical variables in
response to multiple predictors. It is shown that since a linear
combination of the simplex basis functions can be represented
as a piecewise linear model, the proposed nonlinear logistic
regression model retains the main advantage of linear logistic
regression model, that is, allowing probabilistic interpretation of
the data sets from an identified model. The associated estimation
problem is treated based on the principle of maximum likelihood
by alternating over two algorithms; the iteratively reweighted
least squares algorithm for linear parameters, while the simplex
basis functions are fixed; then nonlinear parameters in each
simplex basis function are adapted in turn based on gradient
descent of the negative likelihood. The proposed algorithm is then
extended to estimation of nonlinear multinomial logistic model.
Numerical experiments are initially carried out to illustrate the
advantage of nonlinear logistic regression model versus its linear
counterpart in terms of approximation capability. Then we apply
the proposed method for a difficult computer vision example of
land-cover real data set

I. INTRODUCTION

Logistic regression is widely used in various fields including
machine learning [1], [2], computer vision [3], medical diag-
nostics [4], and social science [5]. It is a popular and effective
technique for classification tasks [6], [7]. Using a probabilistic
framework, the logistic regression classifier predicts class pos-
terior probabilities of input data samples. The logic regression
can be generalized to the multi-class classifiers by employing
a multinominal logistic function which takes into account the
correlations among classes. The multinominal logistic regres-
sion is also called the maximum entropy model in the natural
language processing community. Various learning algorithms
have been developed for logistic regression and maximum
entropy models, including iterative scaling [8], coordinate
descent [9], trust region Newton method [10], etc.

Essentially the linear logistic regression models the proba-
bility of categorical variables in response to multiple predictors
as a linear function. In comparison to other non-probabilistic
classification methods such as support vector machine [11], the
linear logistic regression model is generally worse in terms of
classification performance. Hence it is natural to combine both
to yield the so called nonlinear logistic regression models. For

example training one or more conventional SVM classifiers
followed by linear logistic regression models using SVM
classifiers output as inputs [12]. However such models still lose
some interpretation capability in comparison to linear logistic
regression models since their parameters are not related di-
rectly to the input variables, rather to the associated nonlinear
basis functions.

The use of linear functions to the system input is key
to the interpretability of linear logistic regression models.
Alternatively, a nonlinear system can be approximated by
locally linear systems as piecewise linear systems. Various
piecewise linear models exist such as lattice piecewise lin-
ear representation [13], hinging hyperplanes (HH) [14] and
piecewise affine models [15]. Notably the hinging hyperplane
(HH), which uses a hinge function as basis functions, is shown
to be a powerful model representation for nonlinear systems
since it is endowed with proven approximation capabilities
to arbitrary nonlinear functions [14]. Recently a new simplex
basis function model [16] has been introduced which can be
viewed as a HH model and hence has the same approximation
capability as HH.

In this paper we propose a novel nonlinear logistic re-
gression model based on a simplex basis function neural
network. It is analyzed that the proposed model nonlinear
logistic regression model retains the main advantage of linear
logistic regression model of allowing probabilistic interpreta-
tion of the data sets from an identified model, due to dual
representation as a piecewise linear model. Since the model
parameter estimation is a nonlinear estimation problem subject
to constraints, the problem is based on an iteration of two
algorithms based on the principle of maximum likelihood.
The linear parameters are based on well known iteratively
reweighted least squares algorithm, while the simplex basis
functions are fixed. Then nonlinear parameters in each simplex
basis function are adapted in turn based on gradient descent of
the negative likelihood. It is shown that the algorithm is easily
extendable to the multinominal logistic regression model, and
the procedure is provided.

The remaining of this paper is organized as follows. Section
II describes preliminaries of linear logistic model. Section III
introduces the proposed nonlinear logistic model based on SBF
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functions. The SBF’s dual representation as a locally linear
model input vector is analyzed for its interpretability. A novel
model estimation algorithm based on maximum likelihood
has been presented in Section IV. Section V introduces the
estimation of nonlinear multinomial logistic model based on
combining multiple binary classifiers. Numerical experiments
are carried out in Section VI to illustrate the advantage of
nonlinear logistic regression model versus its linear counter-
part in terms of approximation capability. Finally the proposed
method is applied to a difficult computer vision example of
land-cover real data set.

II. LINEAR LOGISTIC MODEL

Given a data sample x =
[
x1 x2 · · ·xm

]T ∈ Rm denoting
the m-dimensional input vector, the logistic linear regression
model calculates the class probability

P
(
t = 1|x

)
= y(x) = σ(wTx+b) =

1

1 + exp
(
− (wTx+ b)

)
(1)

and P
(
t = 0|x

)
= 1 − P

(
t = 1|x

)
, where t ∈ {0, 1} is the

class label denoting two class types. w = [w1, · · · , wm]T ∈
<m and b ∈ < are the weights and a bias term. Note that the
logistic sigmoid function is given as

σ(a) =
1

1 + exp(−a)
. (2)

and its derivative can be conveniently expressed via itself

dσ

da
= σ(1− σ). (3)

The main advantage of linear logistic model is that it is able
to extract probability information with respective to the input
variables. Since t is binary, the logistic model leads to

log
(P (t = 1|x

)
P
(
t = 0|x

)) = wTx+ b (4)

which models the log odds ratio between two classes as
linear relationship to the system inputs. The corresponding
parameters wi have clear interpretation, i.e. for every 1-unit
increase in xi, the odds multiply by exp(wi), hence the
model is valuable to users who need to make sense of the
data, e.g. in medical diagnosis application, or as a support to
validate physical/biological hypothesis based on which data
experiments are originally designed.

Consider a training data set DN = {x(k), t(k)}Nk=1, in
which t(k) denotes the class type for each data sample
x(k). We may estimate w, b by minimizing the negative log-
likelihood:

minw,bE(w, b)

= −
N∑
k=1

(
t(k) log y(k) +

[
1− t(k)

]
log
[
1− y(k)

])
(5)

where y(k) = P
(
t = 1|x(k)

)
. Unfortunately if the data

exhibit high nonlinearities, the logistic linear regression model
will struggle to achieve the best achievable classification
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Fig. 1. Results of linear logistic model for Example 1. The model failed due
to being unable to model the nonlinear classification boundary as required by
the data set.

performance or even fail, due to the inflexibility of the model
structure, as illustrated using the following example.

Example 1a: In this simulated example, 500 data samples
x(k) ∈ <2, k = 1, ...500, are randomly generated. The
first 250 data samples are from a mixture density given
as 1

2N(0, I) + 1
2N(3 × 1, I), with output t(k) = 0. The

second 250 data samples are drawn from N([1, 1]T, 0.52I),
with output t(k) = 1, k = 251, ..., 500. The linear logistic
model was obtained using (5). The data set was plotted in
Figure 1 against the obtained linear decision boundary of
P
(
t = 1|x

)
= 0.5, which clearly fails to separate two classes.

III. NONLINEAR LOGISTIC MODEL WITH SIMPLEX BASIS
FUNCTION NEURAL NETWORKS

In order to obtain a better classification capability to model
data exhibiting high nonlinearities, we consider the nonlinear
logistic model of

P
(
t = 1|x

)
= y(x) =

1

1 + exp
(
− f(x)

) (6)

and P
(
t = 0|x

)
= 1 − P

(
t = 1|x

)
, where f(•) is the

unknown system mapping given by

f(x) =

M∑
j=1

θjφj(x) = [φ(x)]Tθ (7)

where θj are the model weights, and the regressors φj(x)
is a predetermined basis function (with some adjustable
internal parameters). M is the total number of regres-
sors or model terms. θ =

[
θ1 θ2 · · · θM

]T
and φ =[

φ1(x), φ2(x) · · · φM (x)
]T

.
Similarly the nonlinear logistic model leads to

log
(P (t = 1|x

)
P
(
t = 0|x

)) = [φ(x)]Tθ (8)

which models the log odds ratio between two classes as an
linear relationship to the regressors φj(x). Note that logistic
nonlinear regression model may retain some interpretation
capability depending on the choice of φj(x). However it does
not lead to linear relationship between its input x to log odds
ratio, preventing the users to make sense of the significance of



system input x directly. On the other hand, any deterioration of
classification performance the logistic linear regression model
can offset its advantage of good interpretation. In this work
we aim to offer a good compromise for both problems.

Consider f(x) is specified as a simplex basis function
(SBF) network model [16], in which the regressors φj(x) is
a piecewise linear function, referred to as the simplex basis
function (SBF) as

φj(x;µj , cj) = max
(
0, 1−

m∑
i=1

µi,j |xi − ci,j |
)

(9)

in which cj =
[
c1,j c2,j · · · cm,j

]T ∈ <m is known as the
center vector of the jth SBF unit which controls the location
of jth SBF, and µj =

[
µ1,j µ2,j · · ·µm,j

]T ∈ <m+ is the shape
parameters vector that control the shape of jth SBF.

In the following, a special property is analyzed, which is
referred to as the dual representation of SBF as a locally linear
model (Lemma 1).

Lemma 1: The SBF model f(x) can be represented as a
piecewise locally linear model with respective to input x as

f(x) = α(x)Tx+ β(x) (10)

where α(x) and β(x) are piecewise constants, with the
properties

(i)
∂

∂x
α(x) = 0,

∂

∂x
β(x) = 0, (11)

(ii)
∂

∂x
f(x) = α(x) (12)

Proof. Consider any given input vector x, (7) can alternatively
represented as

f(x) =
∑

j∈S(x)

θj

(
1−

m∑
i=1

µi,j |xi − ci,j |
)

(13)

where S(x) ∈ [1, ...,M ] is index set of j, satisfying condition∑m
i=1 µi,j |xi − ci,j | < 1. We have

f(x) =
∑

j∈S(x)

θj −
∑

j∈S(x)

θj

m∑
i=1

µi,j |xi − ci,j |

=

m∑
i=1

xi
∑

j∈S(x)

θjµi,jsign
(
ci,j − xi

)
+
∑

j∈S(x)

θj
(
1−

m∑
i=1

µi,jci,jsign
(
ci,j − xi

))
= α(x)Tx+ β(x) (14)

where

sign(s) =

 1 s > 0
0 s = 0
−1 s < 0

(15)

and α(x) = [α1(x), ..., αm(x)]T, in which

αi(x) =
∑

j∈S(x)

θjµi,jsign
(
ci,j − xi

)
, i = 1, ...,m

β(x) =
∑

j∈S(x)

θj
(
1−

m∑
i=1

µi,jci,jsign
(
ci,j − xi

))
(16)

So that we have ∂
∂xi

αi(x) = 0, ∂
∂xi

β(x) = 0. Hence

∂

∂x
f(x) = α(x). (17)

This concludes the proof.

Clearly SBF’s dual representation as a locally linear model
input vector x is useful for extracting gradients information
from an identified model in the similar way as a linear
model, except that these are locally dependent. In our proposed
nonlinear logistic model here, we have

log
(P (t = 1|x

)
P
(
t = 0|x

)) = α(x)Tx+ β(x) (18)

Clearly the corresponding parameters αi(x) have clear inter-
pretation in the same way as linear logistic model. That is at a
local point x, for every 1-unit increase in xi, the odds multiply
by exp(αi(x)). Hence we can retain the advantage of linear
logistic model, except that this interpretation is dependent on
a local point x, in contrast to linear logistic model which im-
poses the constraint of a global linear relationship which may
not be true to the data with severe nonlinear characteristics.

IV. THE MODEL ESTIMATION ALGORITHM

Consider the parameter estimation of nonlinear logistic
model from a training data set DN , which is specified by
a set of nonlinear parameters θ, cj and µj (j = 1, ...M ).
Our proposed model estimation algorithm is an iterative and
hybrid one with the aim of gaining computational advantage by
exploiting the special model functional structure. Specifically
this approach is based on a predetermined model size and the
well known k−means clustering algorithm is applied to obtain
initial simplex function centers, while all simplex functions, it
is set µi,j = µ initially. Since it is observed that if cj and µj
are known, then φ is fixed and the methods for linear logistic
model algorithm can be applied for estimation of θ, hence the
iteratively reweighted least squares (IRLS) is applied for θ.
For cj and µj , a new gradient descent algorithm is proposed
also based on minimizing negative log likelihood cost. These
two algorithms are alternatively applied until a final model is
obtained as detailed below.

A. Iteratively reweighted least squares (IRLS) algorithm

The well known IRLS, which forms a component of the
proposed identification algorithm, is presented for complete-
ness. Consider that cj ,µj , ∀j are fixed. Over the training data



set DN , we may estimate θ by minimizing the negative log-
likelihood of

E(θ) = −
N∑
k=1

(
t(k) log y(k) +

[
1− t(k)

]
log
[
1− y(k)

])
(19)

Denote t = [t(1), ..., t(N)]T and y = [y(1), ..., y(N)]T. By
making use of (2) the derivative of E(θ) is given as

∇E(θ) =

N∑
k=1

(y(k)− t(k))φ(k) (20)

and the Hessian is given as

H = ∇∇E(θ) =

N∑
k=1

y(k)(1− y(k))φ(k)[φ(k)]T = ΦTRΦ

(21)
where R = diag{y(1)(1 − y(1)), ..., y(N)(1 − y(N))}. Φ is
the N × (m+ 1) matrix whose kth row is [φ(k)]T.

The Newton-Raphson update for minimizing E(θ) is

θnew = θold −H−1∇E(θ) = θold −
(
ΦTRΦ

)−1
ΦT(y − t)

=
(
ΦTRΦ

)−1
ΦTRz (22)

with z = Φθold − R−1(y − t). (22) takes the form of
weighted least squares algorithm, but R depends on θ, so it
needs to iteratively calculated. Hence it is named as iteratively
reweighted least squares (IRLS) [18]. The IRLS algorithm
is presented in Algorithm 1. This algorithm is guaranteed to
converge since E(θ) us a convex function with respective to θ.
The total computational complexity Algorithm 1 is O(M3) for
matrix inversion plus O(MN) matrix vector multiplication,
this has to be scaled by Iter1, as Iter1(O(M3)+O(MN)).

Algorithm 1 IRLS algorithm for logistic model estimation.
Require: DN , Φ. IRLS iteration number Iter1.
Ensure: For a fixed set of M regressors, to find θopt =

argminθ E(θ).
1: Set θold=0.
2: for l = 1 : Iter1 do
3: Calculate y by setting its elements to

y(k) =
1

1 + exp
(
− [φ(x(k))]Tθold

) , k = 1, ..., N

(23)
4: Update R = diag{y(1)(1−y(1)), ..., y(N)(1−y(N))}.
5: Calculate z = Φθold −R−1(y − t).
6: Update θnew =

(
ΦTRΦ

)−1
ΦTRz.

7: θold ← θnew.
8: end for
9: Return θopt as θnew.

B. The proposed gradient descent algorithm based on maxi-
mum likelihood

Now consider estimating the cj ,µj associated with φj(x)
while θ and all other φi(x), (i 6= j) are fixed. Write the
negative log-likelihood of

J (j)(cj ,µj) = −
N∑
k=1

(
t(k) log y(k)+

[
1−t(k)

]
log
[
1−y(k)

])
(24)

By making use of (2), we have{
∂J(j)

∂µi,j
=
∑N
k=1(y(k)− t(k))

∂f(x(k))
∂µi,j

, i = 1, ...,m
∂J(j)

∂ci,j
=
∑N
k=1(y(k)− t(k))

∂f(x(k))
∂ci,j

i = 1, ...,m
(25)

for i = 1, ...,m. Note that f(x(k)) can be represented as

f(x(k)) =
∑
i 6=j

θiφi(x(k))+θj max
(
0, 1−

m∑
i=1

µi,j |xi−ci,j |
)

(26)
in which the summation term is independent of cj ,µj . We
have
∂f(x(k))

∂µi,j
= −θj |xi(k)− ci,j |Id(k), i = 1, ...,m (27)

∂f(x(k))

∂ci,j
= θjµi,jsign(xi(k)− ci,j)Id(k), i = 1, ...,m

(28)

where Id(k) is an indication function given as

Id(k) =

{
1 if

∑m
i=1 µi,j |xi(k)− ci,j | < 1

0 otherwise
(29)

Finally by taking into account the positive constraints for the
shaping parameters µj , we propose the constrained normalized
gradient descent algorithm, as expressed as

ci,j = ci,j − η · ∂J
(j)

∂ci,j
/‖∂J

(j)

∂cj
‖

µ̃i,j = µi,j − η · ∂J
(j)

∂µi,j
/‖∂J

(j)

∂µj
‖

µi,j = max
(
0, µ̃i,j

) (30)

for i = 1, ...m, where η > 0 is a preset smaller learning rate.
Equation (30) is applied to M regressors (j = 1, ...,M )

in turn while fixing other regressors, as presented in Al-
gorithm 2. The computational complexity of the gradient
descent algorithm is O(N) for each regressor, hence the total
computational complexity Algorithm 2 is O(NM).

Algorithm 2 Maximal likelihood estimation using normalized
gradient descent for simplex basis functions.
Require: DN , M , θ, current cj ,µj , learning rate η.
Ensure: cj ,µj are adjusted to reduce negative log likelihood

J (j), j = 1, ...,M .
1: for j = 1, ...,M do
2: Update cj and µj using Equations (25)-(30).
3: end for
4: Return cj ,µj , j = 1, ...,M .



C. Initialization of simplex basis functions

The proposed algorithm needs to be initialized with a
predetermined model size M and an initial design matrix
Φ, which is based on preset values of cj ,µj , j = 1, ...M .
Clustering algorithms can be used to initialize the centers cj ,
which accurately reflects the distribution of the data points.
We preset µj = µ1, where µ > 0 is a predetermined
constant. From N data points x(k), k = 1, · · · , N , the k-
means algorithm [19] seeks to partition the data points in M
disjoint subset Sj , each containing Nj data points, so as to
minimize the sum-of-squares clustering function given by

J =

M∑
j=1

∑
x(k)∈Sj

‖x(k)− cj‖2 (31)

where ∈ denotes belongs to. J is minimized when

cj =
1

Nj

∑
x(k)∈Sj

x(k) (32)

D. Summary of the proposed hybrid estimation algorithm

Our proposed hybrid identification algorithm is summarized
in Algorithm 3. The total computational complexity Algorithm
3 is therefore Iter∗O(NM)+Iter∗Iter1∗O(M3), meaning
that the algorithm scales very well for large sized data set, and
is very fast for a moderate sized M .

Algorithm 3 The proposed model estimation algorithm based
on simplex basis function.
Require: DN , M , µ, Iter.
Ensure: Maximal likelihood estimator are obtained for all

parameters (cj ,µj , j = 1, ...M , and θ).
1: Apply the k−means clustering algorithm to initialize cj ,
j = 1, ...M . Set all µi,j as µ.

2: for l = 1, ..., Iter do
3: Form Φ from DN based on cj ,µj , j = 1, ...M .
4: Apply Algorithm 1 to adjust θ as θopt.
5: Apply Algorithm 2 to adjust cj ,µj , j = 1, ...M while

θ is fixed as a constant vector.
6: Calculate J(Iter) = −

∑N
k=1

(
t(k) log y(k) +

[
1 −

t(k)
]
log
[
1− y(k)

])
7: end for
8: Return cj ,µj , j = 1, ...M , and θ and J .

V. NONLINEAR MULTINOMIAL LOGISTIC MODEL WITH
SIMPLEX BASIS FUNCTION NEURAL NETWORKS

Consider the multiclass classification problem where the
training data set DN = {x(k), t(k)}Nk=1, in which t(k)
denotes the class type for each data sample x(k), but t(k) ∈
{1, ..., L} is the class label denoting L > 2 class types.
A multiclass logistic model can be estimated based on the
concept of cross-entropy error using softmax transformation of
the SBF model. Given a data sample x =

[
x1 x2 · · ·xm

]T ∈

Rm denoting the m-dimensional input vector, the multiclass
logistic linear regression model calculates the class probability

P
(
t = tl|x

)
= y(x) =

exp(f (l)(x))∑
j exp(f

(j)(x))
(33)

where tl = [t1, ...tL]
T, represent one-of-L classes, is a binary

vector with all elements zero, except element l, which equals
one, and

f (l)(x) =

M∑
j=1

θ
(l)
j φ

(l)
j (x) = [φ(l)(x)]Tθ(l) (34)

The negative log-likelihood function is named as cross-entropy
function for the multiclass problem, given as

E = −
N∑
k=1

L∑
l=1

tkl log ykl (35)

where ykl = P
(
t = tl|x(k)

)
.

Since jointly minimizing E with respective to the set of all
parameters in the case of multi-class problem concerning L
SBF models is a difficult one, here we propose a pragmatical
way to extend the above proposed binary nonlinear logistic
model and estimation algorithm by combining (L−1) nonlin-
ear binary logistic models, which are obtained by using a pivot
class e.g. t = i against the other (L− 1) classes respectively.
The proposed algorithm is repeated applied based on (L− 1)
sub-data sets, each consisting of data samples belonging to two
classes as t(k) ∈ {i, l}, for l 6= i, respectively. Specifically,
we obtain (L− 1) nonlinear logistic models given as

P (i)
(
t = l|x

)
=

1

1 + exp
(
− f (l)(x)

) , l ∈ {1, ..., L}\i

(36)
with

f (l)(x) =

M∑
j=1

θ
(l)
j φj(x;µ

(l)
j , c

(l)
j ) (37)

where the superscript (l) labels the lth SBF model, P (i)
(
t =

i|x
)
= 1− P (i)

(
t = l|x

)
, hence we have

log
(P (i)

(
t = l|x

)
P (i)

(
t = i|x

)) = f (l)(x), l ∈ {1, ..., L}\i (38)

Algorithm 4 Algorithm for nonlinear multinomial logistic
model based on SBF using pivot i.
Require: DN , M , µ, Iter.
Ensure: The SBF based multinomial logistic model is ob-

tained by combing (L− 1) binary classifiers.
1: From DN , construct (L − 1) sub-data sets D

(l)
N , l ∈

{1, ..., L}\i, with t(k) ∈ {l, i}
2: for l ∈ {1, ..., L}\i do
3: Apply Algorithm 4 to D(l)

N .
4: return lth maximal likelihood estimators (c(l)j ,µ

(l)
j ),

j = 1, ...M , and θ(l).
5: end for
6: return Combining (L− 1) models using (39)-(40).



Using the fact that all K of the probabilities must sum to one,
it can be verified that

P (i)
(
t = l|x

)
=

exp(f (l)(x))

1 +
∑
l,l 6=i exp(f

(l)(x))
, l ∈ {1, ..., L}\i

(39)
and

P (i)
(
t = i|x

)
=

1

1 +
∑
l,l 6=i exp(f

(l)(x))
(40)

Algorithm 4 summarizes the above estimation procedure for
nonlinear multinomial logistic model based on pivot label i.
However these are inconsistencies when different class is used
as pivot. We proposed to average the results for each class
being set as pivot i, to yield the final predicted class label for
a new data sample x, which is given as

l̂(x) = argmax
l
{ 1
L

L∑
i=1

P (i)
(
t = l|x

)
} (41)

Note that only a total L(L−1)
2 pairwise binary classifiers need

to trained.

VI. EXPERIMENTAL STUDIES

A. Comparison with linear logistic model

Example 1b is devoted to comparison with its linear coun-
terpart, the linear logistic model Example 1a in Section II.
This example is used to illustrate the advantage of the pro-
posed model of being capable of modeling nonlinear decision
boundary whereby the linear logistic model fails.

Example 1b: In order to demonstrate model properties
and advantages of the proposed nonlinear logistic model in
comparison with the linear logistic model, we revisit the same
data set of Example 1a which is failed by linear logistic model.
We preset the model size M = 4, µ = 0.2, Iter = 100 for the
proposed model estimation algorithm based on simplex basis
function to be applied. We also set the learning rate η = 0.005,
the iteration of IRLS as three. The model results are shown in
Figure 2. The data set was plotted in Figure 2(a) against the
obtained nonlinear decision boundary of P

(
t = 1|x

)
= 0.5,

which is able to separate two classes, as well as the final
SBF centers cj , which are initialized by k−means clustering
algorithm, and then adjusted together with the µj using the
proposed gradient descent algorithm. The evolution of the
negative log likelihood of the proposed algorithm is plotted
in Figure 2(b) showing it converges. Based on the obtained
nonlinear logistic model, Figure 2(c)&(d) plot the predicted
class probabilities for the data region and the Log odds
ratio respectively. Since the model has a good classification
performance. These results are meaningful for interpretation
purpose, with much of the predicted class probabilities close
to one when t = 0. The local linearity of the model of log
odds ratio is shown in Figure 1(d), which can be very useful
in explaining the data. The overall comparison between linear
logistic model and the proposed nonlinear logistic model for
Example 1 over the training data set is summarized in Table
I.

TABLE I
COMPARISON BETWEEN LINEAR LOGISTIC MODEL AND THE PROPOSED

NONLINEAR LOGISTIC MODEL FOR EXAMPLE 1 OVER THE TRAINING DATA
SET.

Misclassification Negative log
rate (%) likelihood value

Linear logistic 36 334.89
model
Proposed 9 119.23
algorithm

B. Application to the land-cover image data set

Remotely sensed data are provided in six images as shown
in Figure 3. Each of six bands is in the size of 211 × 356
measured images of colored images of red (R), green(G), blue
(B), LIDAR first echo (FE), last echo (LE) and Near infrared
(NIR). The ground-truth information are given in four classes
of building, vegetation, car and ground, as shown in Figure
4(a), and the number of data samples are given in Table II,
it can be seen that the class distribution is balanced except
for car class, which is very imbalanced. We aim to construct
a nonlinear SBF based multinomial logistic model to predict
land covers as one of these four classes.

We start with generating input features using the six band
image data imported as matrices. Feature selection is important
in computer vision tasks. Known physical properties should
be utilized in constructing discriminant features if possible.
As such two new artificial images are generated [22]. The
normalized difference vegetation index (NDVI) is defined
as [22]

NDV I =
NIR−R
NIR+R

(42)

which is created from Red (R) and Near infrared (NIR)
images, which is capable of distinguish vegetation from other
objects. An additional derived feature image is the height
difference (HD) defined as

HD = FE − LE (43)

created from LIDAR first echo (FE) and last echo (LE), which
is used to distinguish trees from other objects [22]. The six
original images and the two derived images are normalized
by dividing its maximum value in the original images. Denote
each normalized pixel value of six original images and the two
derived images as x(0)1 , ....x

(0)
8 as R,G,B, FE, LE, NIR, NDVI

and HD respectively.
In this computer vision task we should also include spatial

contexture information among pixels, as neighborhood pixels
are mostly likely belong to the same class. In order to incorpo-
rate spatial information, for each original x(0)i , i = 1, ..., 8, we
calculated statistical means as x(j)i , j = 1, ..., 9, representing
mean values of a series of squares with size (2j+1)×(2j+1),
centered at x(0)i , respectively. There are a total number of 88
features in our experiment as

x = [x
(0)
1 , ..., x

(0)
8 , ..., x

(9)
1 , ..., x

(9)
8 ]T ∈ <88 (44)
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Fig. 2. Results of nonlinear logistic model for Example 1.

We set the size of our training data samples as fully balanced,
using the same number of training samples, 500 and 1000 data
samples per class, respectively which are randomly drawn. In
order to generate a four class nonlinear SBF based multinomial
logistic model, 12 binary SBF classifiers are trained between
all combinations of class pairs. We preset the model size M =
20, µ = 0.2, Iter = 100, the learning rate η = 0.005, the
iteration of IRLS is as three. The classification results of the
whole image are reported in two cases as shown in III, since
94.7 % and 97.34% data points in the image are test data in
two cases, except for car class the proportion of test data points
are 55% and 9.5% respectively, which explains why car class
seems to have best results. The average true positives for all
classes are 87.5% and 89% when 500 and 1000 data points
are used in training. The modeling results can be visualized in
Figure 4(b) and (c), which shows slight improvement of using
more training data samples at a higher computational cost.
This example clearly demonstrate that the proposed model and
learning algorithm is capable of extracting land cover type
information form a small number of registered data points,
and can be extended to other computer vision applications.

TABLE II
DESCRIPTION OF CLASSES FOR LAND-COVER IMAGE DATA SET.

Class Data points Percentage (%)
Building 21573 28.72%
Vegetation 24144 32.14%
Car 1105 1.47%
Ground 28294 37.67%
Total 75116 100%

VII. CONCLUSIONS

In this paper we have introduced a novel nonlinear logistic
regression model based on a simplex basis function neural
network. Since a linear combination of the simplex basis
functions can be represented as a piecewise linear model, the
proposed model nonlinear logistic regression model retains the
main advantage of linear logistic regression model of not only
predicting the probability of categorical variables in response
to multiple predictors, but also the change of odd ratio with
respect to the input variables, allowing probabilistic interpre-
tation of the data sets from an identified model. Based on the

principle of maximum likelihood, we proposed a composite
estimation algorithm by iterating over two sub-algorithms (i)
the iteratively reweighted least squares algorithm for linear
parameters, while the simplex basis functions are fixed and
(ii)the gradient descent algorithm for nonlinear parameters
in each simplex basis function, which are adapted in turn
based on minimizing negative likelihood. It is shown that
the proposed algorithm is extendable to nonlinear multinomial
logistic model. In order to demonstrate the effectiveness of the
proposed approaches, numerical experiments are designed so
as to illustrate the advantage of nonlinear logistic regression
model versus its linear counterpart in terms of approximation
capability and its application for multiclass classification using
nonlinear multinomial logistic model based on real land-cover
data set in computer vision.
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