
Rethinking Modal-oriented Label Correlations for
Multi-modal Multi-label Learning
Yi Zhang, Jundong Shen, Zhecheng Zhang, Lei Zhang, Chongjun Wang*

National Key Laboratory for Novel Software Technology
Nanjing University, Nanjing 210023, China

{njuzhangyi, jdshen, zzc}@smail.nju.edu.cn, {zhangl, chjwang}@nju.edu.cn

Abstract—Multi-modal multi-label learning provides a funda-
mental framework for complex objects, which can be represented
with multiple modalities and annotated with multiple labels
simultaneously. Different modalities can usually provide comple-
mentary information, which may lead to improved performance.
What’s more, exploiting label correlations is crucially important
to multi-label learning. However, most existing multi-label learn-
ing approaches do not sufficiently consider the complementary
information among different modalities. In this paper, we propose
a novel end-to-end deep learning framework named Rethinking
Modal-oriented Label Correlations (RMLC), which sequentially
polish the label prediction with each individual modality. In order
to explicitly account for the correlated prediction of multiple
labels, RMLC leverages an efficient sequential modal-based
exploration to rethink label correlations. The final prediction
of each label involves the collaboration between modal-specific
prediction and the prediction of other labels based on cross-modal
interaction. Comprehensive experiments on benchmark datasets
validate the effectiveness and competitiveness of the proposed
RMLC approach.

Index Terms—multi-modal, multi-label, label correlations,
modal-specific, cross-modal

I. INTRODUCTION

With the fast development of data collection techniques,
objects are often characterized by features from different
data channels, i.e., multi-modal feature representations. For
example, a news webpage can be represented with two hetero-
geneous modalities: text and image; an image can be described
using different features, such as texture descriptors, shape
descriptors, color descriptors, surrounding texts, and so on [1].

Although multi-modal (or multi-view) learning approaches
have been developed and paid more attention, most previous
studies assume that each object is annotated with a single label.
Nevertheless, in real-world applications, each object may have
multiple semantic meanings. For instance, a webpage may be
tagged with multiple labels: economics, sports and culture.

As a result, Multi-Modal Multi-Label (MMML) learning
serves an important framework to solve complex objects with
multiple modalities and multiple labels. For example, in video
annotation, a film can be represented from multiple channels
including text, audio, picture and frame, meanwhile it can
be annotated with superhero movie (type), Marvel Studios
(producer), America (country) and Anthony Russot and Joseph
Russo (directors). The major challenge of MMML learning lies
in how to jointly model the multiple types of heterogeneities
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in a mutually beneficial way. For one thing, the representations
of various modalities are quite different from each other
and it is a challenge to fuse the multiple modalities directly
with large discrepancy. Previous approaches do not explicitly
account for the distinctive information hidden in each specific
modality. For another, how to exploit label correlations in
an effectiveness way is also a challenging issue. Since each
specific modality captures a specific property of data, it is
impossible for one modality to comprehensively characterize
all the relevant labels.

In this paper, aiming at simultaneously exploit the modal
correlations and label correlations in a mutually benefit way,
we proposed a novel MMML learning approach named Re-
thinking Modal-oriented Label Correlations (RMLC). On the
one hand, RMLC models the cross-modal interaction (i.e.,
rethinking process) in a LSTM network [2], which captures
the complementary patterns among multiple modalities. On
the other hand, we input each specific modality to the RMLC
network step by step, in which we make label prediction and
exploit label correlations simultaneously. For each label, the
final prediction consists of two aspects: (1) its own prediction
based on each modal-specific information (2) the prediction
of other labels based on cross-modal interaction.

The main contributions are summarized as follows.

• We propose a novel end-to-end deep network structure
named Rethinking Modal-oriented Label Correlations
(RMLC) for multi-modal multi-label learning, inspired
from LSTM.

• RMLC network is better at extracting modal-specific in-
formation and long range cross-modal information, which
stores modal information with memory cells. Meanwhile,
RMLC sequentially exploits label correlations with the
collaboration of both modal-specific information and
cross-modal interaction.

• Extensive experiments on 5 benchmark multi-modal
multi-label datasets verify the effectiveness of RMLC
compared with several state-of-the-art approaches.

The rest of the paper is organized as follows. Section
II briefly reviews some related works. Section III presents
technical details of the proposed approach. Section IV reports
experimental results, followed by the conclusion in Section V.
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Fig. 1. The overall flowchart of RMLC approach, which is composed of a LSTM structure and a dense layer. ⊕ denotes the concatenation the vectors.
At t-th step, RMLC inputs modified feature vector to the LSTM structure. After obtaining output vector ht, RMLC stacks all previous output vectors, i.e.,
[h1,h2, · · · ,ht]. Based on the stacked output features of LSTM, RMLC learns label prediction from previous t modalities, which is denoted as f t

spec. The
LSTM layer is used for rethink process, which goes through M modalities sequentially and each step shares the same label correlation matrix S. What’s
more, the label prediction at each step is propagated to the next step in the label prediction layer. RMLC uses the label prediction form previous step to
polishes the modal-specific label prediction, i.e., at t-th step, RMLC makes label prediction with collaboration between modal-specific label prediction f t

spec

and previous label predictions F t of other labels.

II. RELATED WORK

Our work is related to two branches of studies: multi-label
learning and multi-modal learning. In this section, we briefly
review some state-of-the-art approaches in the two fields.

Multi-label learning [3] [4] deals with objects annotated
with multiple interdependent labels. Binary Relevance (BR)
[5] is the most straightforward solution that decompose the
multi-label problem into a set of independent binary classifica-
tion tasks, but it neglects correlations among labels. To tackle
label dependence, Classifier Chains (CC) [6] was proposed as
a high-order approach to consider correlations between labels.
However, the performance of CC is seriously affected by the
training order of labels. So far, many approaches have been
developed to improve the performance of multi-label learning
by exploring various types of label correlations. For example,
[7] exploits label correlations locally, [8] learns label-specific
data representation for each label, [9] exploits global and local
label correlations. However, the label correlations are simply
obtained by common similarity measures, which may not be
able to reflect complex relationships among labels. To address
the above limitation, CAMEL [10] is proposed to learn label
correlations via sparse reconstruction in the label space, which
is capable of reflecting the collaborative relationships among
labels regarding the final predictions.

Multi-modal learning aims to jointly utilize different in-
formation collected with diverse data collection techniques,
e.g., [11] applied deep network to learn features over mul-
tiple modal data. Most approaches are mainly derived from
the Canonical Correlation Analysis (CCA) methods, such as
deep neural networks based CCA [12]. Meanwhile, Multi-
modal multi-label learning has been widely studied, e.g.,

[9] exploits the consensus among different modalities, where
multi-view latent spaces are correlated by HilbertSchmidt
Independence Criterion (HSIC). It has been recognized that
exploring individuality and commonality of heterogeneous
features can further boost the performance of multi-modal data
mining. SMISFL [13] jointly learns multiple modal-individual
transformations and one sharable transformation; SIMM [14]
leverages shared subspace exploitation and modal-specific
information extraction; ICM2L [13] adopts an ensemble strat-
egy to explicitly explore the individuality and commonality
information of multi-label multiple view data in a unified
model. Nevertheless, the above approaches rarely consider
the label correlations. MMP [15] handles the consistencies
among different views by requiring them to generate the
same annotation result, and captures the correlations among
different labels by imposing the similarity constraints. CS3G
approach [16] handles types of interactions between multiple
labels, while no interaction between features from different
modalities. [17] introduces a predictive reliability measure to
select samples, and applies label-wise filtering to confidently
communicate labels of selected samples among co-training
classifiers. To make each modality interacts and further reduce
modal extraction cost, MCC [18] extends Classifier Chains to
exploit label correlation with partial modalities.

III. PROPOSED METHODOLOGY

In this section, we first summarize some formal notations
used throughout this paper. And then we present detailedly
the proposed method named Rethinking Modal-oriented Label
Correlations (RMLC), along with its implementation. Fig. 1
shows the overall architecture of RMLC.



A. Preliminaries

In the multi-modal multi-label learning, an instance is
characterized with multiple modalities and annotated with
multiple labels. Formally, let X = Rd1 × Rd2 × RdM , where
dm(1 ≤ m ≤M) is the dimensionality of the m-th modality.

Suppose D = {(Xi,Yi)}Ni=1 represents a dataset with N
samples. For the i-th instance, Xi = [x1

i ,x
2
i , · · · ,xM

i ] ∈ X
is the feature vector with M modalities, where xm

i ∈ Rdm .
Yi = [y1i , y

2
i , · · · , yLi ] ∈ Y is the corresponding label vector

with L labels, where yki ∈ {−1, 1}. yki = 1(k = 1, · · · , L)
means the k-th label of Xi is relevant; yki = −1 otherwise.

The task of multi-modal multi-label learning is to learn a
predictive model: h : X → 2Y from D, which can assign a
set of proper labels for the unseen instance.

RMLC sequentially polishing the label prediction in a
rethink manner and exploits label correlations based on the fol-
lowing two types of information: modal-specific information
and cross-modal interaction. What’s more, the final prediction
of each label is composed of its own prediction and the
prediction of other labels.

Algorithm 1 The pseudo code of RMLC approach
Input:
D ={(Xi,Yi)}Ni=1: Training dataset;
Nb: batch size
λ : trade-off parameter

Output:
FM : multi-modal classifier trained with M -modalties

1: repeat
2: Initialize label correlation matrix S
3: Randomly select Nb instances from D
4: for t = 1 :M do
5: for i = 1 : Nb do
6: Modify Xi to X̂t

i with Eq. 1
7: Input X̂t

i to the LSTM structure
8: Stack hidden output Ht

i = [h0
i ,h

1
i , · · · ,ht

i]
9: Compute label prediction F t(Ht

i ) with Eq. 4
10: Calculate loss function Lt

i with Eq. 5
11: end for
12: Calculate overall loss function Lt with Eq. 6
13: Weight propagation: Obtain the derivative ∂Lt/∂Φ,

∂Lt/∂U t, ∂Lt/∂bt and ∂Lt/∂S
14: Update parameters: Φ, U t, bt and S
15: end for
16: until converge
17: return FM

B. Modal-specific information exploitation

It is well-known that each modality contains its own spe-
cific contribution to the multi-label prediction. Take image
annotation as an example, a picture of pink rose may be
represented with two modalities: HSV and Gist, while tagged
with two labels pink, flower simultaneously [14]. Intuitively,
we can infer pink from HSV (color) modality and flower
from Gist (texture) modality. Existing approaches mainly try

to find the shared information between different modalities,
while it is more reasonable to consider extracting their own
specific information. At the t-th step, RMLC exploits specific
information of the t-th individual modality xt

i. It is notable
that the dimensionality of various modalities is heterogeneous,
which is difficult to input to the LSTM structure.

First of all, we adapt Xi as X̂t
i = [x̂1

i , x̂
2
i , · · · , x̂M

i ]
according to Eq. 1.

x̂m
i =

 xm
i m = t

0m m 6= t
(1)

where 0m ∈ Rdm . For example, if t = 4, X̂4
i =

[01,02,03,x4
i , · · · ,0M ].

Secondly, we input the modified X̂t
i to LSTM structure,

which includes input gate, forget gate, cell state, output gate,
and output vector.

iti = σ(Wi[X̂
t
i ,h

t−1
i , ct−1i ] + bi)

f t
i = σ(Wf [X̂

t
i ,h

t−1
i , ct−1i ] + bf )

cti = f t
i c

t−1
i + ititanh(Wc[X̂

t−1
i ,ht−1

i ] + bc)

ot
i = σ(Wo[X̂

t
i ,h

t−1
i , cti] + bo)

ht
i = ot

itanh(c
t
i)

(2)

where Wi,Wf ,Wc,Wo ∈ Rh represents the weight matrices
form the cell to gate vectors, bi, bf , bc, bo ∈ Rh denotes bias
vectors. For simplicity, we denote all the parameters in the
LSTM structure as Φ.

In order to combine the specific information extracted from
previous t modalities {x1

i ,x
2
i , · · · ,xt

i}, we stack all the output
features, which is denoted as Ht

i = [h1
i ,h

2
i , · · · ,ht

i] and
Ht

i ∈ R1×(t·h).
Last but not the least, we add a dense layer between stacked

output features and label prediction layer. The dense layer
learns multi-label embedding to transform the output features
Ht

i to label vector, which can be predicted by Eq. 3.

f t
spec(H

t
i ) = U tHt

i + bt

= U t[h1
i ,h

2
i , · · · ,ht

i] + bt
(3)

where U t ∈ R(t·h)×L is the weight vector, bt is the bias
vector, and f t

spec(·) ∈ R1×L.

C. Cross-modal interaction

The exploitation of cross-modal interaction can be consid-
ered as a sequential case. To characterize the collaborative
relationship among multiple labels regarding the final predic-
tion, RMLC also learns label correlation matrix S = [sjk]L×L,
where sjk reflects the contribution of the j-th label with all
previous t− 1 modalities to the k-th label.

Each step in LSTM structure represents a rethink step,
which classifies labels and exploit label correlations simul-
taneously. We denote the predicted label vector as Zt

i =
[z1,ti , z2,ti , · · · , zL,t

i ] and we initialize Z0
i = 0 for all instances,

where Zt
i = F t

i (H
t
i ) according to Eq. 4. With the help of



TABLE I
EXAMPLE OF LABEL PREDICTOR f t

spec(·) AND F t(·), WHERE f t
spec(·) DENOTES LABEL PREDICTION WITH THE MODAL-SPECIFIC INFORMATION

EXPLOITATION, F t(·) DENOTES FINAL LABEL PREDICTION WHICH INVOLVES COLLABORATION BETWEEN ITS OWN PREDICTION AND THE PREDICTION
OF OTHER LABELS FORM THE LAST STEP. S DENOTES LABEL CORRELATION MATRIX.

step label predictor with modal-specific information exploitation label predictor with both modal-specific and cross-modal interaction

t = 1 f1
spec(H

1
i ) = U1h1

i + b1 F 1(H1
i ) = σ(U1h1

i + b1))

t = 2 f2
spec(H

2
i ) = U2[h1

i ,h
2
i ] + b2 F 2(H2

i ) = σ
(
U2[h1

i ,h
2
i ] + b2 + F 1(h1i )S

)
t = 3 f3

spec(H
3
i ) = U3[h1

i ,h
2
i ,h

3
i ] + b3 F 3(H3

i ) = σ
(
U3[h1

i ,h
2
i ,h

3
i ] + b3 + F 2([h1i , h

2
i ])S

)
· · · · · · · · ·

t =M fM
spec(H

M
i ) = UM [h1

i ,h
2
i , · · · ,hM

i ] + bM FM
(
HM

i ) = σ(UM [h1
i ,h

2
i , · · · ,hM

i ] + bt + FM−1([h1i ,h
2
i , · · · , h

M−1
i ])S

)
Output fM

spec(·) FM (·)

TABLE II
CHARACTERISTIC OF THE BENCHMARK MULTI-MODAL MULTI-LABEL DATASETS. N , M AND L DENOTE THE NUMBER OF INSTANCES, MODALITIES AND

LABELS IN EACH DATASET, RESPECTIVELY. dm SHOWS THE DIMENSIONALITY OF EACH MODALITY.

dataset # of size N # of modalities M # of labels L # the dimensionality for each modality dm
ML2000 2000 3 5 [500,1040,576]
MSRC 591 3 24 [500,1040,576]
Taobao 2079 4 30 [500,48,81,24]
FCVID 4388 5 28 [400,400,400,400,400]
MSRA 15000 7 50 [256,225,64,144,75,128,7]

memory in the LSTM structure, each Zt
i is passed down to

(t+ 1)-th step.
Combine both modal-specific prediction and cross-modal

interactions together, we predict labels according to a nonlin-
ear function F t(·).

F t(Ht
i ) = σ

(
fspec(H

t
i ) +Zt−1

i S
)

(4)

where σ(·) is the sigmoid function, Zt−1
i = F t−1(Ht−1

i )
denotes the predicted label vector at t−1-th step. The modal-
specific term f t

spec(·) concentrates on extracting individual
information of each modality to predict labels independently,
which is similar to BR. The memory term Zt−1

i S transforms
the previous prediction to the current label vector space, which
can also be considered as the exploitation for label correlations
with cross-modal interactions. Table I shows example of label
predictor f t

spec(·) and F t(·) at each step.

D. Loss function

As a general training procedure, it focuses on reducing
the errors made in the current status of the network. Thus
we design weight binary cross-entropy loss function for label
prediction at the t-th step according to:

Lt
i = −

L∑
k=1

(
yki logz

k,t
i + (1− yki )log(1− z

k,t
i )
)

(5)

where Zt
i = [z1,ti , z2,ti , · · · , zL,t

i ] is predicted by F t(Ht
i ) and

zk,ti is the prediction of the k-th label at the t-th step.
Above all, we combine label loss function Lt

i and regular-
ization term ‖U t‖22 to calculate the overall loss function:

Lt =

Nb∑
i

Lt
i + λ‖U t‖22 (6)

where ‖·‖2 represents L2 norm and λ is the trade-off between
the label loss function and the regularization term.

In the training procedure, the derivatives are taken with the
help of back propagation technique, and the pseudo code of
RMLC is summarized in Algorithm 1. At t-th step, we adopt
the popular optimization algorithm Adam [19] to update all
the parameters in Φ, U t, bt and S simultaneously.

IV. EXPERIMENTS

In this section, we conduct extensive experiments on various
datasets to validate the effectiveness of RMLC.

A. Dataset description

For comprehensive performance evaluation, 5 benchmark
multi-modal multi-label datasets are collected as follows. Ta-
ble II summarizes the detailed characteristics of these datasets,
which are organized in ascending order of M (the number of
modalities).
• ML2000 [20] is an image dataset with 2000 images from

5 categories (desert, mountains, sea, sunset and trees), and
we extract 3 types of modalities for each image including:
BoW, FV and HOG.

• MSRC [21] is used for object class recognition. Similar
to ML2000, we extract 3 modalities of features: BoW, FV
and HOG for each image. Each image may be affiliated
to two or more labels. Given different modalities of
description for an image, the task is to predict its all
possible labels.

• Taobao [16] is used for shopping items classification
which has 2079 instances and 30 labels. Description
images of items are crawled from a shopping website,
and four types of features, e.g., BoW, Gabor, HOG,



TABLE III
COMPARISON RESULTS (MEAN ± STANDARD DEVIATION) OF RMLC WITH COMPARED APPROACHES ON BENCHMARK DATASETS. THE BEST

PERFORMANCE FOR EACH CRITERION IS BOLDED. ↑ / ↓ INDICATES THE LARGER / SMALLER THE BETTER OF THE CRITERION.

Datasets Approaches Evaluation Metrics
Hamming Loss ↓ Ranking Loss ↓ Subset Accuracy ↑ Macro F1 ↑ Example F1 ↑ Micro F1 ↑

ML2000

CAMEL(B) 0.089±0.011 0.063±0.011 0.655±0.040 0.804±0.025 0.769±0.031 0.806±0.024
CAMEL(C) 0.098±0.011 0.067±0.010 0.633±0.036 0.781±0.023 0.739±0.029 0.783±0.024

DMP 0.103±0.010 0.074±0.010 0.617±0.031 0.781±0.020 0.753±0.026 0.783±0.021
CS3G 0.119±0.010 0.092±0.013 0.564±0.033 0.738±0.021 0.697±0.029 0.744±0.021
MCC 0.105±0.012 0.082±0.011 0.662±0.032 0.780±0.027 0.787±0.022 0.784±0.024

RMLC 0.080±0.007 0.058±0.009 0.753±0.024 0.835±0.016 0.830±0.021 0.834±0.016

MSRC

CAMEL(B) 0.059±0.009 0.033±0.009 0.322±0.058 0.680±0.043 0.805±0.032 0.814±0.029
CAMEL(C) 0.106±0.020 0.153±0.074 0.070±0.073 0.208±0.041 0.618±0.074 0.629±0.071

DMP 0.067±0.008 0.047±0.010 0.291±0.033 0.643±0.045 0.789±0.028 0.796±0.025
CS3G 0.077±0.008 0.043±0.010 0.205±0.043 0.506±0.040 0.729±0.024 0.744±0.026
MCC 0.068±0.008 0.054±0.011 0.345±0.088 0.652±0.024 0.798±0.024 0.799±0.023

RMLC 0.048±0.010 0.031±0.010 0.472±0.048 0.761±0.059 0.854±0.035 0.856±0.032

Taobao

CAMEL(B) 0.032±0.001 0.151±0.014 0.150±0.020 0.034±0.008 0.054±0.012 0.101±0.023
CAMEL(C) 0.033±0.002 0.159±0.012 0.238±0.046 0.182±0.028 0.266±0.044 0.373±0.053

DMP 0.053±0.002 0.238±0.020 0.218±0.017 0.231±0.015 0.336±0.014 0.359±0.015
CS3G 0.064±0.003 0.171±0.009 0.104±0.017 0.125±0.015 0.323±0.025 0.332±0.026
MCC 0.054±0.002 0.235±0.016 0.213±0.023 0.222±0.026 0.333±0.026 0.354±0.021

RMLC 0.028±0.002 0.115±0.020 0.476±0.035 0.352±0.027 0.477±0.038 0.555±0.039

FCVID

CAMEL(B) 0.018± 0.001 0.027±0.006 0.534±0.030 0.697±0.022 0.551±0.031 0.695±0.024
CAMEL(C) 0.020±0.001 0.031±0.005 0.485±0.019 0.659±0.017 0.503±0.017 0.658±0.016

DMP 0.027±0.002 0.052±0.007 0.520±0.033 0.660±0.023 0.642±0.026 0.658±0.023
CS3G 0.020±0.001 0.027±0.003 0.571±0.018 0.693±0.014 0.673±0.022 0.720±0.015
MCC 0.027±0.001 0.052±0.005 0.522±0.024 0.667±0.009 0.647±0.019 0.663±0.014

RMLC 0.013±0.001 0.023±0.003 0.757±0.023 0.829±0.015 0.797±0.023 0.821±0.017

MSRA

CAMEL(B) 0.046±0.001 0.159±0.010 0.057±0.010 0.069±0.004 0.232±0.010 0.329±0.014
CAMEL(C) 0.045±0.001 0.154±0.009 0.066±0.010 0.079±0.002 0.248±0.006 0.349±0.010

DMP 0.046±0.001 0.204±0.005 0.053±0.005 0.054±0.002 0.216±0.007 0.311±0.009
CS3G 0.050±0.001 0.140±0.007 0.061±0.009 0.041±0.007 0.273±0.011 0.324±0.018
MCC 0.048±0.001 0.195±0.005 0.076±0.003 0.073±0.004 0.266±0.005 0.359±0.006

RMLC 0.048±0.001 0.132±0.005 0.136±0.004 0.186±0.007 0.334±0.011 0.421±0.009

HSVHist, are extracted to construct 4 modalities of data.
Corresponding categories path of an item provides the
label sets.

• FCVID [22] is the Fudan-Columbia Video Dataset [11], a
subset of 4388 videos with most frequent category names
are tested. Each video may come from more than one
category and features can be extracted in diverse ways. 5
types of features, namely HOF, HOG, CNN, Trajectory
and SIFT are extracted for each video. Given different
modalities of description for a video, the task is to predict
its possible categories.

• MSRA is a subset of a salient object recognition dataset
[23], which contains 15000 instances from 50 categories,
including 256 RGB color histogram features, 225 dimen-
sion block-wise color moments, 64 HSV color histogram,
144 color correlogram, 75 distribution histogram, 128
wavelet features and 7 face features.

B. Evaluation metrics

For performance evaluation, we use 6 widely-adopted evalu-
ation metrics, including Hamming Loss, Ranking Loss, Subset
Accuracy, Macro F1, Example F1 and Micro F1 [3], which

consider the performance of multi-label predictor from various
aspects. All the employed approaches vary within the interval
[0, 1]. For the first two evaluation metrics, the smaller values
indicate the better performance, while for the last four evalu-
ation metrics, the larger indicate the better performance.

C. Compared approaches

The performance of RMLC is compared against 5 multi-
modal multi-label learning approaches, listed as follows:

• CAMEL(B) & CAMEL(C): CAMEL [10] is a state-
of-the-art multi-label approach, which learn the label
correlations via sparse reconstruction in the label space.
CAMEL(B) stands for the best performance obtained
from the best single modality. CAMEL(C) stands for
concatenating all modalities as a single modal input.

• DMP [24]: A multi-modal approach which automati-
cally extracts instance-specifically discriminative modal
sequence for reducing the cost of feature extraction. Here,
we treat each label independently, i.e., for each label,
DMP trains classifiers using different modalities.

• CS3G [16]: A multi-modal multi-label approach utilizing
multi-modal information in a privacy-preserving style to



TABLE IV
COMPARISON RESULTS (MEAN ± STANDARD DEVIATION) OF RMLC NS AND RMLC, WHERE RMLC NS DENOTES THE MODEL WITHOUT

CONSIDERING LABEL CORRELATION MATRIX S . THE BEST PERFORMANCE FOR EACH CRITERION IS BOLDED. ↑ / ↓ INDICATES THE LARGER / SMALLER
THE BETTER OF THE CRITERION.

Datasets Approaches Evaluation Metrics

Hamming Loss ↓ Ranking Loss ↓ Subset Accuracy ↑ Macro F1 ↑ Example F1 ↑ Micro F1 ↑

ML2000 RMLC NS 0.083±0.008 0.059±0.009 0.742±0.028 0.828±0.017 0.821±0.019 0.826±0.017
RMLC 0.080±0.007 0.058±0.009 0.753±0.024 0.835±0.016 0.830±0.021 0.834±0.016

MSRC RMLC NS 0.059±0.006 0.040±0.012 0.359±0.062 0.693±0.058 0.815±0.022 0.819±0.022
RMLC 0.048±0.010 0.031±0.010 0.472±0.048 0.761±0.059 0.854±0.035 0.856±0.032

Taobao RMLC NS 0.030±0.002 0.137±0.017 0.394±0.039 0.284±0.027 0.383±0.038 0.486±0.041
RMLC 0.028±0.002 0.115±0.020 0.476±0.035 0.352±0.027 0.477±0.038 0.555±0.039

FCVID RMLC NS 0.013±0.001 0.025±0.004 0.702±0.021 0.804±0.016 0.703±0.019 0.801±0.017
RMLC 0.013±0.001 0.023±0.003 0.757±0.023 0.829±0.015 0.797±0.023 0.821±0.017

MSRA RMLC NS 0.045±0.000 0.115±0.005 0.119±0.007 0.125±0.009 0.280±0.008 0.393±0.009
RMLC 0.048±0.001 0.132±0.005 0.136±0.004 0.186±0.007 0.334±0.011 0.421±0.009

Fig. 2. Convergence analysis of RMLC and RMLC NS approach on the FCVID dataset.

deal with multi-label tasks. CS3G treats each modality
unequally and has the ability of extracting the most useful
modal features for final recommendation as well.

• MCC [18]: A novel multi-modal multi-label approach
considering not only interrelation among different modal-
ities, but also relationship among different labels. And
MCC makes convince prediction with partial modalities.

D. Experimental results

For each dataset, we perform 10-fold cross-validation and
take the mean metrics results, standard deviations for all com-
pared approaches. Detailed experimental results are reported
in Table III, which obviously shows RMLC outperforms the
other 5 compared approaches on all evaluation metrics. We set
trade-off parameter λ = 0.1 and batch size Nb = 64.

Based on the experimental results in Table III, we obtain
the following observations:
• From the results of CAMLE(C) approach, it is obvious

shown that roughly concatenating all modalities as a

single modality may not always be the wise choice, which
indicates that it is necessary to extract information of each
individual modality separately.

• RMLC approach achieves the best performance compared
with several state-of-the-art approaches on the benchmark
datasets, which shows priority of our proposed RMLC
approach in multi-modal multi-label learning problem.
The main reason is that RMLC takes advantage of
multiple modal-specific information, as well as exploiting
label correlations to polish multi-label prediction with the
help of cross-modal interaction.

1) Influence of label correlations: RMLC improves multi-
label prediction in a rethink manner, which makes use of pre-
vious modal information to better characterize the relationship
among different labels. In order to validate the effectiveness
of label correlations across different modalities, we keep the
basic structure of RMLC and only adopt σ(fM

spec) as the
final prediction, which is denoted as RMLC NS. As shown
in Table IV, RMLC performs better than RMLC NS, which



(a) MSRC with 3 modalities

(b) FCVID with 5 modalities

Fig. 3. Performance of RMLC, RMLC NS, CAMEL and CAMEL(C) with increase of the modality on the MSRC and FCVID dataset. At t-th step, CAMEL
adopts t-th modality as input, while CAMEL(C) concatenates t previous modalities as input.

demonstrates the effectiveness of exploiting label correlations.
In other words, it is not enough to merely fuse modal-specific
information. RMLC is of great effectiveness to integrate the
learned label correlations into the desired label prediction.

Nevertheless, RMLC NS performs better than other state-
of-the-art approaches shown in Table III, which validates
the effectiveness of extracting specific information of each
individual modalities sequentially.

2) Convergence: We conduct experiments to investigate
convergence of RMLC. Due to page limit, we only report the
experimental results on the FCVID datasets on all evaluation
metrics. The curves in Fig. 2 illustrate the change of metrics re-
sults with the number of epoch. It is obvious that both RMLC

and RMLC NS can converge quickly with a few number of
epochs, while RMLC performs better than RMLC NS.

3) Influence of modal-specific information exploitation:
To further examine the effectiveness of modal-specific in-
formation exploitation, we output label prediction of RMLC
at each step. In addition, we conduct experiment on each
modality with state-of-the-art multi-label approach CAMEL.
In Fig. 3, the curves show the change of the metric results of
RMLC, RMLC NS, CAMEL and CAMEL(C) with previous t
modalities. The experimental results in Fig. 3 can not only val-
idate the favorable performance of RMLC in exploiting each
individual modality, but also further confirm the contribution
of previous t modalities.



V. CONCLUSION

In this paper, a novel end-to-end network based approach
is proposed to solve the multi-modal multi-label problem.
Specifically, we enhance the communication among differ-
ent modalities while remaining modal-specific characteris-
tics. What’s more, we exploit label correlations with the
collaboration of modal-specific and cross-modal interaction.
Experiments on several benchmark multi-modal multi-label
datasets demonstrate the superiority of our proposed RMLC
over related competitive approaches. Different modalities have
different degree of consistency and complementarity, thus it
will be an interesting work to exploit label correlations into
reinforcement learning environment in the future.
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