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Abstract—Fuzzy-Rough Cognitive Networks (FRCNs) are neural
networks that use rough information granules with soft bound-
aries to perform the classification process. Unlike other neural
systems, FRCNs are lazy learners in the sense that we can build
the whole model when classifying a new instance. This is possible
because the weight matrix connecting the neurons is prescrip-
tively programmed. Similar to other lazy learners, the processing
time of FRCNs notably increases with the number of instances
in the training set, while their performance deteriorates in noisy
environments. Aiming at coping with these issues, this paper
presents a new FRCN-based algorithm termed Fast k-Fuzzy-
Rough Cognitive Network. This variant employs a multi-thread
approach for building the information granules as computed by
k-fuzzy-rough sets. Numerical simulations on 35 classification
datasets show a notable reduction on FRCNs’ processing time,
while also delivering competitive results when compared to other
lazy learners in noisy environments.

Index Terms—parallel granulation, noise, fuzzy-rough sets,
granular cognitive mapping, lazy learners.

I. INTRODUCTION

The continuously growing amount of raw data in our world

has been challenging researchers to come up with better

ways of building inference models able to extract useful

insights from historical data. Pattern classification is one of the

most researched topics in the field of machine learning. The

classification problem consists of identifying the correct label

(decision class) for an unseen object based on the available

data [1]. A wide variety of models has been proposed to

solve such type of problems. While often managing to deliver

excellent results, many models lack the ability to explain how

an object is exactly classified. That is why traditional neural

networks are said to behave like black boxes. On the other

hand, granular networks try to overcome this shortcoming

by processing information granules instead of the traditional

numeric representation of a classification problem [2]. The

models discussed in this paper construct these information

granules using either fuzzy sets [3], rough sets [4] or fuzzy-

rough sets [5]. This granulation procedure allows representing

the problem domain in a more concise manner. Yet granular

classifiers are able to obtain competitive results when com-

pared to traditional neural networks [6].

As an example of these granular systems, Nápoles et al. [7]

introduced the Rough Cognitive Networks as a hybridization

between rough sets [4] and fuzzy cognitive maps [8]. This

lazy learner constructs a cognitive network by following a

predefined set of rules that use the positive, negative and

boundary rough regions for each decision class. One may

notice that only the number of decision classes can enlarge

the topology of the model, the number of attributes does not

have an influence on the size of the network. Besides, the use

of rough sets allows the model to cope better with uncertainty

arising from inconsistencies. Despite all the advantages of this

granular classifier, it remains to be sensitive to the value of

the similarity threshold parameter. Therefore, Nápoles et al. [9]

proposed an RCN-based multi-classifier system that does not

require an explicit value for the similarity threshold parameter.

Instead, this ensemble classifier induces different granularity

degrees by using a variety of parameter values. However, the

model still constructs granular regions with hard boundaries.

Fuzzy-Rough Cognitive Networks (FRCNs) entirely suppressed

the need for an explicit parameter value [10]. This lazy learner

constructs information granules with soft boundaries by using

fuzzy-rough sets, thus replacing the abrupt transitions between

classes with more gradual ones.

In real-world problems, most datasets usually contain noisy

instances which might cause FRCNs’ performance to degen-

erate significantly. If the nearest neighbor is a mislabeled

sample, the values of fuzzy lower and upper approximations

may be contaminated [11]. On the other hand, the information

granulation of the FRCN model may become quite extensive

as the number of instances increases. This happens due to the

fact that for a dataset comprised of N instances, the algorithm

has to execute the distance function N × (N − 1)/2 times.

Therefore, the processing time drastically increases when more

instances are added to the dataset.

The two main contributions of this paper attempt to over-

come the previously described problems. Firstly, we attempt to

reduce the noise effects on the performance of the algorithm

by using a k-distance function instead of using sensitive

operators as the infimum and supremum. Secondly, a parallel

granulation approach is introduced to reduce the processing

time of deriving the fuzzy-rough regions. In that regard, our

parallel solution will focus on the computation of the similarity

matrix and the fuzzy-rough regions attached to each decision

class. Numerical simulations show the superiority of the new

variant with respect to the original FRCN algorithm and other

lazy learners reported in the literature.

The structure of this paper is as follows. Section II intro-

duces the reader to the fundamentals of fuzzy-rough set theory.

The FRCN model will be outlined in Section III, whereas

Section IV will elaborate on the two main contributions of this

paper to the FRCN model. These contributions will be assessed

by extensive experiments in Section V. The final remarks will

be provided in Section VI.
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II. PRELIMINARIES ON FUZZY-ROUGH SETS

Let U denote the universe of discourse which incorporates

all objects in the training dataset. We can define Xc as a

partition of U which contains all elements associated with

the Dc decision class. The membership degree of x ∈ U to a

subset Xc is given by as follows,

µXc
(x) =

{

1 , x ∈ Xc

0 , x /∈ Xc

. (1)

The FRCN classifier introduced by Nápoles et al. [10] uses

the fuzzy-rough approach proposed by Inuiguchi et al. [5],

which will be briefly introduced next.

Firstly, we need to determine the similarity between two

instances x and y. Such a function, denoted by µP (y, x), can

be constructed by combining the previously described mem-

bership degree µXc
(x) with a similarity degree ϕ(x, y). This

similarity degree denotes the complement of the normalized

distance between two instances x and y.

µP (y, x) = µXc
(x)ϕ(x, y) = µXc

(x)(1− δ(x, y)). (2)

Secondly, we use Equations (1) and (2) to analytically derive

the membership function describing the lower approximations

associated with the fuzzy set Xc. This is to say,

µP∗(Xc)(x) = min

{

µXc
(x), inf

y∈U
I(µP (y, x), µXc

(y))

}

.

(3)

where I is an implication function so that I(0, 0) = I(0, 1) =
I(1, 1) = 0 and I(1, 0) = 1.

Similarly, we can define the membership function for the

upper approximation. To do that, we use a conjunction func-

tion T such that T (0, 0) = T (0, 1) = T (1, 1) = 1 and

T (1, 0) = 0. Equation (4) shows this membership function

for the upper approximation,

µP∗(Xc)(x) = max

{

µXc
(x), sup

y∈U
T1(µP (x, y), µXc

(y))

}

.

(4)

The lower and upper fuzzy-rough approximations are the

main building-blocks of the FRCN classification model. In

the next section, we will explain how to derive the network

structure in a prescriptive way, without the need for an explicit

learning process to compute the weight set.

III. FUZZY-ROUGH COGNITIVE NETWORKS

When constructing an FRCN model, we first need to gran-

ulate the information space, so that a fuzzy-rough attribute

space is created. This can be done by categorizing objects into

granules with soft boundaries, which translates into computing

the positive, negative and boundary fuzzy-rough regions by

using Equations (5), (6) and (7), respectively,

µPOS(Xc)(x) = µP∗(Xc)(x) (5)

µNEG(Xc)(x) = 1− µP∗(Xc)(x) (6)

µBND(Xc)(x) = µP∗(Xc)(x)− µP∗(Xc)(x). (7)

In this model, the Ci neuron denotes either a positive

(Pc), a negative (Nc) or a boundary region (Bc), or an

output neuron (Dc). The weights connecting the neurons are

assigned based on the following construction rules:

• R1: If Ci = Pc AND Cj = Dc then wij = 1.0
• R2: If Ci = Nc AND Cj = Dc then wij = −1.0
• R3: If Ci = Pc AND Cj = Dv 6=c then wij = −1.0
• R4: If Ci = Pc AND Cj = Pv 6=c then wij = −1.0
• R5: IF Ci = Bc AND Cj = Dv 6=c AND minx∈U

{

µBND(Xc)(x), µBND(Xv)(x)
}

> 0 then wij = 0.5

After computing all fuzzy-rough regions, we build a neural

network comprised of |D| output neurons, between 2|D|
and 3|D| input neurons and between 2|D|(1 + |D|) and

3|D|(1+|D|) weights, depending on the number of non-empty

boundary regions. Here, D represents the set of all decision

classes. Figure 1 shows the FRCN for a classification problem

with only two decision classes.
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Fig. 1. Fuzzy-Rough Cognitive Network for binary classification.

The initial activation value A
(0)
i of the neuron Ci is com-

puted by using the similarity degree between the new object y
and x ∈ U , and the membership degree of x to each granular

region. When classifying a new instance, the initial activation

value of decision neurons is set to zero. Equations (8), (9) and

(10) formalize the initial activation rules for positive, negative

and boundary neurons, respectively,

A
(0)
i =

∑

x∈U T (ϕ(x, y), µPOS(Xc)(x))
∑

x∈U µPOS(Xc)(x)
, if Ci = Pc (8)

A
(0)
i =

∑

x∈U T (ϕ(x, y), µNEG(Xc)(x))
∑

x∈U µNEG(Xc)(x)
, if Ci = Nc (9)

A
(0)
i =

∑

x∈U T (ϕ(x, y), µBND(Xc)(x))
∑

x∈U µBND(Xc)(x)
, if Ci = Bc. (10)



The activation value A
(t)
i of neuron Ci in the t-th iteration

is computed by using Equation (11) such that M is the number

of neurons connected to Ci. This reasoning rule is iteratively

applied to all neurons in the model [12],

A
(t+1)
i = f(

M
∑

j=1

wjiA
(t)
j ) (11)

where f(·) is the sigmoid transfer function used to limit neu-

rons’ values within the [0, 1] interval, whereas wij represents

the causal weight connecting Ci and Cj .

The FRCNs’ recurrent reasoning process continues until

either a fixed point attractor, or a fixed number of iterations is

reached. A fixed point attractor is reached when A
(t+1)
i ≈ A

(t)
i

applies for each neuron i in the network. Finally, the class rep-

resented with the output neuron having the highest activation

value is assigned to the new object y.

IV. FAST k-FUZZY-ROUGH COGNITIVE NETWORKS

Next, we introduce the key contributions of this paper which

aim at improving the performance of the FRCN model with

respect to both prediction power and computational efficiency.

Firstly, we present the k-fuzzy-rough set model to cope better

with noisy datasets. As a second contribution, we propose a

parallel granulation approach when computing the distances

between all instances in the training set. This method will

enable the k-FRCN algorithm to build its model using multiple

threads, thus speeding up its performance.

A. k-Fuzzy-Rough Sets

For a given implication function I and T -norm, we notice

that the membership of an object to the fuzzy lower approxi-

mation µP∗(Xc) matches with the distance from x to its nearest

neighbor from different classes, while the membership to the

fuzzy upper approximation µP∗(Xc) is the similarity between

x and the nearest neighbor in that set Xc.

Equation (12) uses the Kleene-Dienes implicator to compute

the lower membership function,

µP∗(Xc)(x) = inf
y∈U

max
(

1− µP (y, x), µXc
(y)

)

= inf
y∈Xc

max
(

1− µP (y, x), 1
)

∧

inf
y/∈Xc

max
(

1− µP (y, x), 0
)

= 1 ∧ inf
y/∈Xc

(

1− µP (y, x)
)

= inf
y/∈Xc

δ(x, y).

(12)

Equation (13) adopts the standard T -norm to compute the

upper membership function,

µP∗(Xc)(x) = sup
y∈U

min
(

µP (x, y), µXc
(y)

)

= sup
y∈Xc

min
(

µP (x, y), 1
)

∨

sup
y/∈Xc

min
(

µP (x, y), 0
)

= sup
y∈Xc

µP (x, y) ∨ 0

= sup
y∈Xc

ϕ(x, y).

(13)

We can try to reduce the noise effects by using a k-distance

function instead of using the inf and sup operators. Given an

object x and a set of objects Y = {y1, y2, . . . , yn}, we define

a distance function δk between x and Y as the distance from

x to its k-th nearest neighbor in Y . Therefore, Equations (12)

and (13) can be rewritten as follows:

µP∗(Xc)(x) = inf
y/∈Xc

δ(x, y) = δ1(x, U −Xc), (14)

µP∗(Xc)(x) = sup
y∈Xc

ϕ(x, y) = 1− δ1(x,Xc). (15)

Notice that we get the original fuzzy-rough set formulation

if parameter k is set equal to one. On the other hand, we get

more flexible definitions for the upper and lower approxima-

tions when k > 1. We refer to this as k-fuzzy-rough sets. The

approximations can then be computed using:

µP∗(Xc)(x) = min {µXc
(x), δk(x, U −Xc)} , (16)

µP∗(Xc)(x) = max {µXc
(x), 1− δk(x,Xc)} . (17)

It is worth mentioning that Inuiguchi’s model [5] does not

assume that µP (x, x) = 1, ∀x ∈ U . Instead, we compute the

minimum and the maximum when computing the µP∗(Xc)(x)
and µP∗(Xc)(x), respectively. This feature allows preserving

the inclusiveness of P∗(Xc) in the fuzzy set Xc and the

inclusiveness of Xc in P ∗(Xc).

B. Parallel granulation process

The Fast k-FRCN algorithm is a multi-threaded variant of

the FRCN classifier that improves the efficiency of the model

in relatively large datasets. The calculations that are imple-

mented in our multi-threaded approach are: i) the computation

of the distance matrix, ii) the construction of the k-fuzzy-rough

regions, and iii) the computation of the similarity class for a

given object to be classified.

When computing the similarity distance matrix, the equal

distribution of the distance computations induces balanced

workloads among all threads. Only the distance values below

the main diagonal in the distance matrix are computed, as

the distance function used by the FRCN-based classifiers is

symmetric. Figure 2 illustrates the computation of the distance

matrix by using three processing threads.

In this multi-threaded model, the dataset is split into several

chunks such that each thread processes a piece of data. Mean-

while, the main process waits until all tasks are completed.
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Fig. 2. Multi-threaded approach to compute the distance matrix.

Finally, all parts are merged. The same reasoning applies when

computing the granular regions associated with each decision

class and the similarity classes of each object.

V. NUMERICAL SIMULATIONS

To validate the two contributions of this paper, we perform

two experiments. In the first experiment, we set up a standard

classification problem context where we compare the Fast-k-

FRCN to the k-FRCN implementation. For each of the 35

datasets, 4 levels of noise have been generated (0%, 5%, 10%

and 20%). Both algorithms have been trained for each dataset

and noise level, resulting in 140 results per algorithm. The

results from this first experiment are used to check if the Fast-

k-FRCN does benefit from the parallelization of the distance

calculation step in terms of processing time.

In our second experiment, the k-FRCN algorithm is com-

pared with 6 state-of-the-art granular classifiers. The first goal

of this experiment is to check whether our proposal can deliver

competitive results when compared with other lazy learners.

Additionally, we validate if the k-fuzzy-rough sets allow the

algorithm to cope better with noisy datasets.

A. Description of benchmark problems

To conduct our experiment, we selected 35 pattern classifi-

cation datasets taken from the KEEL [13] and UCI ML [14]

repositories. The number of instances in these datasets ranges

from 1,599 to 12,960. Using fairly large datasets, we can get

more insight into the reduction in time necessary to build the

model. The number of attributes ranges from 2 to 240 and the

number of classes from 2 to 100. A more extensive description

of the datasets can be found in Table I.

All numerical attributes have been normalized and none of

the included datasets have any missing values. The noise levels

mentioned in this paper have artificially been added using a

noise filter in Weka, which replaces the original decision class

with a randomly selected class. This method is applied to the

specified percentage of instances.

TABLE I
DESCRIPTION OF THE DATASETS

Dataset Instances Attributes Classes Imbalance

abalone 4,174 8 28 689:1
banana 5,300 2 2 1:1
bank 4,521 16 2 8:1
car 1,728 6 4 19:1
cardiotocography-10 2,126 35 10 11:1
cardiotocography-3 2,126 35 3 9:1
chess 3,196 36 2 1:1
crowdsourced-mapping 10,545 28 6 140:1
csj 2,796 34 6 2:1
frogs-mfccs 7,195 22 10 51:1
hypothyroid 3,772 29 4 1740:1
mfeat-factors 2,000 216 10 1:1
mfeat-fourier 2,000 76 10 1:1
mfeat-karhunen 2,000 64 10 1:1
mfeat-morphological 2,000 6 10 1:1
mfeat-pixel 2,000 240 10 1:1
mfeat-zernike 2,000 47 10 1:1
mushroom 8,124 22 2 1:1
musk2 6,598 167 2 5:1
nursery 12,960 8 5 2160:1
optdigits 5,620 64 10 1:1
ozone 2,536 72 2 34:1
page-blocks 5,473 10 5 175:1
pendigits 10,992 16 10 1:1
phoneme 5,404 5 2 2:1
plant-margin 1,600 64 100 1:1
plant-shape 1,600 64 100 1:1
plant-texture 1,599 64 100 1:1
segment 2,310 19 7 1:1
spambase 4,601 57 2 2:1
splice 3,190 60 3 2:1
wall-following 5,456 24 4 7:1
waveform 5,000 40 3 1:1
wine-quality-white 4,898 11 7 440:1
winequality-red 1,599 11 11 68:1

B. Lazy learners used for comparison

1) IBk [15]: IBk is an implementation of the KNN algo-

rithm that calculates the similarity between instances using

a distance function. This algorithm never generates any ab-

stractions of the dataset, but rather compares unseen instances

with already classified ones. Therefore, it is called an instance-

based algorithm. The similarity between two instances x and

y can be computed as follows:

ϕ(x, y) = −

√

√

√

√

A
∑

i=1

f(xi, yi) (18)

where A represents the set of attributes describing the problem

instances, f(xi, yi) = {(xi − yi)
2 for numerical attributes;

(xi 6= yi) for nominal attributes}. The algorithm classifies

an unseen instance based on the majority class of its k most

similar instances. To handle noisy datasets, the algorithm keeps

a record of the performance of each instance. Only instances

that are known to correctly classify other instances are utilized

in the classification process. Such a process can be enhanced

by assigning a larger weight to neighbors which are more

similar to the new instance.



2) KStar (K∗) [16]: the key difference between IBk and

this method is that it uses an entropy-based distance function.

This distance can be expressed as the complexity of trying to

transform one instance x to another instance y. The K∗ dis-

tance is defined as the sum of the probabilities of all possible

transformations between two instances. One advantage of this

distance measure is that it takes into account the probability

of two nominal values to be similar.

3) FuzzyRoughNN (FRNN) [17]: this method is based on

the fuzzy k-nearest neighbor (FNN) [18], which improves the

way we determine the membership of an instance to a class in

the kNN algorithm. Such a membership is computed by using

the distance of the new instance from its k-nearest neighbors

and the memberships of these neighbors to their classes. For

an unlabeled instance x the membership to the c-th decision

class is given as follows:

cµc(x) =
∑

y∈N (x)

FFNN (y, x) µc(y), (19)

and

FFNN (y, x) =
||x− y||−2/(m−1)

∑

Xi∈N (x)

||x−Xi||2/(m−1)
. (20)

where N (x) represents the set of k-nearest neighbors of a

certain instance x, while m controls the overall weighting of

the similarity. As m increases, the neighbors are more evenly

weighted, and their relative distances from the point being

classified have less effect.

For every x, the algorithm calculates the membership µc(y)
to the decision class Dc. A crisp membership means that the

membership will be one if the instance belongs to the class,

otherwise the membership will be zero. The fuzzy membership

proposed in [17] is computed as follows:

µc(y) =

{

0.51 + 0.49 |Nc|
k if x is in class Dc

0.49 |Nc|
k otherwise

(21)

where |Nc| is the number of nearest neighbors that belong

to decision class Dc. Afterwards, the decision class with the

highest membership, calculated by Equation (19), is used to

classify the unlabeled instance x.

The FRNN method [19] uses the k-nearest neighbors of x
to calculate the upper and lower approximations. Thus, a [0, 1]
valued fuzzy tolerance relation is used. This can be seen as

another way to describe the similarity relation:

FFRNN (y, x) = min
a∈A

FaFRNN
(y, x) (22)

and

FaFRNN
(y, x) = 1−

|a(y)− a(x)|

|amax − amin|
. (23)

To calculate the membership degree of object x to a decision

class Dc we first need approximations for the upper and lower

boundaries F∗C(x) and F ∗C(x). There are two variants of

FRNN: FRNN-FRS and FRNN-VQRS. The second variant

will be explained later in this paper. The FRNN-FRS method

uses T -norm and implicator approximations:

F∗c(x) = min
y∈N (x)

I(FFRNN (y, x), µc(y)), (24)

F ∗c(x) = max
y∈N (x)

T (FFRNN (y, x), µc(y)). (25)

To obtain a definitive class for instance x, the algorithm

combines the upper and lower approximation by calculating

the mean of the two values. When this is done for every class,

the class with the highest value is selected for x.

4) VQNN [19]: In fuzzy-rough set theory, inf and sup

(Formula 3 and 4) operators are used to calculate the lower and

upper approximations of a given set. These approximations

have the tendency of being more susceptible to noise when

the set is crisp. This is why vaguely quantified rough sets

were brought into existence. Instead of the traditional crisp

quantifiers like “all” and “at least one”, VQRS uses “most” and

“some” when building the lower and upper approximations,

which are defined as follows:

µP∗Qs(y)(x) = Qs







∑

y∈N (x)

min(FFNN (y, x), µc(y))

∑

y∈N (x)

FFNN (y, x)






,

(26)

µP∗Qm(y)(x) = Qm







∑

y∈N (x)

max(FFNN (y, x), µc(y))

∑

y∈N (x)

FFNN (y, x)







(27)

such that Qs and Qm are fuzzy quantifiers that model the lin-

guistic quantifiers “some” and “most”, respectively. A general

definition can be formulated, which can be used to generate

different fuzzy quantifiers, as follows:

Q(α,β) =























0 , x ≤ α

2(x−α)2

(β−α)2 , α ≤ x ≤ α+β
2

1− 2(x−α)2

(β−α)2 , α+β
2 ≤ x ≤ β

1 , β ≤ x

(28)

where α and β are parameters that can be used to satisfy a

personal definition of “some” and “most”.

5) FuzzyOwnershipNN (FONN) [17]: handles the uncer-

tainty caused by overlapping classes and inadequate knowl-

edge. To do this, the algorithm uses the confidence for an

object x being associated with the decision class Dc, which

is defined as follows:

τc(x) =

∑

y∈U

FFONN (y, x)µc(y)

|U |
(29)

where FFONN (y, x) is the fuzzy relation between y and x.

This fuzzy relation can be written down as:

FFONN (y, x) = exp
(

−
∑

a∈A

ba(a(x)− a(y))2/(m−1)
)

(30)



where m again controls the overall weighting, while ba defines

the bandwidth of the membership,

ba =
|U |

2
∑

y∈U ||a(x)− a(y)||2/(m−1)
. (31)

Firstly, the bandwidth is calculated for each attribute. Here-

after τc(x) is calculated for every class. The output of the

algorithm will be the class with the highest membership value.

There is no need for a parameter k in this algorithm, because

distant neighbors will not influence the membership that much.

Yet, every instance is considered.

6) OWANN [20], [21]: Vaguely quantified rough sets, as

proposed in [22], still show some crisp behavior. Thus, ordered

weighted average (OWA) fuzzy-rough sets were introduced in

[23] to replace the strict minimum and maximum operators of

fuzzy-rough lower and upper approximations. An OWA opera-

tor of dimension n can be defined as a mapping [24]: Rn → R
with an associated weight vector w = 〈w1, w2, . . . , wn〉. This

vector has to fulfill two constraints: i) wk ∈ [0, 1] and ii)
∑n

k=1 wk = 1. The purpose is to calculate an OWA aggrega-

tion of a decreasingly ordered vector of p scalar values. Hence,

we can formulate the new upper and lower approximations of

a fuzzy rough set as follows:

F∗c(x) = OWAw∗
I
(

FFRNN (y, x), µc(y)
)

, (32)

F ∗c(x) = OWAw∗T
(

FFRNN (y, x), µc(y)
)

. (33)

Similar to FRNN, the mean of the upper and lower approx-

imation values determines the decision class that is selected

for an unlabeled instance x.

C. Settings and Hyperparameter Optimization

Aiming at performing the comparisons in an optimal setting,

we perform hyperparameter tuning on each dataset. Algorithm

1 depicted the grid search approach used in the paper, which

modifies the procedure in [25] by replacing the lowest average

error with the highest average Kappa value.

Algorithm 1 Hyperparameter tuning procedure

1: Randomly split dataset into 5 folds

2: for each parameter configuration cf : do

3: for each fold pt: do

4: Train model on remaining folds (not pt)

5: Split fold f in validation and test set

6: Calculate the Kappa value for the validation set

7: Calculate the Kappa value for the test set

8: end for

9: Calculate the average Kappa value for the validation set

10: Calculate the average Kappa value for the test set

11: end for

12: Determine which configuration bs reported the highest

average Kappa value on the validation set

13: return the average Kappa value on the test set, which

corresponds with the best configuration bs

Observe that we use the kappa statistic [26] as the perfor-

mance measure. This statistic is more robust than the standard

accuracy as it takes the chance that an instance is correctly

classified by chance into account.

All algorithms that use a k parameter have been optimized

with k values ranging from 1 to 10. The lower α of the

OWANN and VQNN classifiers has been trained with values

0.1 and 0.2, the upper α with 0.2 and 0.3. Their β parameters

also have undergone hyperparameter tuning. We have used 0.6

and 0.8 for the lower β, and 0.8 and 1 for the upper β. The

values for the fuzzifier parameter of FONN ranged from 1 to

10. KStar was optimized by using values from 5 to 40 in steps

of 5 for the global blending option.

In the case of the FRCN models, we use the Heterogeneous

Manhattan-Overlap Metric (HMOM) [9] to compute the dis-

similarity between two instances.

D. Exploring Fast k-FRCN’s Processing Time

To assess the added value of the multi-threaded approach,

we compare the time required to build the model with the

number of threads ranging from 1 to 10. If the number of

threads is set equal to 1, the algorithm will perform exactly as

the original FRCN classifier in term of efficiency. The average

time to build the model per number of threads is computed

based on the results of the best performing hyperparameter

configuration for each dataset. Figure 3 portrays the average

time to build the model in each case.
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Fig. 3. Average duration in milliseconds to build model per thread setting.

Overall, the time required to build the classification model

significantly decreases when the algorithm has access to at

least two threads instead of one. When using two threads, the

building time of the k-FRCN model is on average reduced by

88% when compared with one thread. Adding more threads

only marginally reduces the processing time. Moving from two

to three threads, the time gain is 30%.

E. Exploring Fast k-FRCNs’ Performance

In this section, we compare the k-FRCN model against the

state-of-the-art lazy classifiers revised above and the original

FRCN algorithm. This performance comparison experiment

has been conducted by using four different noise settings, that

is, 0%, 5%, 10% and 20%.



Figures 4, 5, 6 and 7 display the average Kappa values

on the 35 benchmark problems. The reader may notice that

the performance of all algorithms degenerates as more noise

is added to the problem. This is expected because it is not

trivial for the algorithms how to distinguish incorrectly labeled

instances from correctly labeled ones.
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Fig. 4. Average Kappa values computed by the classification models over 35
datasets without any artificial noise.
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Fig. 5. Average Kappa values computed by the classification models over 35
datasets with 5% artificial noise.
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Fig. 6. Average Kappa values computed by the classification models over 35
datasets with 10% artificial noise.

To determine whether the observed performance differences

are statistically significant or not, the Friedman test [27] has

been conducted for each level of noise. This non-parametric

test will reject the null hypothesis when at least two classifiers

perform significantly different. The p-values for these tests are

respectively 2.25E-5, 2.14E-18, 1.60E-21 and 2.65E-25. All p-

values are smaller than the 5% significance level and therefore

indicating a difference in performance between at least two

algorithms in each noise environment.
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Fig. 7. Average Kappa values computed by the classification models over 35
datasets with 20% artificial noise.

Next, we further analyze the performance differences be-

tween k-FRCN and the 7 other algorithms in terms of pre-

diction rates. This pairwise comparison is conducted using

a Wilcoxon signed-rank test [28]. This test will reject the

null hypothesis when there is a significant difference between

the two selected algorithms. This post-hoc procedure attempts

to control for type-I errors (false positive). Tables II, III, IV

and V summarize the results of the pairwise comparisons for

each level of noise. Besides the uncorrected p-values, we also

report the negative (R−) and the positive (R+) ranks, and the

corrected values by Holm.

TABLE II
WILCOXON SIGNED-RANK TEST (0% NOISE) BY USING THE k-FRCN

ALGORITHM AS THE CONTROL METHOD.

Algorithm R− R+ R= p-value Holm

FRCN 6 25 4 2.57E-4 1.80E-3
FONN 21 12 2 8.58E-1 8.58E-1
FRNN 9 25 1 3.76E-4 2.26E-3
IBk 14 19 2 5.82E-2 1.16E-1
KStar 12 22 1 1.83E-2 7.32E-2
OWANN 12 22 1 1.32E-2 6.59E-2
VQNN 13 21 1 3.55E-2 1.06E-1

TABLE III
WILCOXON SIGNED-RANK TEST (5% NOISE) BY USING THE k-FRCN

ALGORITHM AS THE CONTROL METHOD.

Algorithm R− R+ R= p-value Holm

FRCN 7 27 1 1.81E-4 9.05E-4
FONN 15 20 0 8.27E-1 8.27E-1
FRNN 4 31 0 2.90E-7 2.03E-6
IBk 4 31 0 1.60E-6 9.62E-6
KStar 7 28 0 4.44E-4 1.77E-3
OWANN 8 27 0 1.84E-3 5.53E-3
VQNN 10 25 0 1.18E-2 2.36E-2

Overall, the simulation results over the 35 benchmark prob-

lems show that the k-FRCN classifier significantly outperforms

all algorithms except for FONN in environments with 10% and

20% noise. This clearly indicates an improvement in the model

with respect to the original FRCN classifier.



TABLE IV
WILCOXON SIGNED-RANK TEST (10% NOISE) BY USING THE k-FRCN

ALGORITHM AS THE CONTROL METHOD.

Algorithm R− R+ R= p-value Holm

FRCN 4 30 1 5.42E-6 2.71E-5
FONN 18 17 0 4.41E-1 4.41E-1
FRNN 3 32 0 1.92E-9 1.34E-8
IBk 5 30 0 2.16E-8 1.30E-7
KStar 8 27 0 7.05E-6 2.82E-5
OWANN 5 30 0 1.51E-4 4.53E-4
VQNN 9 26 0 2.36E-3 4.72E-3

TABLE V
WILCOXON SIGNED-RANK TEST (20% NOISE) BY USING THE k-FRCN

ALGORITHM AS THE CONTROL METHOD.

Algorithm R− R+ R= p-value Holm

FRCN 7 28 0 2.58E-6 1.03E-5
FONN 21 14 0 9.68E-2 9.68E-2
FRNN 2 33 0 1.46E-9 1.02E-8
IBk 2 33 0 4.07E-9 2.44E-8
KStar 4 31 0 1.01E-7 5.06E-7
OWANN 8 27 0 8.43E-5 2.53E-4
VQNN 10 25 0 6.65E-3 1.33E-2

VI. CONCLUDING REMARKS

In this paper, we have proposed a parallel and noise-tolerant

variant of the Fuzzy-Rough Cognitive Networks. In summary,

this research comprises two main contributions. Firstly, the

introduction of k-fuzzy-rough sets allows the model to perform

significantly better in noisy environments. We have compared

our proposed k-FRCN classifier to 7 state-of-the-art granular

classifiers, including the original FRCN model. The k-FRCN

model has proven to be capable of delivering very competitive

results for different noise ratios. Actually, it achieved higher

prediction rates than the original FRCN classifier on more

than 70% of the benchmark datasets. It should be mentioned

however that FONN reported slightly better results in our

study. Secondly, the parallel implementation of the information

granulation procedure drastically reduced the time necessary

to build the model. The processing time decreased 88% on

average when operating with at least two threads, thus making

our algorithm operative for large datasets. The future research

will focus on further improving the FRCNs’ performance in

noisy environments by using soft rough sets.
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[25] G. Nápoles, F. Vanhoenshoven, K. Vanhoof, Short-term cognitive net-
works, flexible reasoning and nonsynaptic learning, Neural Networks
115 (2019) 72 – 81 (2019).

[26] M. J. Warrens, Cohen’s kappa is a weighted average, Statistical Method-
ology 8 (6) (2011) 473 – 484 (2011).

[27] M. Friedman, The use of ranks to avoid the assumption of normality
implicit in the analysis of variance, Journal of the American Statistical
Association 32 (200) (1937) 675–701 (1937).

[28] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics 1
(1945) 80 – 83 (1945).




