
Feature Map Transform Coding for Energy-Efficient
CNN Inference

Brian Chmiel∗†, Chaim Baskin†, Evgenii Zheltonozhskii†, Ron Banner∗, Yevgeny Yermolin†,
Alex Karbachevsky†, Alex M. Bronstein† and Avi Mendelson†
∗Intel – Artificial Intelligence Products Group (AIPG), Haifa, Israel

†Technion – Israel Institute of Technology, Haifa, Israel
{brian.chmiel, ron.banner}@intel.com

{chaimbaskin, alex.k, bron, avi.mendelson}@cs.technion.ac.il
{evgeniizh, yevgeny_ye}@campus.technion.ac.il

Abstract—Convolutional neural networks (CNNs) achieve state-
of-the-art accuracy in a variety of tasks in computer vision and
beyond. One of the major obstacles hindering the ubiquitous use
of CNNs for inference on low-power edge devices is their high
computational complexity and memory bandwidth requirements.
The latter often dominates the energy footprint on modern
hardware. In this paper, we introduce a lossy transform coding
approach, inspired by image and video compression, designed to
reduce the memory bandwidth due to the storage of intermediate
activation calculation results. Our method does not require fine-
tuning the network weights and halves the data transfer volumes
to the main memory by compressing feature maps, which are
highly correlated, with variable length coding. Our method
outperform previous approach in term of the number of bits
per value with minor accuracy degradation on ResNet-34 and
MobileNetV2. We analyze the performance of our approach on a
variety of CNN architectures and demonstrate that FPGA imple-
mentation of ResNet-18 with our approach results in a reduction
of around 40% in the memory energy footprint, compared to
quantized network, with negligible impact on accuracy. When
allowing accuracy degradation of up to 2%, the reduction of
60% is achieved. A reference implementation accompanies the
paper.

Index Terms—Neural networks, quantization, FPGA, energy-
efficient inference, convolutional neural networks

I . I N T R O D U C T I O N

Deep neural networks have established themselves as the first-
choice tool for a wide range of applications. Neural networks
have shown phenomenal results in a variety of tasks in a broad
range of fields such as computer vision, computational imaging,
and image and language processing. Despite deep neural models
impressive performance, the computation and computational
requirements are substantial for both training and inference
phases. So far, this fact has been a major obstacle for the
deployment of deep neural models in applications constrained
by memory, computational, and energy resources, such as those
running on embedded systems.

To alleviate the energy cost, custom hardware for neural
network inference, including FPGAs and ASICs, is actively
being developed in recent years. In addition to providing better

The research was funded by ERC StG RAPID and Hiroshi Fujiwara Technion
Cyber Security Research Center.

The first three authors contribute equally to this work.

energy efficiency per arithmetic operation, custom hardware
offers more flexibility in various strategies to reduce the
computational and storage complexity of the model inference,
for example by means of quantization [3, 18, 20] and pruning
[16, 23, 37]. In particular, quantization to very low precision
is especially efficient on custom hardware where arbitrary
precision arithmetic operations require proportional resources.
To prevent accuracy degradation, many approaches have
employed training the model with quantization constraints
or modifying the network structure.

A recent study [43] has shown that almost 70% of the energy
footprint on such hardware is due to data movement to and
from the off-chip memory. Amounts of data typically need
to be transferred to and from the RAM and back during the
forward pass through each layer, since the local memory is too
small to store all the feature maps. By reducing the number of
bits representing these data, existing quantization techniques
reduce the memory bandwidth considerably. However, to the
best of our knowledge, none of these methods exploit the
high amount of interdependence between the feature maps and
spatial locations of the compute activations.

Contributions. In this paper, we propose a novel scheme
based on transform-domain quantization of the neural network
activations followed by lossless variable length coding. The
method does not require neither backpropogation nor training
data except for a one calibration batch. We demonstrate that this
approach reduces memory bandwidth by 40% when applied in
the post-training regime (i.e., without fine-tuning) with small
computational overhead and no accuracy degradation. Relaxing
the accuracy requirements increases bandwidth savings to
60%. Moreover, we outperform previous methods in term
of number bit per value with minor accuracy degradation. A
detailed evaluation of various ingredients and parameters of the
proposed method is presented. We also demonstrate a reference
hardware implementation that confirms a reduction in memory
energy consumption during inference.

I I . R E L AT E D W O R K

a) Quantization: Low-precision representation of the
weights and activations is a common means of reducing com-

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

mailto:brian.chmiel@intel.com
mailto:ron.banner@intel.com
mailto:chaimbaskin@cs.technion.ac.il
mailto:alex.k@cs.technion.ac.il
mailto:bron@cs.technion.ac.il
mailto:avi.mendelson@cs.technion.ac.il
mailto:evgeniizh@campus.technion.ac.il
mailto:yevgeny_ye@campus.technion.ac.il
https://github.com/CompressTeam/TransformCodingInference

putational complexity. On appropriate hardware, this typically
results in the reduction of the energy footprint as well. It has
been demonstrated that in standard architectures quantization
down to 16 [15] or 8 bits [20, 22, 42] per parameter is
practically harmless. However, further reduction of bitwidth
requires non-trivial techniques [26, 44], often with adverse
impact on training complexity. Lately, the quantization of
weights and activations of neural networks to 2 bits or even
1 [18, 30] has attracted the attention of many researchers.
While the performance of binary (i.e., 1-bit) neural networks
still lags behind their full-precision counterparts [10, 29],
existing quantization methods allow 2-4 bit quantization with
a negligible impact on accuracy [6, 7, 11].

Quantizing the neural network typically requires introducing
the quantizer model at the training stage. However, in many
applications the network is already trained in full precision, and
there is no access to the training set to configure the quantizer.
In such a post-training regime, most quantization methods
employ statistical clamping, i.e., the choice of quantization
bounds based on the statistics acquired in a small test set.
Migacz [25] proposed using a small calibration set to gather
activation statistics and then randomly searching for a quantized
distribution that minimizes the Kullback-Leibler divergence
to the continuous one. Gong et al. [12], on the other hand,
used the L∞ norm of the tensor as a threshold. Lee et al.
[22] employed channel-wise quantization and constructed a
dataset of parametric probability densities with their respective
quantized versions; a simple classifier was trained to select the
best fitting density. Banner et al. [2] derived an approximation
of the optimal threshold under the assumption of Laplacian or
Gaussian distribution of the weights, which achieved single-
percentage accuracy reduction for 8-bit weights and 4-bit
activations. Meller et al. [24] showed that the equalization of
channels and removal of outliers improved quantization quality.
Choukroun et al. [8] used one-dimensional line-search to
evaluate an optimal quantization threshold, demonstrating state-
of-the-art results for 4-bit weight and activation quantization.

b) Influence of memory access on energy consumption:
Yang et al. [43] studied the breakdown of energy consumption
in CNN inference. For example, in GoogLeNet [34] arithmetic
operations consume only 10% of the total energy, while feature
map transfers to and from an external RAM amount to about
68% of the energy footprint. However, due to the complexity
of real memory systems, not every method that decreases
the sheer memory bandwidth will necessarily yield significant
improvement in power consumption. In particular, it depends on
computational part optimization: while memory performance is
mainly defined by the external memory chip, better optimization
of computations will lead to higher relative energy consumption
of the memory. For example, while Ansari and Ogunfunmi
[1] reported a 70% bandwidth reduction, the dynamic power
consumption decreased by a mere 2%.

Xiao et al. [40] proposed fusing convolutional layers to
reduce the transfer of feature maps. In an extreme case, all
layers are fused into a single group. A similar approach was
adopted by Xing et al. [41], who demonstrated a hardware

*

Memory

PCA PCA-1

Q Q-1

VLC VLD

BN to
layer l+1

from
 layer l-1

Fig. 1: High-level flow diagram of the encoder-decoder chain.
PCA and BN are folded into the convolution weights (denoted
by ∗), resulting in a single convolution (boxed in grey).

design that does not write any intermediate results into
the off-chip memory. This approach achieved approximately
15% runtime improvement for ResNet and state-of-the-art
throughput. However, the authors did not compare the energy
footprint of the design with the baseline. Morcel et al. [27]
demonstrated that using on-chip cache cuts down the memory
bandwidth and thus reduces power consumption by an order of
magnitude. In addition, Jouppi et al. [21] noted that not only
the power consumption but also the speed of DNN accelerators
is memory- rather than compute-bound. This is confirmed
by Wang et al. [38], who also demonstrated that increasing
computation throughput without increasing memory bandwidths
barely affects latency.

c) Network compression: Lossless coding and, in par-
ticular, variable length coding (VLC), is a way to reduce
the memory footprint without compromising performance. In
particular, Han et al. [16] proposed using Huffman coding
to compress network weights, alongside quantization and
pruning. Wijayanto et al. [39] proposed using the more
computationally-demanding algorithm DEFLATE (LZ77 +
Huffman) to further improve compression rates. Chandra [5]
used Huffman coding to compress feature maps and thus reduce
memory bandwidth. Gudovskiy et al. [14] proposed passing
only the lower-dimensional feature maps to the memory to
reduce the bandwidth. Cavigelli and Benini [4] proposed using
RLE-based algorithm to compress sparse network activations.

I I I . T R A N S F O R M - D O M A I N C O M P R E S S I O N

In what follows, we briefly review the basics of lossy
transform coding. For a detailed overview of the subject, we
refer the reader to Goyal [13]. Let x = (x1, . . . , xn) represent
the values of the activations of a NN layer in a block of size
n = W ×H ×C spanning, respectively, the horizontal and the
vertical dimensions and the feature channels. Prior to being sent
to memory, the activations, x, are encoded by first undergoing
an affine transform, y = T x = T(x − µ); the transform
coefficients are quantized by a scalar quantizer, Q∆, whose
strength is controlled by the step size ∆, and subsequently
coded by a lossless variable length coder (VLC). We refer to
the length in bits of the resulting code, normalized by n as
to the average rate, R∆. To decode the activation vector, a

(a) (b) (c)

Fig. 2: Vector quantization in 2D case. (a) A pair of correlated
channels on a scatter plot. All values in a cell are mapped to the
center of the cell; hence, small cells induce small quantization
noise. Several bins are empty (red cells); (b) Decorrelation
improves utilization since the cells are smaller now; (c) Forcing
equal bin size along all dimensions further improves utilization.
Instead of restricting both channel dynamic range to be divided
into same number of bins, we use uniform bin size along all
dimensions. VLC allows to further compress the representation
since the channels with smaller dynamic range have are mapped
mostly to a few most probable bins.

variable length decoder (VLD) is applied first, followed by
the inverse quantizer and the inverse transform. The resulting
decoded activation, x̂ = T −1Q−1

∆ (Q∆(T x)), typically differs
from x; the discrepancy is quantified by a distortion, D∆.
The functional relation between the rate and the distortion
is controlled by the quantization strength, ∆, and is called
rate-distortion curve.

Classical rate-distortion analysis in information theory as-
sumes the MSE distortion, D = 1

n‖x− x̂‖22. While in our case
the measure of distortion is the impact on the task-specific loss,
we adopt the Euclidean distortion for two reasons: firstly, it is
well-studied and leads to simple expressions for the quantizer;
and, secondly, computing loss requires access to the training
data, which are unavailable in the post-training regime.

A crucial observation justifying transform coding is the fact
that significant statistical dependence usually exists between the
xi [9]. We model this fact by asserting that the activations are
jointly Gaussian, x ∼ N (µ,Σ), with the covariance matrix
Σ, whose diagonal elements are denoted by σ2

i . Statistical
dependence corresponds to non-zero off-diagonal elements in
Σ. The affinely transformed y = T(x− µ) is also Gaussian
with the covariance matrix Σ′ = TTΣT. The distortion is
minimized over orthonormal matrices by T = Σ−1/2 diago-
nalizing the covariance [13]. The latter is usually referred to as
the Karhunen-Loeve transform (KLT) or principal component
analysis (PCA). The corresponding minimum distortion is
D∗(R) = πe

6 det (Σ)1/n2−2R. Since the covariance matrix
is symmetric, T is orthonormal, implying T−1 = TT.

In Fig. 2, a visualization of 2D vector quantization is shown.
For correlated channels (Fig. 2a), many 2D quantization bins
are not used since they contain no values. Linear transformation
(Fig. 2b) provides improved quantization error for correlated
channels by getting rid of those empty bins.

A. Implementation

In what follows, we describe an implementation of the
transform coding scheme at the level of individual CNN layers.

The convolutional layer depicted in Fig. 1 comprises a bank of
convolutions (denoted by ∗ in the Figure) followed by batch
normalization (BN) that is computed on an incoming input
stream. The output of BN is a 3D tensor that is subdivided into
3D blocks to which the transform coding is applied. Each such
block is sent to an encoder, where it undergoes PCA, scalar
quantization and VLC. The bit stream at the VLC output has a
lower rate than the raw input and is accumulated in the external
memory. Once all the output of the layer has been stored in
the memory, it can be streamed as the input to the following
layer. For that purpose, the inverse process is performed by
the decoder: a VLD produces the quantized levels that are
scaled back to the transform domain, and an inverse PCA
is applied to reconstruct each of the activation blocks. The
layer non-linearity is then applied, and the activations are used
as an input to the following layer. While the location of the
nonlinearity could also precede the encoder, our experiments
show that the described scheme performs better.

a) Linear transform: We have explored different sizes of
blocks for the PCA transform and found 1×1×C to be optimal
(the ablation study is shown in Section IV-B). Moreover, this
choice allows to optimize the calculation of the transformation:
applying same linear transformation to every 1× 1× C block
is a convolution with 1 × 1 kernel, which can be calculated
very efficiently. This allows further optimization: as depicted in
Fig. 1, the convolution bank of the layer, BN and PCA can be
folded [20] into a single operation, offering also an advantage
in the arithmetic complexity.

The PCA matrix is pre-computed, as its computation requires
the expensive eigendecomposition of the covariance matrix. The
covariance matrix is estimated on a small batch of (unlabeled)
training or test data and can be updated online. Estimation
of the covariance matrix for all layers at once is problematic
since quantizing activations in the l-th layer alters the input
to the l + 1-st layer, resulting in a biased estimation of the
covariance matrix in the l+1-st layer. To avoid this, we calculate
the covariance matrix layer by layer, gradually applying the
quantization: at iteration i, first i − 1 layers perform PCA
transformation and only i layer covariance matrix estimation
is updated. The PCA matrix is calculated after quantization of
the weights is performed, and is itself quantized to 8 bits.

b) Quantization: For transformed feature maps we use a
uniform quantization, where the dynamic range is determined
according to the channel with the highest variance. Since all
channels have an equal quantization step, entropy of the low-
variance channels is significantly reduced.

c) Variable length coding: The theoretical rate
associated with a discrete random variable, Y (the
output of the quantizer), is given by its entropy
H(X) = −E log2X = −

∑
i p(xi) log2 p(xi). This quantity

constitutes the lower bound on the amount of information
required for lossless compression of Y . We use Huffman
codes, which are a practical variable length coding method
[36], achieving the rates bounded by H(X) ≤ R ≤ H(X) + 1
(see Fig. 3 for a comparison of the theoretical rates to the
ones attained by Huffman codes).

Fig. 3: Rate-distortion curves for ResNet-18, ResNet-50, ResNet-101, Inception V3 and MobileNetV2 architectures with 8-
(blue) and 4-bit (red) weight quantization. Distortion is evaluated in terms of top-1 accuracy on ImageNet. Dashed lines
represent rates obtained by Huffman VLC, while solid lines represent theoretical rates (entropy).

TABLE I: Comparison with EBPC [4]. While EBPC does not
affect performance of the network, our method allows better
compression by exploiting rate-distortion tradeoff.

Architecture Method Activations
(avg. number of bits per value) Accuracy

ResNet-34
EBPC 3.33 73.3%

Our method 3.9 72.9%
Our method 3.11 72.1%

MobileNetV2
EBPC 3.64 71.7%

Our method 3.8 71.6%
Our method 3.25 71.4%

d) 1× 1 and grouped convolutions: While for regular
3× 3 convolutions the computational overhead is small, there
are two useful cases in which this is not true: 1 × 1 and
grouped convolutions. For 1 × 1 convolutions the overhead
is higher: the transformation requires as much computation
as the convolution itself. Nevertheless, it can still be feasible
in the case of energy-efficient computations. In the case of
grouped convolutions, it is impossible to fold the transformation
inside the convolution. However, in the common case when
the grouped convolution is followed by a regular one, we can
change the order of operations: we perform BN, activation
and transformation before writing to the memory. This way,
the inverse transformation can be folded inside the following
convolution.

I V. E X P E R I M E N TA L R E S U LT S

We evaluate the proposed framework on common CNN
architectures that have achieved high performance on the

ImageNet benchmark. The inference contains 2 stages: a
calibration stage, on which the linear transformation is learned
based on a single batch of data, and the test stage.

a) Full model performance: We evaluted our method
on different CNN architectures: ResNet-18, 50, 101 [17];
MobileNetV2 [32]; and InceptionV3 [35]. Specifically, Mo-
bileNetV2 is known to be unfriendly to activation quantization
[33]. Performance was evaluated on ImageNet dataset [31] on
which the networks were pre-trained. The proposed method
was applied to the outputs of all convolutional layers, while
the weights were quantized to either 4 or 8 bits (two distinct
configurations) using the method proposed by Banner et al. [2].
Rates are reported both in terms of the entropy value and the
average length of the feature maps compressed using Huffman
VLC in Fig. 3. We observed that higher compression is
achieved for covariance matrices with fast decaying eigenvalues
describing low-dimensional data. A full analysis can be found
in Section IV-A.

b) Comparison to other methods: We compare the pro-
posed method with other post-training quantization methods:
ACIQ [2], GEMMLOWP [19], and KLD [25]. Note that our
method can be applied on top of any of them to further
reduce the memory bandwidth. For each method, we varied the
bitwidth and chose the smallest one that attained top-1 accuracy
within 0.1% from the baseline and measured the entropy of
the activations. Our method reduces, in average, 36% of the
memory bandwidth relatively to the best competing methods;
the full comparison can be found in Table II.

As for other memory bandwidth reduction methods, our

3 4 5 6 7 8 9
Avg bits per value

66.0

66.5

67.0

67.5

68.0

68.5

69.0

69.5

70.0

Ac
cu

ra
cy

 (%
)

PCA --> Q --> VLC
PCA --> Q
Q --> VLC
Q
Baseline

0.75 0.80 0.85 0.90 0.95 1.00
Computational Complexity Ratio

4.0

4.5

5.0

5.5

6.0

6.5

M
em

or
y

Ba
nd

wi
dt

h
Co

m
pl

ex
ity

Without degradation
0.5% degradation

Fig. 4: Ablation study of the proposed encoder on ResNet-18. Left: rate-distortion curve with different encoder configurations.
Theoretical rates are reported; top-1 accuracy is used as the distortion measure. Right: theoretical memory rate in bits per value
achieved for different levels of PCA truncation for baseline and 0.5% lower than baseline top-1 accuracy.

0.0 0.1 0.2 0.3 0.4 0.5
Eigen values ratio

0.4

0.5

0.6

0.7

0.8

0.9

En
er

gy
 ra

tio

ResNet18
ResNet50
ResNet101
MobileNetV2
InceptionV3

Fig. 5: Analysis of the eigenvalues ratio that are needed to
achieve energy ratio, means cumulative sum of the eigenvalues.

method shows better performance than Cavigelli and Benini
[4] at the expense of performance degradation (Table I). The
performance difference is smaller in MobileNetV2, since
mobile architectures tend to be less sparse [28], making RLE
less efficient. While the method proposed by Gudovskiy et al.
[14] requires fine-tuning, our method, although introducing
computational overhead, can be applied to any network without
such limitations. In addition, similarly to [14] it is possible to
compress only part of the layers in which the activation size
is most significant.

c) Ablation study: An ablation study was performed using
ResNet-18 to study the effect of different ingredients of the
proposed encoder-decoder chain. The following settings were
compared:
• only quantization of the feature maps with standard

TABLE II: Comparison of our method against three known post-
training quantization methods ((i) ACIQ [2]; (ii) GEMMLOWP
[19]; (iii) KLD [25]. We report the smallest bit per value for
which degradation is at most 0.1% of the baseline.

Architecture Weights Method Activations
(bits) (avg number of bits per value)

ResNet-50

8

GEMMLOWP 6.88
ACIQ 6
KLD 6.3
Our method 4.15

4

GEMMLOWP 6.93
ACIQ 6.2
KLD 6.52
Our method 4.25

Inception V3

8 GEMMLOWP 6.93
ACIQ 6.2
KLD 6.43
Our method 4.3

4 GEMMLOWP 6.97
ACIQ 6.3
KLD 6.35
Our method 4.6

MobileNetV2

8

GEMMLOWP 8.6
ACIQ 7.5
KLD 7.8
Our method 3.8

4

GEMMLOWP 8.8
ACIQ 7.85
KLD 8.1
Our method 4

uniform quantization (Q);
• applying PCA transformation to the feature maps and

quantizing the latter (PCA→Q);
• applying quantization to the feature maps and then

compressing them using VLC, without PCA (Q→VLC);
• the full suggested method (PCA→Q→VLC).

The resulting rate-distortion curves are compared in Fig. 4

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Avg bits per value

58

60

62

64

66

68

70
Ac

cu
ra

cy
 (%

)

2*2*C
1*1*C
2*2*(C/4)
4*4*(C/16)
1*1*(C/2)
1*1*(C/4)
Baseline

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Avg bits per value

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

M
SE

2*2*C
1*1*C
2*2*(C/4)
4*4*(C/16)
1*1*(C/2)
1*1*(C/4)
Baseline

Fig. 6: The influence of the block shape on the top-1 validation accuracy (left) and MSE (right) of ResNet-18 on ImageNet.
Our experiments show that for the same size, the most efficient shape is 1× 1×C, taking advantage of the correlations across
different feature maps at the same spatial location. Theoretical rates are shown.

0 50 100 150 200 250
Total memory power consumption (mW)

65

66

67

68

69

Ac
cu

ra
cy

 (%
)

Q
Q + VLC
PCA + Q + VLC
Baseline

Fig. 7: Top-1 accuracy on ResNet18 ImageNet vs. power
consumption of our hardware implementation. Each point
represents a different quantization rate.

(left). Our results confirm the previous result of Chandra
[5], suggesting that VLC applied to quantized activations can
significantly reduce memory bandwidth. They further show that
a combination with PCA makes the improvement dramatically
bigger. In addition, we analyze the effect of truncating the
least significant principal components, which reduces the
computational overhead of PCA. Fig. 4 (right) shows the
tradeoff between the computational and memory complexities,
with baseline accuracy and 0.5% below the baseline.

In Table II we show the comparison of our method with
other post-training quantization method. For fair comparison,
we add to all compared methods a VLC and show the minimum
amount of information that is required to be transferred to the
memory.

A. Eigenvalues analysis

The eigenvalues of the covariance matrix is a measure of
the dispersal of the data. If high energy ratio, means the
cumulative sum of eigenvalues divided by the total sum, can
be expressed with small part of the eigenvalues, the data is
less dispersal and therefore more compressible. In figure 5
we analyze the covariance energy average ratio in all layers
of different architectures. The interesting conclusion is that
the ability of compression with the suggested algorithm is
correlated with the covariance energy average ratio , means
that for new architectures we can look only at the energy ratio
of the activation to measure our ability of compression.

B. Block shape and size

Fig. 6 shows the rate-distortion curves for blocks of the
same size allocated differently to each of the three dimensions;
the distortion is evaluated both in terms of the MSE and
the network classification accuracy. The figure demonstrates
that optimal performance for high accuracy is achieved with
1× 1×C = n blocks, suggesting that the correlation between
the feature maps is higher than that between spatially adjacent
activations. For lower accuracy, bigger blocks are even more
efficient, but the overhead of 4 times bigger block is too high.
Experiments reported later in the paper set the block size to
values between 64 to 512 samples.

V. H A R D WA R E I M P L E M E N TAT I O N

In order to verify the practical impact of the proposed
approach of reducing feature map entropy to save total
energy consumption, we implemented the basic building
blocks of a pre-trained ResNet-18, with weights and activation
quantized to 8 bit, on Intel Stratix-10 FPGA, part number
1SX280LU3F50I2VG. From logic utilization and memory
energy consumption (exact numbers are shown in Table III) of
convolutional layers we conclude that our method add minor

TABLE III: Logic utilization and memory energy consumption of layers of various widths on Intel’s Stratix10 FPGA. Clock
frequency was fixed at 160MHz for each design. In LUTs and DSP we present the % of total resources. In Power and Bandwidth
we present the total number (% saving comparison to regular quantization)

channels Method LUTs DSPs Energy Bandwidth
(µJ) (Gbps)

64
Quantization 19K 960 225.93 1.28
Q+VLC 19K 960 173.44 (-23%) 0.96 (-25%)
Q+VLC+PCA 19.5K (+5%) 1056(+10%) 100.6 (-44%) 0.68 (-46.8%)

128
Quantization 43K 2240 112.96 1.28
Q+VLC 43K 2240 148 (-17%) 1.04 (-18.7%)
Q+VLC+PCA 45K(+4.3%) 2366(+5.6%) 117 (-35%) 0.83 (-35.1%)

256
Quantization 91K 4800 56.5 1.28
Q+VLC 91K 4800 46.8 (-17.2%) 1.03 (-19.5%)
Q+VLC+PCA 93K(+4%) 5059(+5.4%) 103 (-42.8%) 0.73 (-42.9%)

512
Quantization 182K 9600 28.2 1.28
Q+VLC 182K 9600 23.9 (-15.6%) 1.05 (-17.9%)
Q+VLC+PCA 186K(+2%) 10051(+4.7%) 91 (-49.5%) 0.66 (-48.4%)

computational overhead in contrast to significant reduction
in memory energy consumption. Fig. 7 shows total energy
consumption for a single inference of ResNet-18 on ImageNet.
In particular, our method is more efficient for higher accuracies,
where the redundancy of features is inevitably higher. We
further noticed that our approach reached real-time computa-
tional inference speed (over 40 fps). The reduction in memory
bandwidth can be exploited by using cheaper, slower memory
operating at lower clock speeds, which may further reduce its
energy footprint. Source files for hardware implementation can
found at reference implementation.

We have implemented ResNet-18 using a Stratix-10 FPGA
by Intel, part number 1SX280LU3F50I2VG. The memory used
for energy calculation is the Micron 4Gb x16 - MT41J256M16.
Current consumption of the DDR was taken from the data
sheet for read and write operation, and was used to calculate
the energy required to transfer the feature maps in each layer.
The script for calculating the energy consumption accompanies
reference implementation.

In our design each convolutional layer of ResNet-18 is
implemented separately. In each layer we calculate 1 pixel of 1
output feature each clock. For example, the second layer has 64
input and 64 output feature maps, thus it takes 64× (56× 56)
clock cycles to calculate the output before moving to the next
layer.

We read the input features only once by caching the pixels
and reusing them from internal memory, and only reloading
the weights of the filters in the current layer.

V I . C O N C L U S I O N

This paper presents a proof-of-concept of energy opti-
mization in NN inference hardware by lossy compression of
activations prior to their offloading to the external memory.
Our method uses transform-domain coding, exploiting the
correlations between the activation values to improve their
compressibility, reducing bandwidth by approximately 25%
relative to VLC and approximately 40% relative to an 8-bit
baseline without accuracy degradation and by 60% relative
to an 8-bit baseline with less than 2% accuracy degradation.

The computational overhead required for additional linear
transformation is relatively small and the proposed method can
be easily applied on top of any existing quantization method.

R E F E R E N C E S

[1] A. Ansari and T. Ogunfunmi, “Selective data transfer from
drams for cnns,” in 2018 IEEE International Workshop
on Signal Processing Systems (SiPS). IEEE, 2018, pp.
1–6.

[2] R. Banner, Y. Nahshan, E. Hoffer, and D. Soudry, “Post-
training 4-bit quantization of convolution networks for
rapid-deployment,” 2018.

[3] C. Baskin, E. Schwartz, E. Zheltonozhskii, N. Liss,
R. Giryes, A. M. Bronstein, and A. Mendelson, “Uniq:
Uniform noise injection for the quantization of neural
networks,” arXiv preprint arXiv:1804.10969, 2018.

[4] L. Cavigelli and L. Benini, “Extended bit-plane com-
pression for convolutional neural network accelerators,”
in 2019 IEEE International Conference on Artificial
Intelligence Circuits and Systems (AICAS). IEEE, March
2019, pp. 279–283.

[5] M. Chandra, “Data bandwidth reduction in deep neural
network socs using history buffer and huffman coding,” in
2018 International Conference on Computing, Power and
Communication Technologies (GUCON). IEEE, 2018,
pp. 1–3.

[6] J. Choi, P. I.-J. Chuang, Z. Wang, S. Venkataramani,
V. Srinivasan, and K. Gopalakrishnan, “Bridging the
accuracy gap for 2-bit quantized neural networks
(qnn),” arXiv preprint arXiv:1807.06964, 2018. [Online].
Available: https://arxiv.org/abs/1807.06964

[7] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang,
V. Srinivasan, and K. Gopalakrishnan, “Pact: Parameter-
ized clipping activation for quantized neural networks,”
arXiv preprint arXiv:1805.06085, 2018.

[8] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, “Low-
bit quantization of neural networks for efficient inference,”
2019.

https://github.com/CompressTeam/TransformCodingInference/tree/master/FPGA
https://arxiv.org/abs/1807.06964

[9] M. Cogswell, F. Ahmed, R. B. Girshick, L. Zitnick,
and D. Batra, “Reducing overfitting in deep networks
by decorrelating representations,” in 4th International
Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016. [Online]. Available: http:
//arxiv.org/abs/1511.06068

[10] R. Ding, T.-W. Chin, Z. Liu, and D. Marculescu,
“Regularizing activation distribution for training binarized
deep networks,” arXiv preprint arXiv:1904.02823, 2019.
[Online]. Available: https://arxiv.org/abs/1904.02823

[11] Z. Dong, Z. Yao, A. Gholami, M. Mahoney, and
K. Keutzer, “Hawq: Hessian aware quantization of
neural networks with mixed-precision,” arXiv preprint
arXiv:1905.03696, 2019.

[12] J. Gong, H. Shen, G. Zhang, X. Liu, S. Li, G. Jin,
N. Maheshwari, E. Fomenko, and E. Segal, “Highly
efficient 8-bit low precision inference of convolutional
neural networks with intelcaffe,” Proceedings of
the 1st on Reproducible Quality-Efficient Systems
Tournament on Co-designing Pareto-efficient Deep
Learning - ReQuEST ’18, 2018. [Online]. Available:
http://dx.doi.org/10.1145/3229762.3229763

[13] V. K. Goyal, “Theoretical foundations of transform
coding,” IEEE Signal Processing Magazine, vol. 18, no. 5,
pp. 9–21, Sep. 2001.

[14] D. Gudovskiy, A. Hodgkinson, and L. Rigazio, “Dnn
feature map compression using learned representation
over gf(2),” in The European Conference on Computer
Vision (ECCV) Workshops, September 2018.

[15] S. Gupta, A. Agrawal, K. Gopalakrishnan, and
P. Narayanan, “Deep learning with limited numerical
precision,” in Proceedings of the 32nd International
Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, F. Bach and D. Blei, Eds.,
vol. 37. Lille, France: PMLR, 07–09 Jul 2015, pp.
1737–1746. [Online]. Available: http://proceedings.mlr.
press/v37/gupta15.html

[16] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding,” International Confer-
ence on Learning Representations (ICLR), 2016.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recognition,” in The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016. [Online]. Available:
http://openaccess.thecvf.com/content cvpr 2016/html/
He Deep Residual Learning CVPR 2016 paper.html

[18] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Quantized neural networks: Training neural
networks with low precision weights and activations,”
Journal of Machine Learning Research, 2018.

[19] B. Jacob and P. Warden, “gemmlowp: a small self-
contained low-precision gemm library,” 2017.

[20] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang,
A. Howard, H. Adam, and D. Kalenichenko,

“Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018. [Online]. Available: http:
//openaccess.thecvf.com/content cvpr 2018/html/Jacob
Quantization and Training CVPR 2018 paper.html

[21] N. P. Jouppi, C. Young, N. Patil, D. A. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,
R. C. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz,
A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,
Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore,
M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Va-
sudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon,
“In-datacenter performance analysis of a tensor processing
unit,” in 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA). IEEE,
2017, pp. 1–12.

[22] J. H. Lee, S. Ha, S. Choi, W.-J. Lee, and S. Lee, “Quan-
tization for rapid deployment of deep neural networks,”
2018.

[23] C. Louizos, M. Welling, and D. P. Kingmao, “Learning
sparse neural networks through l0 regularization,” ICLR,
2018.

[24] E. Meller, A. Finkelstein, U. Almog, and M. Grobman,
“Same, same but different-recovering neural network
quantization error through weight factorization,” arXiv
preprint arXiv:1902.01917, 2019.

[25] S. Migacz, “8-bit inference with tensorrt,” 2017. [Online].
Available: http://on-demand.gputechconf.com/gtc/2017/
presentation/s7310-8-bit-inference-with-tensorrt.pdf

[26] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr,
“Wrpn: Wide reduced-precision networks,” International
Conference on Learning Representations, 2018. [Online].
Available: https://openreview.net/forum?id=B1ZvaaeAZ

[27] R. Morcel, H. Hajj, M. A. R. Saghir, H. Akkary,
H. Artail, R. Khanna, and A. Keshavamurthy, “Feathernet:
An accelerated convolutional neural network design for
resource-constrained fpgas,” ACM Trans. Reconfigurable
Technol. Syst., vol. 12, no. 2, pp. 6:1–6:27, Mar. 2019.
[Online]. Available: http://doi.acm.org/10.1145/3306202

[28] M. S. Park, X. Xu, and C. Brick, “Squantizer: Simulta-
neous learning for both sparse and low-precision neural
networks,” arXiv preprint arXiv:1812.08301, 2018.

[29] H. Peng and S. Chen, “Bdnn: Binary
convolution neural networks for fast object
detection,” Pattern Recognition Letters, 2019. [Online].
Available: http://www.sciencedirect.com/science/article/
pii/S0167865519301096

http://arxiv.org/abs/1511.06068
http://arxiv.org/abs/1511.06068
https://arxiv.org/abs/1904.02823
http://dx.doi.org/10.1145/3229762.3229763
http://proceedings.mlr.press/v37/gupta15.html
http://proceedings.mlr.press/v37/gupta15.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf
https://openreview.net/forum?id=B1ZvaaeAZ
http://doi.acm.org/10.1145/3306202
http://www.sciencedirect.com/science/article/pii/S0167865519301096
http://www.sciencedirect.com/science/article/pii/S0167865519301096

[30] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi,
“Xnor-net: Imagenet classification using binary convo-
lutional neural networks,” in European Conference on
Computer Vision. Springer, 2016, pp. 525–542.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge,” International Journal of
Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252,
2015.

[32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

[33] T. Sheng, C. Feng, S. Zhuo, X. Zhang, L. Shen, and
M. Aleksic, “A quantization-friendly separable convolu-
tion for mobilenets,” 2018.

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
“Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[35] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna, “Rethinking the inception architecture for
computer vision,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[36] W. Szpankowski, “Asymptotic average redundancy of
huffman (and shannon-fano) block codes,” in 2000 IEEE
International Symposium on Information Theory (Cat.
No.00CH37060), June 2000, pp. 370–.

[37] L. Theis, I. Korshunova, A. Tejani, and F. Huszár, “Faster
gaze prediction with dense networks and fisher pruning,”
arXiv preprint arXiv:1801.05787, 2018.

[38] E. Wang, J. J. Davis, P. Y. Cheung, and G. A. Constan-
tinides, “Lutnet: Rethinking inference in fpga soft logic,”
arXiv preprint arXiv:1904.00938, 2019.

[39] A. W. Wijayanto, J. J. Choong, K. Madhawa, and
T. Murata, “Towards robust compressed convolutional
neural networks,” in 2019 IEEE International Conference
on Big Data and Smart Computing (BigComp). IEEE,
2019, pp. 1–8.

[40] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y.-W. Tai,
“Exploring heterogeneous algorithms for accelerating
deep convolutional neural networks on fpgas,” in
Proceedings of the 54th Annual Design Automation
Conference 2017, ser. DAC ’17. New York, NY,
USA: ACM, 2017, pp. 62:1–62:6. [Online]. Available:
http://doi.acm.org/10.1145/3061639.3062244

[41] Y. Xing, S. Liang, L. Sui, X. Jia, J. Qiu, X. Liu, Y. Wang,
Y. Wang, and Y. Shan, “DNNVM : End-to-end compiler
leveraging heterogeneous optimizations on fpga-based
CNN accelerators,” CoRR, vol. abs/1902.07463, 2019.
[Online]. Available: http://arxiv.org/abs/1902.07463

[42] G. Yang, T. Zhang, P. Kirichenko, J. Bai, A. G. Wilson,
and C. De Sa, “Swalp: Stochastic weight averaging in
low-precision training,” arXiv preprint arXiv:1904.11943,

2019.
[43] T.-J. Yang, Y.-H. Chen, J. Emer, and V. Sze, “A method to

estimate the energy consumption of deep neural networks,”
in 2017 51st Asilomar Conference on Signals, Systems,
and Computers. IEEE, 2017, pp. 1916–1920.

[44] D. Zhang, J. Yang, D. Ye, and G. Hua, “Lq-nets: Learned
quantization for highly accurate and compact deep neural
networks,” in European Conference on Computer Vision
(ECCV), 2018.

http://doi.acm.org/10.1145/3061639.3062244
http://arxiv.org/abs/1902.07463

