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Abstract—Uncertainty quantification (UQ) from similar events
brings transparency. However, the presence of an irrelevant event
may degrade the performance of similarity-based algorithms.
This paper presents a UQ technique from similarity and sensi-
tivity. A traditional neural network (NN) for the point prediction
is trained at first to obtain the sensitivity of different input
parameters at different points. The relative range of each input
parameter is set based on sensitivity. When the sensitivity of
one parameter is very high, a small deviation in that parameter
may result in a large deviation in output. While selecting similar
events, we allow a small deviation in highly sensitive parameters
and a large deviation in less sensitive parameters. Uncertainty
bounds are computed based on similar events. Similar events
contain exact matches and slightly different samples. Therefore,
we train a NN for bound correction. The bound-corrected
uncertainty bounds (UB) provide a fair and domain-independent
uncertainty bound. Finally, we train NNs to compute UB directly.
The end-user need to run the final NN to obtain UB, instead of
following the entire process. The code of the proposed method is
also uploaded to Github. Also, users need to run only the fifth
script to train a NN of a different UB.

Keywords—Uncertainty Bound, Probabilistic Forecast, Neural
Network, Prediction Interval, Uncertainty Quantification, Het-
eroscedastic Uncertainty.

I. INTRODUCTION

The trustworthiness is the most important characteristic of
any prediction system. The traditional prediction system is a
point-prediction-type prediction system where the performance
is measured from the statistical error. Commonly used statisti-
cal error values are the root-mean-square-error (RMSE), sum-
squared-error(SSE), mean-absolute-error(MAE), etc. Point
prediction has come to saturation through numerous amounts
of research [1]–[3]. The best prediction system has zero
epistemic uncertainty but the prediction is unable to remove
the aleatoric uncertainty. Although uncertainty bounds cannot
reduce the aleatoric uncertainty, properly trained multiple un-
certainty bounds can indicate the level of aleatoric uncertainty.

We can never be fully certain about uncertainties but we
can quantify uncertainties with the help of uncertainty bounds
[4]. There are many approaches to the design of prediction
interval-based uncertainty quantification systems [5]. Tradi-
tional methods are the Delta Method, Mean-Variance Estima-
tion Method, Bayesian Method, Bootstrap Method, etc. All of
these Neural Network training methods have an assumption of
the Gaussian distribution. Other regressions based uncertainty
quantification methods are popular in the quantification of
epistemic uncertainty in deep learning [6]. The regression-
based Bayesian method or dropout method also has a strong

assumption on the distribution of unknown targets. The cost-
function-based direct neural network training for uncertainty
quantification has no assumption on the probability distribution
of unknown targets. As a result, they construct better prediction
intervals. However, there is another debated issue among
direct NN-based uncertainty quantification. There are several
versions of the cost function [7], [8]. Some researcher thinks
that considering the average width of the interval is enough
but some other researchers think that considering the failure
distance is also required. Some researchers penalize only low
coverage, where others penalize both high and low coverage.
Therefore, we are proposing an uncertainty quantification
technique without any assumption.

The improvement in the point prediction has come to the
saturation. No matter, how good the point prediction system is,
there is certain statistical error value of the prediction system
[9]–[14]. A five-minutes ahead prediction system for electricity
demand usually has a much lower error than a thirty-minutes
ahead wind power generation prediction system. The value of
the error for a perfectly trained point prediction system is the
aleatoric uncertainty. The outcome of the same consequence
can be slightly different due to the aleatoric uncertainty. The
level of uncertainty varies from quantity to quantity and based
on situations for the same quantity. The electricity demand in
the morning can be more predictable than in the evening. The
uncertainty is asymmetrically heteroscedastic and cannot be
explained with the point prediction system. [15]–[18].

Traditional NN-based UQ techniques consider the Gaussian
probability distribution of targets. In the early 2010s, Khosravi
et al. propose NN based direct interval construction method
[5]. The NN is directly trained to quantify the uncertainty
through a cost function. Khosravi et al. consider coverage
probability and the width in the LUBE cost function [19].
The LUBE method penalizes only low coverages. Later, Wan
et al. propose to penalize both high and low coverages [5].
Marin et al consider deviation from the mid interval [20]. The
performance criteria for the uncertainty quantification are still a
debating issue. There is no ground truth for the measurement of
the performance of quantified uncertainty. Therefore, the pro-
posed system trains NNs, considering similarity and sensitivity.
We count sensitivity-based similar occurrences to construct
the uncertainty bound. The proposed system also indicates the
sample density near the input pattern. The user can get an idea
of the strength of the prediction from the sample density. The
example code is available at the following link: [21].
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Fig. 1. The effectiveness of the interval forecast over the point prediction.
Targets can be slightly different for the same input combination. The blue line,
representing the point prediction cannot represent the heteroscedastic (time-
varying/ parameter-varying) uncertainty. PIs represented by green lines can
represent the level of uncertainty in a certain situation.

II. THEORETICAL BACKGROUND

All-natural events contain a certain amount of uncertainty.
The level of uncertainty can be different based on the system
or the time or any other input parameters [22]–[24]. Humans
cannot avoid uncertainty but a good estimation of the uncer-
tainty enables better management and a greater profit. Many
real-world events are entirely random. An individual household
may run the washing machine or not at a certain time. A
cloud user may require multiple cloud instances or may not
require a cloud instance at a time. A perfect example of such
a random situation is rolling a six-sided dice. while rolling
a six-sided the probability of getting any side is equal. The
probability of getting any side between one to six inclusive is
equal. However, the average of outcomes of rolling a thousand
dice has a high probability of getting a number close to 3.5,
which is the average of possible outcomes [8]. However, with
a rolling of five dice, there is a high probability of getting an
average between three to four. The usage of electricity is point
predictable with a very large number of users but the usage is
interval predictable with a medium number of users.

Fig. 1 presents the interval representation of heteroscedastic
uncertainty. The intervals are wider near the sample 80 and
the intervals are narrower near the sample 130. A point
prediction with overall statistical error cannot represent the
heteroscedastic uncertainty. However, PIs represented by green
lines can capture the uncertainty.

In general modeling techniques, the target (ti) deviates
with the prediction (yi) by a small error value(εi) due to
uncertainties. Therefore, the target can be presented as [5]:

ti = yi + εi (1)

where ti is the measured target, and i (where i = 1, 2, · · ·n)
is the sample number. εi is the error signal with the zero

expectation. The error term makes a difference between the
target ti and its true regression mean, ŷi. Usually, it is
considered that the term, εi in (1) is uniformly distributed.
In practice, a model is applied to evaluate the true regression
mean, ŷi and the total variance can be defined as follows:

ti − ŷi = [yi − ŷi] + εi (2)

The variance at the first term on the right-hand side of (2)
([yi − ŷi]) is considered in the PI construction. Therefore, the
uncertainty of the prediction, ŷi, and the true regression, yi are
counted in PI depending on the calculation of components of
the normalized probability distribution P (yi | ŷi). In contrast to
PIs, PIs try to quantify irregularities linked to the discrepancy
between the predicted values, yi and the measured values,
ti. This associates to the normalized probability distribution
P (ti | ŷi). When the two terms in the right-hand side of
the Eqn. (2) are independent of each other, the total variation
associated with the model outcome is expressed as:

σ2
i = σ2

ŷi + σ2
ε̂i (3)

The term σ2
ŷi

introduces from the parameter estimation
errors and the model misspecification ([yi − ŷi]) known as
the epistemic uncertainty, σ2

ε̂i
is the measure of the noise

variance known as the aleatory uncertainty. Traditional PI
construction techniques are based on the Gaussian approxi-
mation of uncertainty. The Gaussian distribution of assumed
in Eq. 3 may not be true for all input combination [5].
Therefore, there was extensive research on the NN based direct
interval construction, which can provide a smart interval for
any arbitrary distribution of errors.

A. Cost function based Uncertainty Quantification

The cost function based UQ is getting popular due to its
state of the art performance. The cost functions are designed
to tune several statistical parameters. The two most extensively
applied parameters are Prediction interval coverage probability
(PICP), and Prediction interval normalized average width
(PINAW). PICP and PINAW are defined as follows:

PICP =
1

n

n∑
j=1

cj (4)

where, n is the total number of samples, cj is the coverage of
the jth sample, defined as follows:

cj =

{
1, tj ∈ [y

j
, yj ]

0, tj 6∈ [y
j
, yj ].

(5)

where, tj , yj , and yj are the target, the lower bound, and the
upper bound respectively for the jth sample.

PINAW =
1

n×R

n∑
j=1

(y
j
− yj). (6)

where, R is the range of targets.

The very first cost function based NN training for UQ is
known as the lower upper bound estimation (LUBE) method.



In this method, the NN training aims to minimize the following
cost function [5]:

CWC = PINAW + γ(α,PICP )eη(PINC−PICP ) (7)

where, PI nominal coverage (PINC) is the expected value of
the PICP after the NN training.

γ(α,PICP ) =

{
1, P ICP < PINC

0, P ICP ≥ PINC

The LUBE method aims to reduce the PINAW when the
required PICP is achieved. Several improvements to the LUBE
method have proposed by several other researchers [8], [25],
[26]. L G Marns consider the deviation from the mid interval
[20]; G Zhang consider the deviation information criteria [27]
etc.

B. Proposed Uncertainty Bounds

Uncertainty bounds or probability bounds are popular tech-
niques of representing uncertainties in various fields [5], [28].
The uncertainty bound of a certain probability is the value
corresponding to that cumulative probability. PI consists of two
uncertainty bounds, the upper bound and the lower bound. The
proposed NN training system consists of five steps, i) finding
error and sensitivity based similarities and saving them, ii)
training sample density NN (optional step), iii) visualization of
similar samples (optional step), iv) training bound correction
NN, v) training NN for the UB.

C. Error based Similarity

A previous work computes similarities based on correlation
[29]. However, finding similarities based on correlation does
not consider the relative amplitude of different input parame-
ters. Therefore, the correlation-based similarity finding is effec-
tive for time-series data. Inputs of a prediction or uncertainty
quantification system may have different types of inputs. In
the forecast of temperature, inputs can be several previous
temperatures, humidity, wind speed, day-time, etc. Different
input parameters may have different ranges. Moreover, cor-
relation compares the shapes of the curves. As a result, two
different input patterns may have different amplitude but their
shapes can be the same. However, the relationship between
the inputs and the output can be nonlinear. The magnitude
of the output may not increase in the same proportion as
the output. Therefore, we consider the normalized absolute
deviation based similarity.

The process of obtaining similar samples is presented as
Algorithm 1. Each sample in the training data is compared with
other samples. In the comparison between the two samples,
the normalized deviations for all input values are computed at
first. Samples are sorted based on the maximum of normalized
deviations. Indexes of the top NS close matches are saved as
the index of similar samples (ISS). The maximum normalized
deviation for the most deviant sample among the selected
sample is saved as the similarity threshold (STh(i)). STh(i) is
later applied for the estimation of the sample density.

Algorithm 1: Obtaining normalized absolute devia-
tion based similar samples
1 Input ← Training Data
2 N ← Number of samples in the training data
3 n ← Number of input parameters
4 i ← Index of the corresponding sample
5 j ← Index of the sample compared
6 R ← Range matrix (1 × n matrix)
7 NS ← Number of similar samples considered
8 DevIndex ← [Deviation Index] (2 × N matrix)
9 Dev(i, j) ← Deviation between input parameters

10 ISS ← Index of similar samples (NS × N matrix)
11 STh ← Similarity Threshold (1 × N matrix)
12
13 for i ← 1 to N do
14 for j ← 1 to N do
15 Compute Dev(i, j)
16 DevIndex(j) ← [max(Dev(i, j)./R) j]

17 Sort ascending DevIndex based on first column
18 ISS(i) ← First NS row and Index column of

DevIndex matrix . Top NS matched indexes
19 STh(i) ← Maximum Dev(i, j)./R among selected

indexes
20 Output ← ISS , STh

Fig. 2. Targets and uncertainty lower bound of 5% cumulative probability
for the toy example. Targets are represented by red dots. The figure presents
bounds without considering sensitivity as a black line, and bounds with the
consideration of the sensitivity as a green line. Consideration of the sensitivity
improves the accuracy and domain-independence of bounds.

D. Consideration of Input Sensitivities

Most neural networks have a large number of inputs. Some
inputs may not influence the output. Inputs may have different
sensitivities to outputs. As deviation at a less sensitive input
causes a smaller change in the output, we allow a larger
deviation for a less sensitive input.

The inclusion of a random variable as input excludes many
closely matches and includes more distinct samples when the
sensitivity is not considered. Because two distinct samples
may get almost the same random values and two similar
samples may get different random values. That may degrade
the performance of the proposed UB construction system.



To investigate the importance of sensitivity we develop a
toy example. The example has three inputs and one output.
The output is directly related to the first input. The sign and
amplitude of the uncertainty of the output are related to the
second input. The third input is random to the output. We run
codes with the toy data and plot target distribution and uncer-
tainty bound of 5% cumulative probability. Uncertainty bounds
are drawn for both inclusion and exclusion of sensitivity. Fig.
2 presents targets and bounds for the toy example. Code for
the generation of toy dataset and the toy dataset is uploaded
to Github [21].

Algorithm 2 presents the sensitivity-based similarity find-
ing technique. The algorithm trains a point prediction NN in
line-13. The point prediction NN helps to achieve sensitivity
in line-16. The sensitivity is element-wise multiplied when we
compute the similarity in line-19. The similarity threshold is
also modified while considering sensitivity.

Algorithm 2: Obtaining normalized absolute devia-
tion and Sensitivity based similar samples
1 Input ← Training Data
2 N ← Number of samples in the training data
3 n ← Number of input parameters
4 i ← Index of the corresponding sample
5 j ← Index of the sample compared
6 R ← Range matrix (1 × n matrix)
7 NS ← Number of similar samples considered
8 DevIndex ← [Deviation Index] (2 × N matrix)
9 Dev(i, j) ← Deviation between input parameters

10 ISS ← Index of similar samples (NS × N matrix)
11 STh ← Similarity Threshold (1 × N matrix)
12
13 Train the point-prediction neural network (NNp) for the

data
14
15 for i ← 1 to N do
16 Find Normalized Sensitivity (Si) of all input variables

near input combination i with the help of NNp.
17 for j ← 1 to N do
18 Compute Dev(i, j)
19 DevIndex(j) ← [max(Si.*Dev(i, j)./R) j]

20 Sort ascending DevIndex based on first column
21 ISS(i) ← First NS row and Index column of

DevIndex matrix . Top NS matched indexes
22 STh(i) ← Maximum Si.*Dev(i, j)./R among selected

indexes
23 Output ← ISS , STh

E. Sample Density Neural Network

The training dataset may lack some patterns. Therefore,
we aimed to provide the sample density near the input pattern.
When the sample density is high, the prediction of the NN is
more reliable. The sample density is the density of samples
near the input pattern. Algorithm 3 presents the process of
sample density NN training. The number of selected samples
is divided by the similarity threshold to find the sample density
near the corresponding pattern. Using the same process, the
sample density is computed for all input patterns of the training
data. A NN is trained for the sample density. Although it is
possible to compute the sample density from the training data,

the NN implementation is faster than computing the sample
density from the dataset.

Algorithm 3: Neural Network training for sample
density
1 Input ← Training Data, STh, NS

2 SD ← Sample density
3
4 SD ← NS ./STh . Density of samples in nearby regions
5 . While considering top NS matches, STh is the maximum

deviation among considered matches.
6 NNinput ← Training Data (Inputs)
7 NNoutput ← SD

8 Train NN
9 Output ← NN for SD

F. Bound Correction

The error based similar pattern selection method selects
both of the exact patterns and slightly different patterns.
The highest possible difference between original and selected
patterns is the similarity threshold (STh). As similar patterns
are spread on either side of the original pattern, the examples
outputs are spread towards both maxima and minima.

Fig. 3 presents an example input pattern as a thick blue line.
One hundred similar samples are presented by thin dark grey
lines. Corresponding outputs of similar samples are represented
by extended light grey lines. These output examples form a
rough probability distribution of the output, presented a green
line. The target of the input pattern is presented as a blue
diamond sign. We can also observe from Fig. 3 that matched
patterns are slightly different than the original pattern. As
similar patterns slightly deviate from the original pattern and
the output distribution is formed with both closely matched
and slightly different patterns, the probability distribution of
output is slightly spread than the real distribution. Uncertainty
bounds change their position due to the excess spread of the
probability density function. If we are choosing an uncertainty
upper bound of 95% cumulative probability, it becomes a
point that corresponds to 96% to 99% cumulative probability.
Therefore, we train a bound-correction neural network.

When the user wants to get the 95% UB bound value from
the probability distribution function (PDF) of a similar event,
he gets an output corresponds to 96%-99% UB value. The user
may try to get about 92-93% UB value to get, 95% UB value.
Therefore, we generate a table between the given value and
the achieved value and train an inverse NN which corrects the
bound. Algorithm 4 presents the bound correction NN training
process. We iterate over a range of UB values and apply them
to the probability density function to receive the transformed
UB value. Finally, we train a NN with transformed UB value
as input, (what we want to get) and provided UB value as
output (what we need to provide, to get what we want).

With that bound correction NN, the user can find expected
UB from the PDF. Say one user needs 95% UB. The user
provides 95% to the bound correction NN (NNBC). NNBC
return 92-93%, as it was provided to PDF to get 95% UB. The
user applies that transformed value to the PDF to receive the
UB value. Through the process, a more accurate UB value is
achieved. However, the bound correction value changes with



Fig. 3. Probability density of outputs from normalized error based similar
patterns. Similar patterns are drawn with the original pattern. Outputs of
similar patterns form the probability distribution. As the similar patterns are
slightly different the probability distribution is also slightly spread compared
to the original.

data and the number of similar samples considered. The NN
needs to be retrained when the number of considered close
matches is changed.

Algorithm 4: Algorithm for bound correction
1 Input ← Training Data, ISS

2 PDF ← Output Distribution (1 × N matrix)
3
4 for UB ← 1 to 99 do
5 UBAssumed(UB) ← UB
6 for i ← 1 to N do
7 Find matched indexes of the ith sample
8 PDF ← Output distribution from matched indexes
9 PDF ← Sort(PDF )

10 Find UBth Percentile value (UBP ) from PDF
Check UBP > Output(i)

11 PG ← Percentage of times UBP > Output(j)
UBFound(UB) = PG

12 NNBC ← Bound Correction NN
13 NNBC Input ← UBFound

14 NNBC Output ← UBAssumed

15 Train NNBC

16 Output ← NNBC

G. NN Training for UB

The proposed NN training for UB consists of two major
steps: 1) finding UB values (targets) for each sample from the
PDF 2) train NN with input combinations and corresponding
targets. Algorithm 5 presents the process of training NNs for
the uncertainty bound. The UB is corrected at first using the
bound correction. That corrected UB value is then applied
to PDF to obtain targets (Ti). The NN (NNUB) is trained

considering obtained T as example outputs and input patterns
of samples as example input.

Algorithm 5: Training NN for the Uncertainty Bound
1 Input ← Training Data, UB (a value from 0 to 1), NNBC , ISS

2 Ti ← Target for ith sample for the NN training
3 NNUB ← NN for UB
4
5 UBCorrect ← Correct UB with NNBC

6 for i ← 1 to N do
7 Find matched indexes of the ith sample
8 PDF ← Output distribution from matched indexes
9 PDF ← Sort(PDF )

10 Ti ← UBth
Correct Percentile value (UBP ) from PDF

11 NNUB−input ← Training Data (Inputs), UB
12 NNUB−output ← T
13 Train NNUB

14 Output ← NNUB

III. RESULTS

This paper proposes a novel algorithm for uncertainty
quantification and applies the algorithm to a toy dataset, the
electricity demand, and the wind power data. The toy dataset
is generated with a program. The details of the generation are
described in subsection II −D. Electricity demand and wind
power data during 1st August 2012 to 1st August 2019 are
downloaded from the UK Gridwatch website [30]. We consider
four recent samples and the time of the day as input. The
randomized dataset is split to 60% training 20% testing and
20% cross-validation datasets. As each NN is trained for a
certain UB, UB is not an input to the NN.

A. Uncertainty Bounds for Electricity Demand

The uncertainty of the electricity demand has been increas-
ing due to the growing population and the large scale installa-
tion of novel appliances. Such as the large scale installation of
the electric vehicles (EVs) has made the overall demand more
uncertain. A more uncertain electricity demand results in the
less efficient management of a power grid.

There are several electricity generation sources to meet
the demand of a grid. Some sources are renewable generation
sources. Renewable generation sources require a high installa-
tion cost but the running cost is almost zero. Fossil-fuel based
power plants require low installation cost but the running cost
is high. Moreover, the governments of developed countries are
trying to save fossil fuel for future generations and encouraging
grid management to use renewable resources.

Fig. 4 presents UBs with targets for the electricity demand
of the UK grid on 16th July 2019. Bounds are constructed for
the 5-minutes ahead prediction. Targets remain between 15%
to 85% uncertainty bounds for about 70% of the time. Fig.
5 presents UBs with targets for the electricity demand of the
UK grid on 16th July 2019. Bounds are constructed for the
30-minutes ahead prediction. UBs are much wider than the
UBs of 5-minutes ahead prediction. The uncertainty becomes
higher for the long term prediction.



Fig. 4. Uncertainty bounds with targets for the electricity demand of the
UK grid on 16th July 2019. Bounds are constructed for the 5-minutes ahead
prediction.

Fig. 5. Uncertainty bounds with targets for the electricity demand of the
UK grid on 16th July 2019. Bounds are constructed for the 30-minutes ahead
prediction.

B. Uncertainty Bounds for Wind Power Generation

Large scale renewable generation has made the grid more
unstable. Among the renewable generations, wind power is
the most uncertain power generation source. Therefore, we
construct uncertainty bounds for wind power generation.

Fig. 6 presents UBs with targets for the total wind power
generation of the UK grid on 16th July 2019. Bounds are
constructed for the 5-minutes ahead prediction. Targets remain
between 15% to 85% uncertainty bounds for about 70% of
the time. Fig. 7 presents UBs with targets for the total wind
power generation of the UK grid on 16th July 2019. Bounds
are constructed for the 30-minutes ahead prediction. About 10-
20% of the electricity demand is met by wind power generation

Fig. 6. Uncertainty bounds with targets for the total wind power generation
of the UK grid on 16th July 2019. Bounds are constructed for the 5-minutes
ahead prediction.

Fig. 7. Uncertainty bounds with targets for the total wind power generation
of the UK grid on 16th July 2019. Bounds are constructed for the 30-minutes
ahead prediction.

sources in the UK grid.

Table I presents the accuracy of uncertainty bounds. NNs
are trained for different uncertainty bounds and different time-
ahead predictions. Then NNs are applied to compute UBs for
the entire dataset and UBs are compared to original targets.
The first segment of the table presents the performance of
UB construction NNs for the prediction of electricity demand.
The second segment of the table presents the performance of
UB construction NNs for the prediction of the wind power
generation. According to the table, short-term predictions are
more accurate than long term predictions.



TABLE I. PERFORMANCE OF CONSTRUCTED UBS

Statistical Performance of Uncertainty Bounds on the Electricity Demand Data
Planned UB Values 1% 2.5% 5% 10% 15% 50% 85% 90% 95% 97.5% 99%

Performance of 30-min Ahead UBs 0.90% 2.46% 5.11% 10.17% 14.94% 50.03% 85.01% 89.96% 95.00% 97.47% 99.12%
Performance of 10-min Ahead UBs 1.00% 2.55% 4.96% 10.00% 15.09% 49.97% 84.94% 90.01% 94.98% 97.51% 99.11%
Performance of 5-min Ahead UBs 1.01% 2.50% 4.99% 10.00% 14.99% 50.01% 85.02% 90.01% 95.01% 97.52% 98.98%

Statistical Performance of Uncertainty Bounds on the Wind Power Generation Data
Planned UB Values 1% 2.5% 5% 10% 15% 50% 85% 90% 95% 97.5% 99%

Performance of 30-min Ahead UBs 0.93% 2.52% 5.02% 10.03% 14.98% 50.13% 85.09% 89.90% 94.96% 97.47% 99.05%
Performance of 10-min Ahead UBs 1.02% 2.53% 4.96% 10.01% 15.07% 49.93% 84.94% 90.01% 94.96% 97.50% 99.03%
Performance of 5-min Ahead UBs 1.00% 2.50% 4.99% 10.00% 14.99% 50.00% 85.02% 90.02% 95.00% 97.50% 99.00%

C. Performance on Intervals

The level of uncertainty is determined by the gap be-
tween two intervals. Therefore, we construct prediction inter-
vals of different coverage probabilities. We train uncertainty
bound computing NNs for 0.025%, 0.05%, 0.1%, 0.2%, 0.8%,
0.9%, 0.95%, and 0.975% cumulative probability. Uncertainty
bounds are applied to compute prediction intervals of differ-
ent nominal coverage probability. We also construct intervals
through popular direct interval construction methods. Table
II presents the performance of intervals constructed through
the current model and the popular direct interval construction
methods. Performance on the 5-minutes ahead forecast is
presented for the electricity demand and wind power data. The
value of η is set to 1000 while computing the CWC. The CWC
is presented as Eqn. 7 The PINAFD is computed considering
ρ =1, β =1000, and δ = α /50. Readers are referred to the
paper [8] for the information of these parameters.

PINAW and PINAFD values are significantly smaller in the
proposed UB computation method. The proposed algorithm
achieves a 40% decrement in PINAW for the toy dataset.
About 10% improvement is observed for the electricity demand
and windpower datasets. The proposed uncertainty bound
construction system also maintains a good PICP.

IV. CONCLUSION

The purpose of writing this paper is to present a novel
method of constructing uncertainty bounds from similarity
& sensitivity and to share the code. The proposed method
constructs uncertainty bounds without any assumption on the
distribution and the quality criteria. The number of similar
samples can be changed based on the preference of the user.
One segment of the NN training code also shows similar
samples of a certain sample. Therefore, the proposed method
is traceable for any prediction failure.
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