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Abstract—Electroencephalogram (EEG) signal is often used
to assess sleep quality and treat sleep disorders. Many existing
methods usually obtain high accuracy through a large number
of feature preprocessing and feature extraction of EEG signals,
which need a lot of prior knowledge as the basis. In this paper, a
novel sleep stage classification framework, named FRL&S2SL, is
proposed. The framework combines fast representation learning
(FRL) and semantic-to-signal learning (S2SL) and uses single-
channel EEG without any preprocessing of EEG signals. In the
proposed framework, we utilize convolutional neural networks
(CNN) to extract time-invariant features and bidirectional long
short-term memory (BiLSTM) models to extract temporal fea-
tures. Furthermore, auxiliary classifier generative adversarial
network (ACGAN) is used to embed semantic features into
signal features and to extract knowledge domain features of EEG
signals for the first time. According to the American Academy
of Sleep Medicine (AASM), sleep is divided into five stages:
awake, rapid eye movement (REM) and three non-rapid eye
movement (N1/N2/N3). We evaluated our framework using single-
channel EEG (Fpz-Oz) from Sleep-EDF dataset, which is subject
to the standards specified by AASM. The results show that
our framework has achieved state-of-the-art in many evaluation
metrics.

Index Terms—electroencephalogram (EEG) signal, sleep stage
classification, ACGAN, fast representation learning, semantic-to-
signal learning.

I. INTRODUCTION

Sleep is one of the most important physiological activities
of the human body. Most people spend a third of their time
sleeping, which is closely related to their physical and mental
health. Modern medical research shows that more than 80
kinds of human diseases are closely related to long-term
sleep disorders [1]. The effective diagnosis and treatments
of sleep-related diseases have become an urgent and in-depth
research topic in the current medical field. Many doctors and
researchers have long debated how to understand it best. In
recent years, sleep has become a branch of medicine and
has been found to play a role in seemingly unrelated clinical
problems [2].
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Fig. 1. Flow chart of common sleep stage methods.

Sleep stage classification is the first step in the diagnosis
of sleep-related diseases. Physiologically, the sleep stage is
divided into two main parts: the rapid eye movement period
(REM) and the non-rapid eye movement (NREM) [3]. The
sleep process usually circulates in REM and NREM. NREM
was divided into the shallow sleep period (stage N1 and
N2) and the deep sleep period (stage N3). Polysomnography
(PSG) is mainly used as the main tool of sleep assessment,
which includes electroencephalography (EEG), electromyog-
raphy (EMG), and electrooculography (EOG), etc. Among
them, EEG signal is most commonly used in sleep stage
scoring because clinically acceptable sleep stage assessment
mainly reads EEG signal according to R&K standard, which
was standardized by Rechtschaffen and Kales [4] in 1968
and further developed by American Society of sleep medicine
(AASM) in 2007 [5].
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Traditional visual sleep stages scoring is very tedious,
time-consuming and subjective, which involves analyzing the
signals in PSG records to score about 8 hours of sleep [6].
Therefore, many automatic sleep assessment methods [7]–
[10] have been proposed. The process of these methods is
summarized in Fig. 1. These researches mainly extract various
sleep-related features from EEG signals, such as time domain
features, frequency features, correlation features, entropy fea-
tures, and so on. Potential sleep data information does not play
a key role in automatic sleep stage classification.

In recent years, more and more deep learning methods have
been applied to sleep classification [11]–[15]. CNN [16]–[23]
is used to extract time-invariant local features. RNN [18], [24],
[25] is used to learn temporal information such as mining
time association between different sequences in the same 30-s
epoch EEG. However, due to the complexity of the model,
the speed of training and prediction of these deep learning
methods is very slow. Considering the real-time nature of EEG
data collection, these models are difficult to be used for online
learning and real-time prediction. Therefore, we propose a
new fast representation learning model (FRL), which uses a
shallower network to improve the training and prediction speed
without losing accuracy.

In addition, the method of improving prediction perfor-
mance based on semantic knowledge [26], [27] has been
widely used in image classification. For the processing of
EEG signals, doctors observe the sleep stages of EEG signals
through prior knowledge. For example, in the labeling REM
period, doctors need to know that the performance of the REM
period is low amplitude fast wave, which is a classification pro-
cess with semantic knowledge. Similarly, it is inspired by the
use of semantic information in image classification to improve
the performance of the model. We can use semantic knowledge
to assist our model in sleep stage evaluation. In this paper,
semantic-to-signal learning(S2SL), which employed ACGAN
[28] as the basic structure, is proposed to mine semantic
features related to sleep stages.

This paper is organized as follows. In Section II, we
summarize the theoretical background of the proposed method.
Then, the experiment related content is described in Section
III. Finally, the paper ends with conclusion and future works
in Section IV. The main contributions of this paper are as
follows:

1) A novel simple and efficient deep learning model is
proposed, which uses CNNs with different filter sizes and
bidirectional-LSTMs [29] to extract time-invariant fea-
tures and time-variant features respectively. This model
has fewer parameters than other deep learning models,
such as [18], [20]–[22], and it has faster training and
testing speed without losing accuracy.

2) The problem of data imbalance is solved by adding
weighted softmax loss to the fast representation learning,
i.e., only learning to classify the majority of sleep stages.

3) Semantic knowledge is applied to sleep classification for
the first time. The performance of the model is further

improved by fusing results of representation learning and
semantic knowledge.

4) An experimentally good performance is demonstrated on
publicly available Sleep-EDF dataset [30], [31]. It repre-
sented our framework can automatically learn features for
sleep stage scoring without utilizing any hand-engineered
features.

II. METHODOLOGY

In recent years, more and more automatic sleep stage
evaluation methods tend to use deep learning to extract EEG
features [18], [20]–[23]. Similar works [18], [21] show that
the deep learning methods can achieve very optimistic results
in the automatic sleep stage evaluation. However, most deep
learning frameworks are complex in structure and slow in
training time, so they are difficult to be used in the scene of
streaming EEG data collection. Our method uses the shallower
representation learning framework to extract the distinguishing
features. This structure greatly speeds up the training and
testing time of the model and obtains promising performance.
In addition, the introduction of semantic knowledge further
improves the performance of our model. In the end, our
proposed framework achieves state-of-the-art results on several
evaluation metrics. Fig. 2 shows the overall architecture of our
method. The three main modules in the Fig. 2 will be described
below.

A. Fast Representation Learning Module

The single-channel 30-s EEG epochs are divided into n
sub-segments on average and these sub-segments are jointed
vertically. Next, in the first layer of the model, m CNNs with
the same size of kernelx and the different size of kernely
are both used to extract time-invariant features, and temporal
features are extracted by bidirectional LSTM (BiLSTM). The
design of this structure is mainly to simulate experts’ sleep
stage of EEG data: they need to understand the whole EEG
data and need to observe the changes of some sub-segments of
the EEG data. Small filters can better capture the EEG signal
features of a specific mode, while large filters can capture
the frequency information of the global EEG signal better.
After each convolutional layer, three series operations are
performed: batch normalization (BN) is used to speed up the
training and to optimize the performance of the convolutional
layer; Rectified linear unit (ReLU), which is formalized as
relu(x) = max(0, x), is used as the activation function; The
maximum pooling layer is used for downsampling. Finally, the
features, which extracted by multiple parallel convolution lay-
ers and two serial BiLSTM, are concatenated and transmitted
forward to the softmax layer. Because the number of samples
of different classes is very imbalanced in the original EEG
data, each output of the softmax layer is given different weight.
The weight is calculated by Formula.1, where sc represents the
number of all samples labeled c and c = 1, 2, ..., C is a set of
classes. The final loss function is defined as Formula.2, where
xi represents a 30-s epoch EEG sample, the corresponding
label is yi and P1(c|xi) is contributed by posterior probability



Fig. 2. Overall architecture: the fast representation learning module (green part) takes the segmented EEG data as input, and uses convolutional layer and
BiLSTM layer to extract the signal features of EEG data quickly. This model will obtain the prediction probability output1 for each class. For each class of
text of EEG data, they are input into the semantic-to-signal learning module (purple part). According to these texts, the model can generate pseudo EEG signal
features with semantics. The traditional classifier is trained to use these pseudo signal features to predict the real EEG signal features and get the prediction
probability of each class output2. Finally, the weighted fusion module (red part) is used to fuse output1 and output2 to get the final prediction probability.

of each class. The detailed parameter settings of FRL are
described in Section III-D.

wc = 1− sc∑c=1...C
sc

(1)

LFRL =

C∑
c=1

wc∗[I(c 6= yi)(1−P1(c|xi))+I(c = yi)(P1(c|xi))]

(2)

B. Semantic-to-Signal Learning Module

Semantic Features Extraction: For each class c of de-
scription text Tc, we collect them from the AASM manual
published in 2007 [5] and Wikipedia articles that describe
these sleep stages. Then, we only keep the text about the
characteristics of sleep stages. And text preprocessing needs
to be performed by removing stop words and tokenizing texts.
Finally, semantic features can be extracted by text encoder φ,
which can embed the texts into semantic spaces. In this paper,
Term Frequency-Inverse Document Frequency (TF-IDF) [32]
is used as the method of text embedding.

Semantic-to-Signal Embedding: Generator (Gθ for short,
θ is the parameters of the generator) is used to transform se-
mantic features into EEG signal features. Firstly, the semantic
feature φ(Tc) of class c is passed two fully connected(FC)
layers to extract features to reduce text noise. The extracted
features are concatenated to a random noise z ∈ <Z , which
is sampled from Gaussian distribution ℵ(0, 1). Next, two FC
layers with LeakyReLU activators are used to complete the
inference process. The plausible EEG signal feature x̃ can
be generated through Gθ(Tc, z). The loss of the generator is
defined in Formula.3, where the first term is Wasserstein loss
[33] and the second term is cross-entropy loss of classes. It is
worth noting that we can generate a large number of different
signal features by using the same semantic features, because
the noise z can be sampled repeatedly from the Gaussian
distribution. These signal features generated by Gθ(Tc, z) are
used to train a traditional classifier. In this paper, the AdaBoost
model [34], [35] is trained to predict the original EEG signal
features. The posterior probability of each class P2(c|x) in
the original EEG data x will be obtained from the AdaBoost
model.



TABLE I
THE NUMBER OF 30-S EPOCHS IN EACH SLEEP PHASE OF SLEEP-EDF

DATASET

Dataset W N1 N2 N3(N4) REM Total

Sleep-EDF 8285 2804 17799 5703 7717 42308

Discriminator: The discriminator (D) receives the pseudo
signal features generated by the generator and the original
EEG signal features, and propagates them forward to the full
connection layer with LeakyReLU. Then two subnetworks are
designed: one is used to judge whether the input sample is
real or fake, and the other one is used to judge the correct
class label of the input sample. The loss function of the
discriminator is defined in Formula.4, where the first two
terms approximate Wasserstein distance of the distribution
of real features and synthesized features, the last two terms
are cross-entropy loss class of synthesized and real features,
respectively.

LG = Ez∼pz(z)[1−Dω(Gθ(Tc, z))] + Lcls(Gθ(Tc, z)) (3)

LD = Ex∼pdata
[1−Dω(x)] + Ez∼pz(z)[Dω(Gθ(Tc, z))]

+ Lcls(Gθ(Tc, z)) + Lcls(Dω(x))
(4)

C. Weighted Fusion Module

Model fusion can improve the results in different machine
learning tasks [36]–[42]. Weighted fusion method, which is
an effective and the most simple method in model fusion, is
used to fuse the results of FRL and S2SL (FRL&S2SL) in the
paper. Its formal representation is defined as follows:

P (c|xi) = α1 ∗ P1(c|xi) + α2 ∗ P2(c|xi) (5)

where, c ∈ {1, 2, ..., C} is a set of classes, P (c|xi) is the
posterior probability of single 30-s epoch EEG sample xi.

Finally, the prediction label ỹ of FRL&S2SL will be ob-
tained by the following formula:

ỹ = argmax
c

P (c|xi) (6)

III. RESULTS

A. Data

The Sleep-EDF benchmark dataset [30], [31], which is
widely applied in [11,12,13,14], is used to make a com-
parison between our approach and the state-of-the-art ap-
proaches. The sleep data which is publicly available on-
line at https://www.physionet.org/content/sleep-edf/1.0.0/ has
been used in this study. The recordings were obtained from
Caucasian males and females (21-35 years old) without any
sleep-related medication. The recordings contain horizontal
EOG, Fpz-Cz and Pz-Oz EEG, and each sampled at 100
Hz. In this dataset, these records are artificially classified
into eight periods according to R&K criteria, namely W, N1,

N2, N3, N4, REM, MOVEMENT, UNKNOWN. To comply
with AASM standards, we merged N3 and N4 periods into a
single N3 period and removed data labeled MOVEMENT and
UNKNOWN. Because the dataset has a long W phase before
and after sleep, we only keep the data for 30 minutes.

In this paper, we evaluated the performance of our model
using the single Fpz-Cz channel without any further prepro-
cessing. Table I shows the number of sleep stages in sleep-EDF
dataset, which are classified as a time window of 30s.

B. Experimental Design

The k-fold cross-validation strategy is used to evaluate our
model. The each of subjects in the dataset are independent
when the training set and the test set are divided. In our
experiments, k was set to 20 for the Sleep-EDF dataset.
Specifically, we used N − (N/k) subject records for training
and the remaining N/k subject records for testing, where
N is the number of subjects in the dataset. In the training
process, two subjects in the training set are randomly selected
as development set, which will be used as the criteria for
selecting the appropriate epoch and early stopping the training.
Our model requires 20 training and tests on the sleep-EDF
dataset, and then the sleep stage prediction results of each fold
test data were combined to calculate the evaluation metrics.
The evaluation metrics used in this paper will be discussed in
Section III-C.

C. Performance Metrics

We use six metrics to evaluate the performance of our
model, namely, precision of each class (PRc), recall rate
of each class (REc), F1-score of each class (F1c), macro-
averaging F1-score (MF1), the overall accuracy (ACC) and
the Cohen’s Kappa coefficient (κ) [43], [44]. The formulas for
calculating these evaluation metrics are as follows:

PRc =
TPc

TPc + FPc
(7)

REc =
TPc

TPc + FNc
(8)

F1c =
2PRc ∗REc
PRc +REc

(9)

MF1 =

∑C
c=1 F1c
N

(10)

ACC =

∑C
c=1 TPc
N

(11)

kappa =
PR− pe
1− pe

(12)

where TPc is the number of true positive instances of class c,
FPc is the number of false positive instances of class c, FNc
is the number of false negative instances of class c, N is the
number of unique classes, PR is overall precision, pe is the
chance agreement probability.



D. Training Parameters

In the fast representation learning (FRL), the 3000-
dimensional EEG signal is first divided into n bi-section, and
the n bisection EEG data is concatenated into the shape of (n,
3000/n). Four parallel 2D convolutions layers and one RNN
layer are used to extract EEG signal features. The number
of filters per convolution layer is filters = 6, step size is
strides = 1, and the sizes of these filters are (5, 3000/n),
(15, 3000/n), (45, 3000/n), (80, 3000/n). Two bidirectional
LSTM(BiLSTM) models are used in RNN layer to extract
EEG features, and the number of neurons in hidden layer of
BiLSTMs is units = 300, units = 45, respectively.

In the semantic-to-signal learning (S2SL), the TF-IDF
method is used to transform knowledge text into semantic
features with dimension of 157. These semantic features are
propagated forward to the 2000 dimensional full connection
layer, and the output of this full connection layer will be
concatenated with the 50 dimensional random Gaussian noise.
The two full connection layers with LeakyReLU activation
function, which have dimensions of 3500 and 3000 respec-
tively, are used to further extract features. The signal features
generated by S2SL and the original EEG signal are trained as
the input of the discriminator. Finally, the AdaBoost model
with nestimators = 100 is trained by synthesized signal
features to predict the real EEG data.

Our method is trained with Adam, using the default pa-
rameters β1 = 0.9, β2 = 0.999. Other hyper-parameters
batchsize = 512, epoch = 30 are set. After each epoch,
the model will be used to predict the development set. If the
MF1 measure on the development set for 3 epochs does not
improve compared with the current maximum MF1 measure,
the model will stop training and use the model with the
highest MF1 measure as the final model. Additionally, we
set α1 = 0.8, and α2 = 0.2 as the result weight of the
two modules because the parameters can steadily improve the
performance on the development set. A reasonable explanation
that the weight of FRL module is greater than that of S2SL
module is that the effect of S2SL module is limited due to
many noises in the text. The final prediction result will be
calculated using Formula.5 and Formula.6.

E. Implementation

Our model is mainly divided into two modules: fast rep-
resentation learning (FRL) and semantic-to-signal learning
(S2SL). The two modules are implemented using Keras with
TensorFlow backend, which is a deep learning library and
can be used for the design, debugging and evaluation of the
deep learning model. In the semantic-to-signal learning, the
conventional classifier is implemented by scikit-learn, which
is a widely used python-based machine learning library. As
shown in Table II, the server configuration we used for training
and evaluation is shown. The training time required for cross-
validation of each fold is about 25 minutes. Furthermore, it
takes only 26 milliseconds to predict a 30-s epoch EEG data
in test stage.

TABLE II
SERVER SPECIFICATIONS

parameters specifications
RAM 32G
CPU Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
GPU GeForce RTX 2060
OS windows 10

TABLE III
CONFUSION MATRIX USING FAST REPRESENTATION LEARNING(FRL)

METHOD. IT IS OBTAINED FROM 20-FOLD CROSS-VALIDATION ON FPZ-CZ
CHANNEL FROM THE SLEEP-EDF DATASET

Predicted Per-class Metrics
W N1 N2 N3 REM PR RE F1

W 7300 522 144 26 293 86.71 88.11 87.40
N1 492 1032 491 6 783 42.54 36.81 39.47
N2 328 367 15283 624 1197 87.78 85.86 86.81
N3 51 4 610 5025 13 88.36 88.11 88.24

REM 248 501 882 6 6080 72.68 78.79 75.61

F. Visualization and Sleep Stage Scoring Performance

In order to reveal the differences of features, which come
from the former layer of softmax in fast representation learning
(FRL) module, among different sleep stages, our visualization
attempts to use randomly selected 30-s epoch EEG samples
from different sleep stages. In Fig. 3, the hidden layer outputs
of the same object in different sleep stages are shown in each
row, and those of different objects in the same sleep stage are
shown in each column. A phenomenon can be observed: the
features of same sleep stages seem to have some similar trend,
but have obviously different amplitudes between different
sleep stages. Although the difference between different sleep
stages can explain that the FRL module can achieve a good
performance in the benchmark dataset, the difference is still
not intuitive for individual.

Table III and IV show confusion matrix obtained from the
20-fold cross-validation on the Fpz-Cz channel from Sleep-
EDF dataset. Each row and column represent the number
of 30 second EEG cycles for each sleep stage classified by
sleep experts and our methods, respectively. The bold numbers
indicates the number of samples with correct classification.

TABLE IV
CONFUSION MATRIX USING FAST REPRESENTATION LEARNING AND

SEMANTIC-TO-SIGNAL LEARNING(FRL&S2SL) METHOD. IT IS OBTAINED
FROM 20-FOLD CROSS-VALIDATION ON FPZ-CZ CHANNEL FROM THE

SLEEP-EDF DATASET

Predicted Per-class Metrics
W N1 N2 N3 REM PR RE F1

W 7301 494 154 26 310 87.68 88.12 87.90
N1 469 1072 536 6 721 45.66 38.18 41.58
N2 273 308 15637 582 999 87.11 87.85 87.48
N3 41 2 654 5001 5 88.95 87.69 88.32

REM 243 472 970 7 6025 74.72 78.07 76.36



Fig. 3. Sample hidden layer outputs of fast representation learning module (FRL) for the five sleep stages. The hidden layer outputs are obtained by
concatenating all convolution layer results and BiLSTM results of the last layer.

Fig. 4. The hypnogram classified by sleep experts(top) and the hypnogram classified by FRL&S2SL(bottom) are used for the subject ”sc4001e0” in Sleep-EDF
dataset.

The last three columns in each row indicate per-class per-
formance metrics computed from the confusion matrix. Table
III and IV represent the use of FRL method and FRL&S2SL
method to evaluate sleep staging performance, respectively.
The tables both show that our methods performed the worst
in N1, followed by REM. In other sleep stages, F1 values were
significantly better, ranging from 86.81 to 88.24. Meanwhile,
it can be seen that the confusion matrix is almost diagonally
symmetric and the prediction results of our methods do not
tend to majority class N2. This indicates that the misclassifi-

cations are unlikely to be caused by imbalanced-class problem
[18]. It is worth noting that most of the misclassification results
in N1 are predicted as REM. A rational reason is that the
physiological characteristics of stage N1 and stage REM are
very similar, and it is difficult for the model to learn the
discriminative features. Currently, prediction performance in
stage N1 is still a challenge.

In addition, we compared the hypnogram scored by expert
and hypnogram scored by FRL&S2SL method in Fig. 4.
Obviously, the hypnogram obtained by our method is highly



TABLE V
PERFORMANCES OF THE PROPOSED METHOD COMPARED TO PREVIOUS METHODS ON THE SLEEP-EDF DATASET USING INDEPENDENT TRAINING AND
TESTING. OUR FRL REPRESENTS THE RESULT OF FAST REPRESENTATION LEARNING METHOD, WHILE OUR FRL&S2SL REPRESENTS THE RESULT OF

WEIGHTED FUSION OF FAST REPRESENTATION LEARNING AND SEMANTIC-TO-SIGNAL LEARNING METHOD. BOLD NUMBERS, ITALICS, AND RED FONTS
INDICATE THE HIGHEST ACCURACY, THE SECOND HIGHEST ACCURACY, AND THE PERFORMANCE DIFFERENCE OF FRL AND FRL&S2SL METHODS,

RESPECTIVELY.

Methods Dataset EEG Channel Overall Metrics Per-class F1-score (F1)
ACC MF1 κ W N1 N2 N3 REM

Ref. [19]

Sleep-EDF Fpz-Cz

78.9 73.7 0.71 71.6 47 84.6 84 81.4
Ref. [16] 74.8 69.8 0.65 65.4 43.7 80.6 84.9 74.5
Ref. [18] 82 76.9 0.76 84.7 46.6 85.9 84.8 82.4
Ref. [20] 81.6 72 0.73 56 47 87 87 83
Ref. [23] 82.3 74.7 0.75 77.3 40.5 87.4 86 82.3
Our FRL 82.1 75.5 0.75 87.4 39.5 86.8 88.2 75.6

Our FRL&S2SL 82.5(+0.4) 76.3(+0.8) 0.76(+0.1) 87.9(+0.5) 41.6(+2.1) 87.5(+0.7) 88.3(+0.1) 76.3(+0.7)

consistent with that obtained by experts, which shows that our
method is effective in the evaluation of sleep stage.

G. Comparison With State-of-the-Art Approaches

Our methods are used to compare with the five latest
methods which are from [19], [16], [18], [20], [23] on the
Fpz-Cz channel from the Sleep-EDF dataset. Table V shows
three evaluation metrics, namely ACC,F1, κ, and the results
of comparative experiments on independently divided subjects.
On the overall evaluation metrics, FRL&S2SL obtained the
highest accuracy ACC and the highest Cohen’s kappa co-
efficient κ, which were 82.5% and 0.76%, respectively. In
addition, FRL&S2SL achieved the second best result in MF1
metric, which is 76.3%, only 0.6% lower than the best [18].
For each class of F1 metric, FRL&S2SL method achieved
the highest F1 results in stage W, stage N2 and stage N3,
which were 87.9%, 87.5% and 88.3%, respectively. Compared
with the best methods, stage N1 and stage REM show some
decline. At the same time, FRL method is slightly inferior to
FRL&S2SL method, but it exceeds the average performance in
almost all evaluation metrics. In addition, compared with the
results of only using FRL method, FRL&S2SL method shows
a consistent improvement in all evaluation metrics. This proves
the effectiveness of increasing semantic information in sleep
stage scoring.

Furthermore, the time efficiency of our FRL method is com-
pared with the latest three methods, which are DeepSleepNet
[18], one-to-one+1-max CNN [23], 1D CNN method [22].
The time performances is calculated using a unified computer
configuration as shown in Table II. The Fig. 5(a) and Fig. 5(b)
show the training time comparison and test time comparison
between FRL method and other methods, respectively. Our
FRL method is obviously faster than other methods in training
time and testing time.

IV. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed a novel framework (FRL&S2SL)
that combined fast representation learning with semantic-
to-signal learning for automatic sleep stage scoring based
on single-channel EEG without using any hand-engineering
features. The fast representation learning(FRL) uses multiple

(a) Training time (minutes) comparison(b) Test time (milliseconds) comparison

Fig. 5. Training or test time comparison with the latest methods. The proposed
method, fast representation learning(FRL), is compared with the three latest
methods. DeepSleepNet and 1D CNN methods are respectively selected in
the paper [18], [22]. The one-to-one+1-max CNN model is used as time
performance comparison because it is the simplest of many models proposed
in paper [23].

parallel convolutional neural networks and multiple serial BiL-
STM models to extract frequency-domain and time-domain
features respectively. In order to alleviate class-imbalance
problems, the weighted softmax loss is applied to the FRL. For
the first time, the semantic features of EEG signals are extract-
ed through the semantic-to-signal learning(S2SL). Our results
show that the FRL has faster training and prediction speed
than other algorithms [18], [22], [23]. Furthermore, the results
of the benchmark dataset, Sleep-EDF, show that the FRL can
extract effective EEG features, and achieve the performance
of state-of-the-art on some evaluation metrics. In addition, the
fusion of FRL and S2SL has achieved consistent improvement
in many evaluation metrics compared with FRL, which shows
that S2SL can learn effective EEG semantic information. The
final results show that our framework, FRL&S2SL, achieves
the performance of state-of-the-art on most of the evaluation
metrics.

However, our model can be improved in many ways. In the
future, the structure of FRL module can be further improved to
learn more distinguishing features of N1 and REM. Secondly,
the optimal S2SL module structure or the introduction of
knowledge graph can be explored to extract more semantic
features related to EEG signal. Finally, more fusion strategies
of FRL module and S2SL module will be studied to find the
optimal fusion results.
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