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Abstract—Zero-shot object detection aims to detect and rec-
ognize objects unobserved in training samples from images.
Previous studies generally utilized concept names or textual de-
scriptions to build relationships between seen and unseen classes.
However, these works rarely exploited the valuable information
in textual descriptions for optimizing the network. Actually,
textual descriptions contain much valuable information related
to categories. Exploiting this information can help training the
network and improve the detection performance. Besides, textual
descriptions usually contain the names of objects that need to
be detected. By using this character, we can narrow the scope
of candidate unseen categories, thus can improve the detection
accuracy. In this regard, we propose a novel framework that
incorporates both images and their text descriptions for zero-
shot object detection. In particular, we employ text convolutional
neural network (CNN) and Faster R-CNN to extract text features
and image features respectively, and combine them to optimize
the regions that contain objects in images and to classify those
newly detected objects simultaneously. Besides, we try extracting
potential object labels directly from textual descriptions and
introducing online hard example mining (OHEM) to assist with
object classification and network optimization. Our extensive
experiments on two public datasets demonstrate the superior
performance of our approach to state-of-the-art methods.

Index Terms—zero-shot object detection, textual description,
word vector representation, convolutional neural network, online
hard example mining

I. INTRODUCTION

In recent years, there has been significant progress in
traditional object detection research [1], [2]. These efforts
usually require lots of training samples to be collected and
annotated for each object class. However, the objects to be
detected may not always appear in training examples. This
poses the challenge of zero-shot object detection [3], [4].

Zero-shot object detection aims to simultaneously detect and
recognize objects that do not exist in training examples. A
zero-shot object detection method depends on a large amount
of labeled training data of seen classes and the knowledge
about how an unseen class is semantically related to the seen
classes [5]. Seen and unseen classes are often related in a high-
dimensional space, which is called semantic space. Previous
studies on zero-shot object detection usually learned embed-
dings from image space to semantic space [3], [4], [6], or
project image space and semantic space into a joint embedding
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space [7]. The semantic space comes from concept names
or textual descriptions. They determine the label for each
object proposal by choosing the most similar category based
on the learned embeddings. Although concept names or textual
descriptions can contribute to predicting the category regarding
each bounding box, previous work rarely has exploited textual
descriptions to help training the network.

Actually, textual descriptions usually contain valuable in-
formation about the categories of objects. And since words
with similar meanings usually have similar vector represen-
tations, we can transfer our network from seen classes to
unseen categories. Therefore, considering textual descriptions
can improve the prediction of object labels for both seen
and unseen categories. Furthermore, textual descriptions often
contain names of objects explicitly. By exploiting these names,
we can quickly narrow down the label of an unknown object
to a small scope of categories and make the prediction more
accurate.

Inspired by the above, in this paper, we propose to in-
corporate textual descriptions into Faster R-CNN for zero-
shot object detection. We first extract text features and image
features separately. Then we concatenate image features and
text features to assist to detect and recognize objects in images.

During testing, we use semantic embeddings only to de-
termine the category of each object proposal. We compute
the cosine similarity between two word vector representations
of the predicted label and each unseen category, and choose
the category with highest similarity as the label of the object
proposal.

To summarize, we make the following contributions: (1)We
incorporate textual descriptions into Faster R-CNN to con-
tribute to network training; (2) We model textual descriptions
via word vector representations and use deep convolutional
neural network (CNN), which has shown excellent perfor-
mance in natural language processing [8]–[10], to extract text
features; (3) We derive object names from textual descriptions
as the candidate labels and predict the most similar name as
the category of each object to improve the prediction accuracy;
We also introduce online hard example mining (OHEM), used
initially for traditional object detection task [11], to optimize
the network; (4) We have conducted extensive experiments to
demonstrate the superiority of our proposed method.

The rest of this paper is organized as follows. We first
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review the related works. Then we describe our proposed
approach in detail. After that, we give the experimental results,
followed by the conclusion.

II. RELATED WORK

A. Object Detection

Object proposal methods have demonstrated the superiority
for detecting objects in the image [1], [2], [12], [13].

R-CNN [12] first generates a large number of region propos-
als and utilizes CNN to extract fixed-dimension features from
each region proposal. Then they use a support vector machine
(SVM) to classify region proposals into different categories.
Fast R-CNN [13] also generates lots of region proposals.
Then it exploits CNN rather than SVM to perform multi-class
classification and predict refined bounding boxes. Faster R-
CNN [1] utilizes region proposal network (RPN) to generate
region proposals. With RPN, it can be trained in an end-to-
end manner. Mask R-CNN [2] adds an image segmentation
branch and replaces RoI pooling by RoI Align to improve
object detection performance.

Although these object detection methods work well on pre-
defined concepts, they cannot be directly exploited to detect
novel concepts.

B. Zero-shot Learning

Zero-shot learning can be classified into two categories:
classifier-based methods and instance-based methods [14]. The
former directly learns a classifier for unseen classes. The latter
obtains labelled instances for unseen classes and uses them
to learn a classifier. For classifier-based methods, researchers
usually learn a binary one-vs-rest classifier for each seen
class and a corresponding function between seen and unseen
classes. Then they produce unseen classifiers according to the
corresponding function [15], [16]. Some other works build
unseen classifiers utilizing the relationship between seen and
unseen classes [17], [18], for example, cosine similarities in
the semantic space [17]. For instance-based methods, some
works project feature space and semantic space into a common
space to obtain labeled instances for unseen classes [19]. Some
other works obtain unseen labeled instances by borrowing
instances from seen classes [20]. And some works synthesize
pseudo instances to produce labeled instances for unseen
classes [21], [22].

C. Zero-shot Object Detection

ZSD is a recently introduced problem that aims to simul-
taneously locate and recognize objects unobserved in training
samples [3], [4], [6], [7].

Rahman et al. [3] utilize Faster R-CNN and a zero-shot
recognition framework named ConSE to detect unseen classes.
They design a semantic alignment network to project visual
space to semantic space. They also reported a simplified
variant of their approach when there were no pre-defined
unseen classes, in which they used semantic embeddings only
and computed cosine similarities with all unseen word vectors,
which is similar to our method to determine the category of

each object proposal. Bansal et al. [4] first learn a zero-shot
object detection model on seen classes, which is a background-
aware model. Then they use an iterative Expectation Maxi-
mization like algorithm to spread background boxes over a
wider range of visual concepts. They also choose to project
visual space to semantic space. Demirel et al. [6] build a hybrid
model, which consists of two learned region embeddings. Both
region embeddings are compared with true class embeddings
to get region detection results according to similarities. Li et
al. [7] utilize Faster R-CNN and natural language descriptions
for zero-shot object detection. They make use of LSTM to
model textual descriptions and perform element-wise multiply
between image space and semantic space to predict whether
textual descriptions fit the object proposal.

III. METHODOLOGY

A. Framework Overview

The overall framework of our proposed method is shown
in Fig. 1. It consists of two parts. The first part is Faster R-
CNN, which is utilized to extract features from the image and
perform object classification and bounding box regression. The
second part is text CNN, which is employed to extract features
from textual descriptions. Image features and text features are
concatenated as the input of the fully connected layers. Then
the network performs classification and box regression.

The loss function of the network consists of two parts: the
RPN loss function and the detection loss function. The RPN
loss function consists of RPN two-category cross-entropy loss
and RPN bounding box regression loss. The detection loss
function consists of multi-class classification cross-entropy
loss and bounding box regression loss. Both loss functions
are the same as those used in [1].

B. Image Feature Extraction

We use Faster R-CNN to extract features from the image.
The backbone of Faster R-CNN is the Inception-ResNet v2
model [23]. The network first extracts a global feature map
from the image. Then it uses RPN to generate a large number
of region proposals, which is utilized to distinguish between
the foreground and background. After that, the network ran-
domly chooses region proposals and makes use of RoI pooling
to extract fixed-size features from each region proposal. Then
region CNN is utilized to further extract features from RoI
features. Region CNN is part of the Inception-ResNet v2
model. After that, we obtain image features for each region
proposal.

C. Text Feature Extraction

We use the text CNN proposed in [24] to extract text fea-
tures from textual descriptions. It consists of 4 convolutional
blocks for filter number 64, 128, 256, 512 respectively, on top
of the first convolutional layer, whose filter number is 64. We
add a new convolutional layer after the last convolutional block
to adjust the output dimension, in order to match the dimension
of image output, followed by a max-pooling layer. There is a
max-pooling layer between two convolutional blocks, whose



Fig. 1. Overview of our proposed approach. The upper half in the figure is Faster R-CNN. The lower half in the figure is text CNN, which is utilized to
extract features from textual descriptions. Region CNN is used to extract features from RoI features further. Text features are concatenated with image features
as the input of the following part. “FC” represents a fully connected layer. Text features are used to determine which region proposals should be predicted as
objects and which not.

TABLE I
EXPERIMENTAL COMPARISON OF DIFFERENT METHODS ON THE MS COCO AND VISUAL GENOME DATASETS. RECALL@100 IS USED AS THE

EVALUATION METRIC. LARGER RECALL IS BETTER.

IoU MS COCO Visual Genome
0.4 0.5 0.6 0.4 0.5 0.6

SAN [19] 35.70 26.30 14.50 6.80 5.90 3.10
SB [20] 34.46 24.39 12.55 6.06 4.09 2.43

DSES [20] 40.23 27.19 13.63 7.78 4.75 2.34
LAB [20] 31.86 20.52 9.98 8.43 5.40 2.74

ZSD-LSTM [22] 45.50 34.30 18.10 9.70 7.20 4.20
ZSD-CNN-ohem∗ 54.14 47.18 38.12 23.00 18.04 13.33

TABLE II
EXPERIMENTAL COMPARISON OF WHETHER ADDING TEXTUAL DESCRIPTION INTO FASTER R-CNN. RECALL@100 IS USED AS THE EVALUATION

METRIC. LARGER RECALL IS BETTER.

IoU MS COCO Visual Genome
0.4 0.5 0.6 0.4 0.5 0.6

ZSD-CNN-w/o 26.96 22.17 17.20 6.83 4.76 2.99
ZSD-CNN-normal 32.56 27.23 22.01 10.20 7.58 5.13

filter numbers are different, for example, 64 and 128. Each
convolutional block consists of two convolutional layers, each
one followed by a batch normalization layer and a ReLU
activation. The kernel size of each convolutional layer is 3. We
use shortcut connections between neighboring convolutional
blocks to reduce degradation, which was recommended in
[25]. The details of text CNN and one convolutional block
are elaborated in [24].

Before fed into text CNN, textual descriptions are trans-
formed into word vector representations word by word using
public word vector representations. The input of text CNN are
word vector representations whose height is 1, width is N, and
the dimension of the input channel is 300. N represents the
number of words in each textual description, and 300 is the
dimension of one word vector representation. For public word
vector representations, we use GloVe [26] to extract vector
representations for each word.

D. OHEM Method

Traditionally, to train the Faster R-CNN network, it usually
needs to randomly select k examples from all region proposals
produced by RPN to perform gradient descent and optimize the
network, for instance, 64 random samples. Shrivastava et al.
[11] recommended OHEM training for traditional object detec-
tion, which selected hard examples to optimize the network.
In this paper, we employ OHEM method to train our zero-
shot object detection network. Specifically, we first randomly
select more examples, for example, 640 region proposals, from
all region proposals, and perform network inference. Then we
rank the losses of these region proposals and choose samples
whose losses are among top k. After that, we optimize the
network using these selected samples. Using OHEM method,
we can reduce the losses of hard examples, which, in theory,
is better than using random samples.



Fig. 2. Selected examples of zero-shot object detection

TABLE III
EXPERIMENTAL COMPARISON OF USING NAMES OF UNSEEN OBJECTS FROM TEXTUAL DESCRIPTIONS AS CANDIDATE LABELS OR USING ALL UNSEEN

CATEGORIES AS CANDIDATE LABELS. RECALL@100 IS USED AS THE EVALUATION METRIC. LARGER RECALL IS BETTER.

IoU MS COCO Visual Genome
0.4 0.5 0.6 0.4 0.5 0.6

ZSD-CNN-normal 32.56 27.23 22.01 10.20 7.58 5.13
ZSD-CNN-normal∗ 50.92 42.99 33.98 18.31 13.28 8.82

ZSD-CNN-ohem 33.91 29.16 23.60 12.53 10.20 7.75
ZSD-CNN-ohem∗ 54.14 47.18 38.12 23.00 18.04 13.33

IV. EXPERIMENTS

A. Datasets

1) MS COCO: This dataset was designed for detecting and
segmenting objects [27]. It contains caption descriptions for

every image. We utilize bounding box positions of objects and
captions of each image for experiments.

2) Visual Genome: This dataset was designed for visual
relationship understanding [28]. It contains rich information
about regions and objects. We focus on categories and bound-



TABLE IV
EXPERIMENTAL COMPARISON OF USING NORMAL TRAINING METHOD OR OHEM TRAINING METHOD FOR OPTIMIZING THE NETWORK. RECALL@100 IS

USED AS THE EVALUATION METRIC. LARGER VALUE IS BETTER.

IoU MS COCO Visual Genome
0.4 0.5 0.6 0.4 0.5 0.6

ZSD-CNN-normal 32.56 27.23 22.01 10.20 7.58 5.13
ZSD-CNN-ohem 33.91 29.16 23.60 12.53 10.20 7.75

ing box positions of objects, as well as region descriptions for
experiments.

B. Data Split

For the zero-shot learning setting, unseen objects are not
allowed to exist in training samples. In terms of the MS COCO
dataset, following [4] and [7], we chose the same 48 categories
for training and the same 17 categories for testing. We used the
2014 training set as training data and used the data listed by
[4] for testing, which contains 6618 samples. We removed the
images in training examples that contain objects from unseen
classes. For the Visual Genome dataset, we chose the same
478 classes for training and the same 130 classes for testing.
We used examples from part-1 for training and the data listed
by [4], which has 7819 examples, for testing.

For the MS COCO dataset, the number of filters in the
last convolutional layer of the text CNN module is 128. Then
the dimension of text features is 1024. They are concatenated
with image features, whose dimension is 1536, as the input
of the following part. Besides, the descriptions are truncated
or padded to a fixed length, 128 words. And for the Visual
Genome dataset, the last convolutional layer has 32 filters.
Therefore, the output dimension of the text CNN module is
1280. The descriptions for Visual Genome are truncated or
padded to 640 words.

C. Training and Testing Settings

We train the whole network in an end-to-end manner. Firstly,
before training, we initialize the parameters of the network.
The backbone of Faster R-CNN is the Inception-ResNet v2
model. Its parameters are initialized using the pertained model
on ImageNet by [23]. The parameters of the rest part of
the network are randomly initialized, including the text CNN
module. Then the network is trained with a learning rate
of 10−4. The learning rate is decayed by 0.5 after every
epoch. During training, we use a stochastic gradient descent
optimizer. When using OHEM training, the parameters of the
network are initialized using parameters of the model learned
before.

During the testing, given one image and its descriptions, the
network locates and recognizes unseen objects. Each unseen
object is first classified as the most similar category from seen
classes. Then, for each bounding box, we compute the cosine
similarity between the predicted category and every label name
from unseen classes. Finally, we choose the category with the
highest similarity as the label of this bounding box.

D. Evaluation Metric
Following [4] and [7], we use recall as the evaluation metric

for fair comparison. We compare our proposed method with
three previous works. These methods are from [3], [4] and
[7]. We use the same names as the original works, to present
the experimental results. We utilize “ZSD-LSTM” to represent
the method in [7]. Following [4], for each image, we keep 100
detection bounding boxes whose classification scores are larger
than 0.07 and among the top 100 in all bounding boxes, to
compute the recall.

E. Results
Table I shows the experimental comparison of different

methods on the two datasets. The table shows the Recall@100
performance of different methods. A larger recall is better. We
use three different IoU overlap thresholds in the experiments:
0.4, 0.5, 0.6. For previous methods, we use the experimental
results from [4] and [7]. Because [3] didn’t conduct exper-
iments on MS COCO and Visual Genome datasets, we use
the results from [7] for their method. For our method, the
name containing “ohem” means using the OHEM method
during network training. The name containing “*” represents
the method that uses names of unseen objects from textual
descriptions as candidate labels. And, if we can’t extract labels
from textual descriptions, we still use all unseen categories as
candidate labels.

Table I shows that our proposed method performs better
than previous methods. It demonstrates the effectiveness of
our proposed method, which incorporates textual descriptions
into Faster R-CNN, and uses names of unseen objects from
textual descriptions as candidate labels, and applies OHEM
method during network training.

F. Component Studies
In this part, we present the extensive experimental results

to study the effects of different components in our approach.
We still use recall as the evaluation metric. We use three
different IoU overlap thresholds in the experiments: 0.4, 0.5,
0.6. For our method, the name containing “w/o” means not
adding textual descriptions in the network. The names con-
taining “normal” mean using normal training method. The
names containing “ohem” mean using the OHEM method
during network training. The names without “*” represents the
method that uses all unseen categories as candidate labels. The
names containing “*” represent the method that uses names of
unseen objects from textual descriptions as candidate labels,
and if we can’t extract labels from textual descriptions, we
still use all unseen categories as candidate labels.



1) Adding Textual Descriptions: Table II shows the results
concerning adding textual descriptions into Faster R-CNN.
Textual description improves the recall by a large margin. For
example, adding textual descriptions improves the recall by
5.6% to 32.56% for the MS COCO dataset and threshold
of 0.4. It contributes to network training and improve the
detection accuracy. The results also show the effectiveness
of public word vector representations and deep CNN in text
representation and feature extraction.

2) Using Labels from Textual Descriptions: Table III shows
the results of using object names from textual descriptions as
candidate labels and using all unseen categories as candidate
labels for normal training and OHEM training. They turn out to
improve the recall significantly. For ohem method trained with
MS COCO dataset and threshold 0.4, the recall is increased
from 33.91% to 54.14%.

3) Using OHEM Training: Table IV gives the experimental
results of using normal training method and using OHEM
method to optimize the network, respectively. From the results,
we can find that OHEM training can slightly improve the
recall, nearly 2 percent, compared with normal training.

G. Qualitative Results

In this part, we present some detection results to demon-
strate the performance of our proposed method. We use MS
COCO as an example. The detection results are shown in Fig.
2. From the figure, we can find that although there are several
missed detections, for example, in the right top image, one
cake and one umbrella are missed, our proposed method is
capable of detecting novel objects that are unseen in training
examples. In the future, we will continue to improve the
framework to achieve better performance.

V. CONCLUSION

In this paper, we propose a new approach for zero-shot
object detection. It incorporates textual descriptions into Faster
R-CNN to contribute to network training, and uses deep
CNN to extract features from word vector representations of
textual descriptions and exploits online hard example mining
to optimize the network. It also uses object names from textual
descriptions as candidate labels and chooses the category from
candidate labels with the highest similarity as the label of each
object proposal. We conduct extensive experiments on two
real-world datasets. The experimental results demonstrate that
our proposed approach performs better than previous methods.
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