Not All Synonyms Are Created Equal:
Incorporating Similarity of Synonyms to Enhance
Word Embeddings

Peiyang Liu* T, Wei Ye* ¥, Xiangyu Xi *, Tong Wang?, Jinglei Zhang* f, Shikun Zhang*,
*National Engineering Research Center for Software Engineering, Peking University
fSchool of Software and Microelectronics, Peking University
email:{liupeiyang,jinglei.zhang,wye,xixy,zhangsk } @pku.edu.cn, 1186757843 @qq.com

Abstract—Traditional word embedding approaches learn se-
mantic information from the associated contexts of words on
large unlabeled corpora, which ignores a fact that synonymy
between words happens often within different contexts in a
corpus, so this relationship will not be well embedded into
vectors. Furthermore, existing synonymy-based models directly
incorporate synonyms to train word embeddings, but still neglect
the similarity between words and corresponding synonyms. In
this paper, we explore a novel approach that employs the
similarity between words and corresponding synonyms to train
and enhance word embeddings. To this purpose, we build two
Synonymy Similarity Models (SSMs), named SSM-W and SSM-
M respectively, which adopt different strategies to incorporate the
similarity between words and corresponding synonyms during
the training process. We evaluated our models for both Chinese
and English. The results demonstrate that our models outperform
the baselines on seven word similarity datasets. For the analogical
reasoning and text classification tasks, our models also surpass
all the baselines including a synonymy-based model.

Index Terms—word embedding, language model, synonyms,
word similarity, text classification

I. INTRODUCTION

Distributed representations of words, namely word embed-
dings, encode both semantic and syntactic information into
a dense vector. The derived word embeddings have been
used in many tasks such as text classification [1], information
retrieval [2], sentiment analysis [3], etc. Most of these NLP
tasks may also benefit from pre-trained word embeddings,
such as CBOW [4], Skip-Gram [4] and GloVe [5], which
are based on the distributional hypothesis [6], [7]: words
that occur in the same contexts tend to have similar mean-
ings. These methods ignore the truth that synonymy between
words happens often within different contexts in a corpus.
For example, in Fig. 1, according to WordNet [8], “Good”’s
synonyms are “Well”, “Right”, "Honorable” and "Goodness”,
but the similar words calculated by CBOW are “Great”, ”"Bad”,
“Lousy” and "Terrific”. Obviously, CBOW embeds words only
based on their syntactical structure but ignores the meaning of
words. Since synonyms of words hold similar meanings, their
embeddings are expected to be close enough. If we train words
and corresponding synonyms separately (such as ”Good” and
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Fig. 1.
CBOW.

A paradigm of Good’s synonyms in thesaurus and calculated by

”Well”), their latent correlation may be lost. Furthermore,
we observe that some words regularly appear in our corpus
while their synonyms do not, which causes a serious weakness
that high-frequency words are well embedded but their low-
frequency synonyms are not, although their meanings are
similar. In order to solve these problems, synonymy-based
models are proposed by researchers.

The effectiveness of exploiting the internal synonymy be-
tween words has been confirmed by some previous work.
For example, Yu groups English words into sets of synonyms
called synsets [9], provides short, general definitions for them,
and records various semantic relations between synsets. Bian
incorporates synonymy knowledge from WordNet and Para-
phrase Database into a joint model built upon Word2vec [10].
Zhang combines knowledge from multiple sources (sylla-
bles, POS tags, antonyms/synonyms, Freebase relations) with
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Fig. 2. A paradigm of Equal Synonymy Models based on CBOW. The
sentence “You are a good man” is selected as an example. "Man” is the
target word. When calculating the input vector of "Good”, they first find out
synonyms of “Good” in thesaurus, and add the vectors of all synonyms to
the vector of "Good” with equal weights. F is the compositional function
aggregates synonyms embeddings into target word embedding. w is the same
weight of each synonym.

CBOW model [11]. Ono proposes a Bayesian Probabilistic
Tensor Factorization (BPTF) model to combine thesauri infor-
mation and existing word embeddings [12]. Hasegawa utilizes
supervised synonym and antonym information from thesauri
to enhance word embeddings [13]. Alsuhaibani incorporates
visual features into word embeddings to represent the simi-
larity of synonyms [14]. Sun learns word embeddings using a
corpus and a knowledge base which contains information of
synonymy between words [15].

As shown in Fig. 2, we refer to all of above synonymy-based
models as Equal Synonymy Models. They further consider
synonyms of words when training word embeddings, which
achieves significant improvement. However, Equal Synonymy
Models assume that all synonyms of a word have equal
impacts to the word’s embedding during training process,
which ignores the similarity variance among synonym pairs.
For instance, it is obvious that “Well” is semantically closer
to “Good” than “Honorable”. Our intuition is that a synonym
which is semantically closer to the target word should have a
greater impact on its embedding during the training process.
Therefore, we explore a new way to incorporate the similarity
values of synonym pairs into the training process and thus
enhance word embedding.

In this paper, we consider different methods to change the
input layer and update rules of CBOW [4], and propose two
lightweight and efficient models, which are called Synonymy
Similarity Models (SSMs), to encode synonymous properties
into words as well as to enhance the semantic similarities
among word embeddings.

For evaluation, we compared our SSMs with the state-of-
the-art baselines on two basic NLP tasks, which are word sim-
ilarity and analogical reasoning, and downstream tasks of text
classification. The results show that our models outperform the
baselines and can achieve satisfactory improvement on these
tasks. In summary, the main contributions of this paper are

Fig. 3. A paradigm of SSM-W. In this model, all synonyms of “Good” are
added together with different weights.

summarized as follows.

o Rather than assuming that all synonyms of a word have
equal impacts to the word’s embedding, we propose to
employ the similarity between a word and its corre-
sponding synonyms to train the word embeddings. To
validate the feasibility of our intuitive idea, we propose
two specific models, SSM-W and SSM-M, with different
strategies to incorporate the similarity values.

We utilized a medium-sized corpus to train SSMs and the
state-of-the-art baselines, and evaluated their performance
on two basic NLP tasks, i.e., word similarity and analog-
ical reasoning, and downstream text classification tasks.
The results show that SSMs outperform the baselines on
all of these tasks for both Chinese and English.

II. BACKGROUND AND RELATED WORK

Considering the high efficiency of CBOW [4], we build
SSMs upon it. In this section, we first review the background
of CBOW, and then present some related work on recent
synonymy-based word embedding methods.

CBOW with Negative Sampling With a sliding window,
CBOW predict the target word according to the contextual
words in the window. Given a sequence of tokens 7' =
{t1,ta,...,t, }, in which n is the size of training corpus, the
objective of CBOW is to maximize the following average log
probability equation:

1 n
L= - Z log p(t;|context(t;)) ()

i=1

where context(t;) represents the context words of ¢; in the
slide window, and p(t;|context(t;)) is derived by softmax.
Due to the huge size of vocabulary, it is difficult to calculate
p(ti|context(t;)) in acceptable amount of time. Therefore,
negative sampling and hierarchical softmax are proposed to
solve this problem [4]. In order to train model efficiently,
all of our models are trained based on negative sampling. In
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where m represents the number of negative samples, and
0(-) is the sigmoid function. The first item of Eq. (2) is
the probability of target word on condition of the context.
The second item indicates the probability of negative samples
which hold different contexts with the target word.

Synonymy-based Word Embedding Recently, some more
efficient word embedding methods are proposed by exploiting
the synonyms of words. These synonymy-based models can
be divided into two main branches.

The first branch directly adds the synonyms to word em-
beddings or optimizes a joint objective over distributional
statistics and synonyms. [9], [10], [12], [14]. Yu proposed
a prior-knowledge-enhanced word embedding model, which
incorporates prior knowledge about synonyms from Word-
Net and Paraphrase Database into a joint model built upon
CBOW [4] [9]. Bian incorporate synonyms and antonyms
in to a CBOW model [10]. Ono uses supervised synonym
and antonym information from thesaurus to enhance word
embeddings [12]. Alsuhaibani incorporate a corpus and a
knowledge base which contains information of synonymy
between words to train word embeddings [14].

The other branch tries to use probabilistic graphical models
to connect words with their synonyms, and further learns
word embeddings. Zhang proposes a Bayesian Probabilistic
Tensor Factorization (BPTF) model to combine information
of thesaurus and existing word embeddings [11].

However, these synonymy-based models directly exploit the
synonyms of words to train word embeddings, which ignore
the similarity values between words and their corresponding
synonyms. In contrast, we employ the similarity values of
synonym pairs to provide deeper insights for training enhanced
word embeddings.

III. OUR SYNONYMY SIMILARITY MODELS

We leverage two different strategies to modify the input
layer and update rules of CBOW when incorporating the
synonyms of words. We propose two specific models, named
Synonymy Similarity Model-Weighted (SSM-W) and Syn-
onymy Similarity Model-Max (SSM-M). Our intuition is that
synonyms which hold a closer meaning to the corresponding
word should have a greater impact on its word embedding
during training. Inspired by the attention scheme, in the SSM-
W model, the impact of a target word’s each synonym on the
target word’s embedding is determined by its similarity with
the target word. In contrast, in SSM-M, we only keep the syn-
onym which is the most similar to the target word and discard
all other synonyms. We present detailed description of SSM-
W and SSM-M in the following subsections, respectively. At
the end of this section, we introduce the update rules of our
SSMs.
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Fig. 4. A paradigm of SSM-M. The synonym with maximum similarity
towards ”"Good” are selected.

A. SSM-W

The SSM-W model is built based on attention scheme.
We observe that many words have more than one synonyms.
For example, “Good” has synonyms “Well”, “Right”, “Hon-
orable”, etc. As shown in Fig. 3, the synonyms of “Good”
hold different biases towards it. Therefore, we assign differ-
ent weights to these synonyms, and measure these weights
by calculating the normalized similarities between token t;
and the corresponding synonyms. For SSM-W, the modified
embedding of ¢; is

. 1
Uti:i
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where vy, is the original vector of ¢;, S; is a set of synonyms of
t;, and wy, ) denotes the weight between ¢; and the synonyms
s € S;. We use cos (v,,vp) to denote the cosine similarity
between v, and v, then wyy, , is expressed as follows:

cos (v, , Vs)
. - . 4
Wits,s) ZzeSi cos (V¢,, V) @

B. SSM-M

To further eliminate the impacts of some uncorrelated
synonyms to a word. In SSM-M, we only select the synonym
which is the most similar to the token t;, As shown in Fig.
4, the synonym “Well” of “Good” is finally selected since the
“Well” is semantically closest to “Good”. For token ¢; SSM-M
is expressed as

1
U, = [Ut'i +w,,s; '/US:.na.TJ o)

5 o)

Where S? s the synonym with maximum similarity towards

max !
token ¢;, and S}, .. is mathematically defined as
St ww = argmaz cos (vy,, vs), s € S; (6)

The normalized weight w, s:  can similarly be derived
like Eq. (4).



C. Update Rules for SSMs

After modifying the input layer of CBOW, Eq. (1) can be
expressed as:

>

tjEcontext(t;)

L1 .
L= - ; log p(vy, | ;) @)

Where 9;; is the modified vector of v, (t; € context(t;)).
Since the thesaurus describes top-level relations between
words and the synonyms, these relations don’t change dur-
ing the training period. When the gradient is propagated
back to the input layer, we update not just the word vector
vg, (t; € context(t;)), but the vectors of the synonyms in the
vocabulary with the same weights as they are added to the
vector Ut -

IV. EXPERIMENTAL SETUP

Before we describe the experiment results, we first introduce
experimental settings in this section.

A. Corpus and Synonym Map

We evaluate our model for both Chinese and English.
For Chinese, we select a human-annotated corpus with news
articles from The People’s Daily for embedding learning. The
corpus has 31 million words. To achieve higher quality for the
word embeddings, we filter all digits and some punctuation
marks out of the corpus, and use THULAC [15] to segment
Chinese word.

For English, we utilize a medium-sized corpus, which stems
from the website of the 2013 ACL Workshop on Machine
Translation and is used in [16]. We chose the news corpus of
2009 whose size is about 1.7GB. It contains approximately
500 million tokens and 600,000 words in the vocabulary. As
did in [16], to get better quality of the word embeddings, we
filter all digits and some punctuation marks out of the corpus.

To create the synonym map, we need to obtain the synonyms
of each word and interpret them with the lookup table. We
built Chinese synonym map according to HIT-CIR Tongyici
Cilin (Extended) [17], and English synonym map according
to WordNet [8].

B. Baselines

For comparison, we chose three word-level state-of-the-
art word embedding models including CBOW, Skip-Gram [4]
and GloVe [5], and we also implemented a Equal Synonymy
Model, which is a variant version of the previous work [9],
where all synonyms of a word make equal impacts to the
word’s embedding during the training. This enables our eval-
uation to focus on the critical difference between our models
and the Equal Synonymy Model. We utilize the source code
of word2vec to train CBOW and Skip-Gram. GloVe is trained
based on the code. We modified the source code of word2vec
and train our SSMs and the Equal Synonymy Model.

C. Parameter Settings

Parameter settings have a great effect on the performance
of word embeddings [18]. For fairness, all models are trained
based on equal parameter settings. In order to accelerate the
training process, CBOW, Skip-Gram and Equal Synonymy
Model together with our SSMs are trained using the negative
sampling technique. Since it is suggested that the number of
negative samples in the range 5-20 is useful [19], we set the
number of negative samples to be 20 in this paper. The Same
as [20], dimension of word embedding is set to be 200, and
the context window size is set to be 5 which is equal to the
setting in [19].

D. Evaluation Benchmarks

To compare the quality of trained word embeddings with
different models, we evaluated them on three standard tasks:
word similarity, analogical reasonging, and text classification.

1) Word Similarity: We use this task to evaluate the ability
of word embeddings to capture semantic information from
corpus. For the task of Chinese word similarity, we employed
two manually labeled datasets including wordsim-240 and
wordsim-296 provided by [21]. Each dataset contains a list
of word pairs with a human-labeled score on how related
or similar the two words are. In wordsim-240, there are 240
pairs of Chinese words and human-labeled relatedness scores.
Among the 240 word pairs, the words in 233 word pairs have
appeared in the learning corpus and there are new words in
the remaining 7 word pairs. In wordsim-296, the words in
280 word pairs have appeared in the learning corpus and the
remaining 16 pairs have new words.

For English word similarity, we employed two manually la-
beled datasets including Wordsim-353 [22] and RG-65 [23] as
well as other widely-used datasets including Rare-Word [24],
SCWS [25], Men-3k [26] and WS-353-Related [27]. More
details of these datasets are shown in Table II.

To evaluate the quality of word embeddings, we calculates
the Spearman correlation [28] between the labeled scores and
scores generated by the word embeddings.

2) Analogical Reasoning: This task consists of analogies
such as “father is to man as mother is to woman”. Embedding
methods are expected to find a word x such that its vector x is
closest to vec(woman) - vec(man) + vec(father) according to
the cosine similarity. If the word "mother” is found, the model
is considered having answered the problem correctly.

For Chinese, we used the dataset collected by [21], which
consisting of 1125 analogies. It contains 3 analogy types: (1)
capitals of countries (687 groups); (2) states/provinces of cities
(175 groups); and (3) family words (240 groups). The learning
corpus covers more than 97% of all the testing words.

For English, we used the Microsoft Research Syntactic
Analogies dataset, which is divided into adjectives, nouns and
verbs by Mikolov [29] with a size of 8000.

3) Text Classification: We use the text classification task to
evaluate word embeddings on a more applied usage scenario.

For Chinese, we use datasets collected by [30], which
contain four domains of Chinese reviews: notebook, car, cam-



DataSet CBOW Skip-Gram GloVe Equal Synonymy Model SSM-W SSM-M
Chinese WS-240 233 Pairs 55.35 55.13 47.27 57.77 58.23 58.15
Chinese WS-240 240 Pairs 55.89 55.42 49.28 56.92 57.31 58.28
Chinese WS-296 280 Pairs 61.28 59.82 49.87 61.55 63.67 63.29
Chinese WS-296 296 Pairs 58.67 52.78 44.85 60.83 63.21 63.85
English RG-65 56.50 62.81 59.92 60.45 62.49 63.01
English RW 40.58 36.42 33.40 40.12 40.65 40.38
English SCWS 63.13 60.20 47.98 60.44 61.91 61.77
English Men-3k 68.07 66.30 60.56 68.19 68.25 68.21
English Wordsim-353 58.77 61.94 49.40 60.08 62.46 62.51
English WS-353-REL 49.72 57.05 47.46 57.18 57.31 57.34
TABLE 1
EVALUATION RESULTS ON WORD SIMILARITY (p * 100).
Name Pairs || Name Pairs Method Total Adjectives Nouns Verbs
RG-65 65 RW 2034 CBOW 12.85 9.63 11.37 17.54
SCWS 2003 Men-3k 3000 Skip-Gram 12.90 9.92 11.51  17.29
Wordsim-353 353 WS-353-REL 252 GloVe 13.27 10.13 11.86 17.81
Equal Synonymy Model 12.83 9.83 1145 17.23
TABLE II SSM-W 13.27 10.08 11.89 17.85
DETAILS OF ENGLISH DATASETS. THE COLUMN “PAIRS” SHOWS THE SSM-M 13.33 10.21 11.77 18.02
NUMBER OF WORD PAIRS IN EACH DATASET.
TABLE IV

Method Total Capital State Family
CBOW 5383 5289 6828 61.63
Skip-Gram 68.85 6192 8285 79.34
GloVe 6581 6632 5493  63.37
Equal Synonymy Model 69.43 6597 77.36  80.14
SSM-W 6949 67.68 83.21 82.18
SSM-M 7036 68.24 79.76  81.33
TABLE III

ACCURACY (%) FOR CHINESE ANALOGICAL REASONING TASK.

era, and phone. They manually labeled the sentiment polarity
towards each aspect target as either positive or negative. It is
a binary classification task. As what we do in corpus, we use
THULAC [15] to segment Chinese word.

For English, we also conduct 4 text classification tasks
using the 20 Newsgroups dataset. The dataset totally con-
tains around 19,000 documents of 20 different newsgroups,
and each corresponding to a different topic, such as guns,
motorcycles, electronics and so on. For each task, we ran-
domly select the documents of 10 topics and split them into
training/validation/test subsets at the ratio of 6:2:2.

For each task, we trained, validated and tested an L2-
regularized logistic regression (LR) classifier, which is im-
plemented with the scikit-learn toolkit [31], which is an
open-source Python module integrating many state-of-the-art
machine learning algorithms.

V. EXPERIMENTAL RESULTS

A. The Results on Analogical Reasoning

We test our models and baselines on this datasets mentioned
above. For Chinese, the results are displayed in Table III. For

ACCURACY (%) FOR ENGLISH ANALOGICAL REASONING TASK.

Method English Chinese A Eg A Ch
CBOW 78.26 83.15 - -
Skip-Gram 79.40 82.47 +1.14  -0.68
GloVe 77.01 79.27 -1.25 -3.88
Equal Synonymy Model 80.14 82.62 +1.88 -0.53
SSM-W 80.67 85.57 +2.41 +2.42
SSM-M 81.28 85.20 +3.02 +2.05
BERT 83.39 - - -
BERT+CBOW 82.81 - -0.58 -
BERT+SSM-W 83.56 - +0.17 -
BERT+SSM-M 83.72 - +0.33 -
TABLE V

ACCURACY (%) FOR TEXT CLASSIFICATION TASK. A EG REPRESENTS
DIFFERENCE BETWEEN BASELINE’S SCORE ON ENGLISH. A CH
REPRESENTS DIFFERENCE ON CHINESE.

English, the results are displayed in Table IV.

B. The Results on Word Similarity

Word similarity is conducted to test the semantic informa-
tion encoded in word embeddings, and the results are presented
in Table I. From the table, we can observe that our models
outperform the compared baselines on nine out of ten datasets.

From the evaluation results on Chinese WS-240, we ob-
serve that: (1) Equal Synonymy Model, SSM-W and SSM-M
significantly outperform baseline methods on both 233 word
pairs and 240 word pairs, which validates the effectiveness of
exploiting the internal synonymy between words; (2) SSM-
W and SSM-M perform better than Equal Synonymy Model,
which indicates that corresponding synonyms should have
different impacts to the target word; (3) The addition of 7
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Fig. 6. The visualization of SSM-W word embeddings.

word pairs with new words does not cause significant change
of correlations for all of above methods. The reason is that,
the 7 word pairs are mostly unrelated. The default setting of
0 in all methods is basically consistent with the fact.

From the evaluation results on Chinese WS-296, we observe
that the performance of baseline methods drop dramatically
when adding 16 word pairs of new words, while the perfor-
mance of Equal Synonymy Model and SSMs keeps stable.
The reason is that the baseline methods cannot handle these
new words appropriately. For example, “tiger” and “jaguar”
are semantically relevant, but the relatedness is set to O in
baseline methods simply because “jaguar” does not appear in
the corpus, resulting in all baseline methods putting the word
pair much lower than where it should be. In contrast, Equal
Synonymy Model and SSMs compute the semantic relatedness
of these word pairs much closer to human judgements. Since
even if “jaguar” does not appear in the corpus, it’s synonyms
such as “tiger” do. Equal Synonymy Model and SSMs can
easily cover at least one synonym of these new words and
provide useful information about their semantic meanings for
computing the relatedness.

From most of the English evaluation results, we observe
that our SSMs get better score than baselines, which indicates
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that our models can perform well in different languages. The
reason of the improvement of SSMs on the evaluation of
English and Chinese are generally the same. So We do not
analyze the English evaluation results in more detail due to
the page limits.

From the table III and table IV, we can observe that
all of the synonymy-based model outperforms the baselines.
Furthermore, it should be noted that our SSMs also achieve a
better score than Equal Synonymy Model, which confirms the
effectiveness of our intuitive idea again. In qualitative study,
we found that Equal Synonymy Model are largely confused
by polysemous words. For example, both ”fu qin” and lao zi”
can be referred to the father in Chinese, but ’lao zi”” will also
be used for someone calling himself arrogantly. If “lao zi” is
assigned the same weight as other synonyms of “fu gin”, we
will get an inaccurate result in model training.

C. The Results on Text Classification

For Chinese and English text classification tasks, we report
the classification accuracy over the test set. The average
classification accuracy across the two tasks is utilized as
the evaluation metric for different models. The results are



presented in Table V. Since we simply use the average
embedding of words as the feature vector for classification, the
overall classification accuracy of all models are merely around
80%. However, the classification accuracy of our SSMs still
outperform all the baselines, especailly the Equal Synonymy
Model. Moreover, it indicates that incorporating similarity of
synonyms into word embeddings can contribute to enhancing
the performance of downstream NLP tasks.

Note that language models like BERT [32] achieved great
performance on downstream tasks. We also explore whether
our model can make an improvement to BERT. As BERT for
Chinese are only trained by char, we only do the experiment
on English. We concatenate our models’ embedding with
BERT’s embedding. To make a fair comparison, we also
concatenate BERT’s embedding with CBOW’s embedding of
the same dimension. As show in the last four rows of Table
V, BERT+SSMs also get slightly better scores than original
BERT and BERT+CBOW, which indicates that SSMs can
integrate the knowledge from synonyms that BERT can not
captured completely. Incorporating the idea behind SSMs into
BERT directly is a valuable direction of future work.

D. Word Embedding Visualization

To visualize the embeddings of our models, we select sev-
eral pairs of synonyms from the results of CBOW and SSM-W.
The dimensions of the selected word embeddings are reduced
from 200 to 2 using Principal Component Analysis (PCA).
As show in Fig 5, some synonyms are not close enough, such
as “Good” and “Well”, whose meanings are similar. Some
antonyms are embedded together, such as "Bad” and ”"Good”,
which are absolute opposite meaning. In our model, SSM-
W, as show in Fig 6, synonyms get similar embedding, and
antonyms are separated into different space. The visualization
shows that embedding generated by our models can capture
more accurate features of words, especially in the sense of
semantics of synonyms.

E. The Impacts of Parameter Settings

Parameter settings can affect the performance of word em-
beddings. We analyze the impacts of corpus size and window
size on the performance of word embeddings. In the analysis
of corpus size, we hold the same parameter settings as before.
The sizes of tokens used for training are separately 20%,
40%, 60%, 80% and 100% of the entire corpus mentioned
above. We utilize the result of word similarity on Wordsim-
296 as the evaluation criterion. From Fig. 7, we have the
following observations. Firstly, the performance of our SSMs
are better than CBOW and Equal Synonymy Model at each
corpus size. Secondly, the performance of CBOW and Equal
Synonymy Model are sensitive to the corpus size. In contrast,
our SSMs’ performance are more stable than others’. As we
have shown in word similarity experiment, SSMs are able to
increase the semantic information of word embeddings. It is
worth noting that the worst performance of SSMs are nearly
equal to the best performance of Equal Synonymy Model’s. In
the experiment with different window sizes, we observe that

the performance of all word embeddings trained by different
models has a trend to ascend with the increasing of window
size as illustrated in Fig. 8. Our SSMs outperform others under
all the preset conditions. Also, the worst performance of SSMs
is nearly equal to the best performance of Equal Synonymy
Model’s.

VI. CONCLUSION

In this paper, we explored a new direction to employ the
similarity of synonyms to train word embeddings. Different
from previous works, we assume all corresponding synonyms
make different impacts to the target word, so that we build our
models based on attention scheme to assign different weights
to corresponding synonyms. Two specific models named SSM-
W and SSM-M are proposed by modifying the input layer
and update rules of CBOW. To test the performance of our
models, we chose CBOW, Skip-Gram and implemented a
previous synonymy-based model as comparative baselines.
We tested them on two basic NLP tasks of similarity and
analogical reasoning, and downstream text classification tasks.
The experimental results show that our models outperform the
baselines on three tasks for both Chinese and English. In the
future, we plan to incorporate SSMs with language models
and perform evaluation on more downstream tasks.
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