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Abstract—We present the first direct approach targeted ex-
plicitly on human hands that infers depth from monocular
RGB images. We achieve this with a Convolutional Neural
Network (CNN) that employs a stacked hourglass model as its
main building block. Intermediate supervision is used in several
outputs of the proposed architecture in a staged approach. To
aid the process of training and inference, hand segmentation
masks are also estimated in such intermediate supervision steps,
and used to guide the subsequent depth estimation process. In
order to train and evaluate the proposed method we compile and
make publicly available HandRGBD, a new dataset of 20,601
views of hands, each consisting of an RGB image and an aligned
depth map. Based on HandRGBD, we explore variants of the
proposed approach in an ablative study and determine the most
accurate one. The results of an extensive experimental evaluation
demonstrate that hand depth estimation from a single RGB
frame can be achieved with an accuracy of 22mm, which is
comparable to the accuracy achieved by contemporary low-cost
depth cameras. Such a 3D reconstruction of hands based on
RGB information is valuable as a final result on its own right,
but also as an input to several other hand analysis and perception
algorithms that require depth input. In this context, the proposed
approach bridges the gap between RGB and RGBD, by making
all existing RGBD-based methods applicable to RGB input.

Index Terms—hand depth estimation, depth from RGB, CNN,
3D hand pose.

I. INTRODUCTION

The task of observing and understanding human activities
is of great interest to the field of computer vision. Among
other approaches, human activity can be studied by observing
and monitoring the state of the human body, either in 2D or
in 3D. Particular emphasis is given to the human hands as
the interpretation of their behavior is key to understanding the
interaction of humans with their environment. Several efforts
have been devoted to this direction and important milestones
have been achieved [1], [2]. However, despite the significant
progress, a general solution to these problems is still lacking.

This work deals with the problem of estimating the depth
map of a hand observed from a regular color camera. Depth
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Fig. 1. Given an RGB image of a human hand (top-left) our goal is to produce
a depth map of the hand region (top-right). This can support applications such
as AR/VR (bottom-left) or 3D hand pose estimation (bottom-right). Note that
applications such as AR/VR can exploit 3D hand pose estimation, but many
can be supported using only hand depth information.

information is lost during color image formation and is im-
portant for the analysis of hands. We propose a method that
accepts as input a conventional RGB image of a hand (Fig. 1,
top, left) and produces the depth map of the observed hand
(Fig. 1, top, right). Analyzing the rest of the scene (non-hand
regions) is out of the scope of this work and the proposed
method only marks them as background.

Solving the problem of hand depth estimation is both
interesting and useful. When observing a scene using regular
images, it is very appealing to be able to recover the sup-
pressed depth information without stereo 3D reconstruction or
structure from motion. Moreover, the recovery of this infor-
mation may have significant impact on the solution of several
practical problems. As an example, the hand depth information
can be used to capture and understand hand movement within
the 3D space, facilitating tasks such as 3D hand shape and
pose estimation, hand-object interaction monitoring, etc, with
immediate implications to areas such interaction [3], medical
rehabilitation, computer games, and more. For several of the
above applications, it suffices to have a 3D reconstruction of a
hand, without necessarily solving the 3D hand pose estimation
problem. For example, the 3D reconstruction of the hand
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suffices to support the realistic blending of a real hand with
a virtual object (Fig. 1, bottom, left). 3D hand pose would
be exploitable, but not required. At the same time, if the 3D
reconstruction of a hand can be achieved from a single RGB
frame, the inferred depth information can be fed to a depth-
based 3D hand pose estimation method (Fig. 1, bottom, right).

II. RELATED WORK

Depth from color for general scenes: The general problem
of extracting depth information from color images is very
interesting [4]–[8], and is still a research topic under investi-
gation [9]–[11], remaining unsolved in its full generality. The
recent success of machine learning, including (most notably)
deep neural networks has led to new methods that achieve in-
creasingly better performance and more accurate results [12]–
[21]. A significant category of methods deals with the problem
of estimating the 3D surface of a deformable object [22], [23].
However, these methods are designed to tackle deformations of
paper and cloth, making the deformation model unnecessarily
complicated for the case of human hands.

Depth from color for human body parts: An older work
related to our approach was proposed by Fanello et al. [24].
In that work, the depth of human body parts was recovered
using slightly modified color cameras, based on near-infrared
illumination of the scene. A more recent line of methods tackle
the problem of depth estimation for specific parts of the human
body. The first of these methods [25] estimates the face struc-
ture from a single color image. To do so, it uses volumetric in-
formation to train a neural network that was based on a stacked
hourglass architecture. More works estimating the 3D structure
of human faces shortly followed [26], [27]. In parallel to the
works on human face, a similar architecture was proposed,
targeting the human body [28]. In that work, training data are
derived from accurate models of pose, shape and appearance
of the human body. None of these approaches achieves a direct
estimation of the depth model of the observed scene. Instead,
intermediate steps with higher-level information are used, such
as the estimation of the landmark positions of facial features
(for faces), or 2D/3D body joints (for the human body). To
the best of our knowledge, currently there is no method for
estimating depth information from an RGB image of a hand.

Use of depth for 3D hand pose estimation: Most of the
recent works in the area [2], [29]–[37] assume the availability
of scene depth information, capitalizing on the advent of
inexpensive, high-quality depth sensors. Much more recently,
a new trend is currently forming [38]–[42] that tackles the
problem assuming only monocular RGB input. The perfor-
mance (estimation accuracy and speed) of the older, depth-
based approaches is better than that of the more recent RGB-
based ones. This is to be expected given the richer nature of
the depth map as input information.

Our contribution: An important goal of this work is to
close the gap between depth-based approaches and the newer
trend of works based on RGB input. Until today, the only

available reliable option for extracting depth information for
hands directly, is to resort to depth sensors. Although there
exist methods that deal with inferring depth from general
scenes [20], [21], initial experiments showed that those meth-
ods do not perform accurately on hands while they require
considerable resources. Specifically, our proposed network
recovers the depth of hands with almost half error, while it
requires one third of the network parameters compared to
the general-purpose methods. The proposed method estimates
hand depth information of comparable accuracy given only
regular color images. This constitutes a significant complexity
simplification and cost reduction of the sensing process. At
the same time, several robust, depth-based hand perception
methods become applicable to regular RGB input. In summary,
the major contributions of this work are:

• The first method that estimates directly depth information
from monocular color views of hands. This is achieved
with an accuracy that is comparable to the accuracy of a
low cost depth sensor.

• The HandRGBD dataset 1 of 20, 601 high resolution RGB
hand images that are aligned with their depth maps and
involve a variety of hand shapes as well as illumination
and background conditions.

III. HAND DEPTH ESTIMATION FROM RGB INPUT

At the core of the proposed approach, a deep neural network
undertakes the task of estimating the geometry of a hand ob-
served in a single RGB image. A stacked hourglass model [43]
is inspired from parts of the architecture in [25] and is used
as our main building block. The resulting network accepts
as input a regular RGB image and outputs the estimated
hand depth map. The output of the network is a map of
relative depths for all hand pixels of the input image. The
absolute depth of the hand is a separate problem [5]. We
tackle it through an extension of our method, that infers
the absolute depth by learning the intrinsics of the input
given only the bounding box of the hand (see Section IV-E).
Intermediate supervision is used in several intermediate levels
of the proposed architecture in a staged approach. To aid the
process of training and inference, hand segmentation masks
are also estimated in such an intermediate supervision step,
and used as guidance for the subsequent depth estimation.

A. Ground Truth Annotation

The training data are assumed to be pairs of aligned RGB
and depth hand images. The viewpoint of each image pair
is assumed to be identical, i.e., each RGB pixel essentially
corresponds to the pixel at the same position in the depth
map, as if the two streams were captured from the same
center of projection. This kind of data can be obtained
using common RGBD sensors like Microsoft Kinect2. Most
commercially available RGBD cameras have different sensors
for each modality, however the viewpoints are very close,
and the availability of depth data enables the alignment of
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the two streams. To achieve this, an accurate intrinsic and
extrinsic calibration of the two sensors is required. Given this,
a reprojection of the depth map to the RGB image yields the
correspondences between the two images.

Given this capturing process, the training data for a learning
approach is already at a usable state and no further manual
annotation is required. The only processing that is still required
is the segmentation of the RGB and depth channels into
foreground (hands) and background (non-hands), as well as
the normalization of the depth range into relative depths. To
facilitate this, it is assumed that the hand is the object closest to
the camera, thus, foreground/background segmentation is easy
to perform on the depth map. Specifically, the minimum value
Dmin in the depth map D(i, j) is estimated, corresponding to
the distance of the hands’ point that is closest to the camera.
The indices i and j run on the horizontal and vertical image
dimensions. All pixels with depth value within a predefined
threshold t to this minimum depth Dmin are considered as the
foreground H . The value H(i, j) of the boolean foreground
mask H at point (i, j) is defined as:

H(i, j) = D(i, j) < (Dmin + t). (1)

Working with depth maps in millimeters, it suffices to set
t = 300mm, a maximum estimation of the possible depth
difference within a hand. Since the RGB and depth images
correspond pixel-to-pixel, the resulting binary segmentation
H is valid for the RGB image, too.

Let us denote with D[H] the depth map D masked with
the foreground mask H . D[H] is used to compute the average
depth value D[H] of hand points. D[H] is then subtracted
from D and a fixed scaling is applied to the depths, bringing
the depth values in the range [−1, 1]. Specifically, the relative
depth map DT that is used for training is

DT (i, j) = c ·
(
D(i, j)−D[H]

)
, (2)

where c is a value that scales the depths in the range [−1, 1].
For all cases, it suffices to set c as the inverse of the maximum
depth difference of an observed hand. When working with
depth values in mm it suffices to use c = 1/200. Finally, the
background pixels are set to 1, the largest value in the target
range, that is essentially used to denote background areas.

B. Stacked Hourglass Architecture

The proposed network is based on the approach of stacked
hourglass modules [43], [44]. Intermediate supervision is also
applied to the output of each hourglass module, which is a
commonly adopted strategy [43]. The resulting architecture
is illustrated in Fig. 2. In the following description, the
intermediate parts of the network are called stages.

The main building block of the proposed architecture is
the hourglass network of [43] built using the residual block
of [44]2. Fig. 3 and 4 illustrate the residual block and the
network used. A hourglass module (see Fig. 4) accepts as input

2Implementation available online at https://github.com/1adrianb/
face-alignment
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Fig. 2. Stacked Hourglass Architecture: The proposed architecture with
the intermediate supervision types. The input is preprocessed by some
initialization layers (“Init”, light green) that include a convolutional layer and
two residual blocks (Fig. 3) and compute a feature map to be passed to the
first hourglass (see Fig. 4) module. Its output is passed to layers that apply
some additional convolution layers (“Link”, gray) before passing it to the next
hourglass module. The Link module also outputs a map to be intermediately
guided. Skip connections are used parallel to each hourglass module. The first
three outputs of the network target segmentation masks and the remaining
three target depth maps with the latter being the final output of the network.

b×f×N×N
C

b×f×N×N

C
Concatenation2D Convolution

2D Batch
normalization ReLU
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Fig. 3. Residual block: The building block of the proposed neural network
for hand depth estimation. The input is assumed to be a feature map of spatial
dimension N ×N . In the figure, the feature count is f . The batch size b is
also shown in the tensor dimensions. The output of the block is usually fed
to more than one layers, e.g., to serve a skip connection, as shown here.

a set of feature maps. The residual block of [44] proceeds
by applying three successive sets of convolution, batch nor-
malization and ReLU non-linearity operations, using also skip
connections, similar to the DenseNet architecture [45]. This
is shown in Fig. 3. After these operations, a down-sampling
is performed, halving the input dimension. Parallel to this
branch with halved spatial dimension, a skip connection runs
through another residual block. In total, four repeated residual
blocks and resolution halving are applied, and four long-skip
connections run in parallel, each at a different spatial resolu-
tion. After the last subsampling and application of a residual
block, the reverse process is followed, doubling the spatial
dimension by upsampling and applying new residual block
operations. After each upsampling, the long-skip connection
of the appropriate spatial dimension is added to the current
feature map. After four upsampling operations, the original
input spatial and feature dimension is again reached, forming
the complete hourglass module.

For the proposed network, we stack 6 such hourglass mod-
ules, having a total of 6 stages of intermediate supervision. A
convolution operation is applied to the input image to compute
a feature map of appropriate dimension to be the input of
the first hourglass module. The reverse process is followed

https://github.com/1adrianb/face-alignment
https://github.com/1adrianb/face-alignment
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Fig. 4. The hourglass building block that is used in the proposed network. Each input resolution shown in the figure is actually b × f × sr, where sr are
the corresponding spatial dimensions illustrated. Its main building block is the residual block, illustrated in detail in Fig. 3. The main idea is to successively
lower the spatial input resolution for a total of four input halving steps. After this, the reverse procedure is followed to reach again the input resolution.

at the end of the network, and at the end of each hourglass
module for intermediate supervision. Specifically, a single 1×1
convolution is applied, yielding a single-channel feature map.
Each such output is trained against the foreground mask in
the first stages, while the later stages are trained against the
depth target. We set equal effort for estimating the mask and
the depth, thus giving 3 stages for each such estimation.

C. Loss Function
Each stage has its own target output, and thus, its own loss.

The global loss function of the network is the sum of the
individual losses. For each stage, regardless of the type of
intermediate supervision, its loss is obtained by comparing
the two images, the predicted and the target image. We define
the loss of each stage as the Mean Square Error (MSE) of the
target and the output. The final loss function L is:

L(m, d, m̃, d̃) =

SD∑
k=1

(d̃k − d)2

||N ||
+

SM∑
l=1

(m̃l −m)2

||N ||
, (3)

where d and m are the target depth and mask, each having N
pixels, SD and SM are the total number of depth and mask
stages and d̃k, m̃l are the estimated depths and masks for the
kth and lth stage for k = 1 . . . SD and l = 1 . . . SM .

D. Data Augmentation
During training, data augmentation aims at enriching the

diversity of the training set and at increasing the generalization
capability of the trained network. In our case, the input is
regular RGB images, and common augmentation practices
apply. Specifically, we apply (a) random horizontal flip (so
that we don’t have to capture both hands from a subject)
(b) random rotation, (c) random crop and (d) random color
jittering (to capture the widest possible range of skin tones and
different illumination cases). The geometric transformations
are applied to both the RGB and the depth maps, ensuring
pixel-to-pixel correspondence. Finally, all data are resized to
fit the network’s input and output dimensions.

IV. EXPERIMENTAL EVALUATION

In some first experiments, we attempted to reconstruct the
depth of a hand based on general-purpose depth estimation
techniques such as the works of [20], [21]. Specifically, when
based on their pre-trained models, the above methods yield
an error E of 47.59mm and 35.24mm, respectively, on the
test set of HandRGBD dataset. We show that on the same
dataset, the proposed method reduces this error by almost 50%.
Another category of experiments on the HandRGBD dataset
assess the adopted design choices and define meta-parameters
of the proposed approach in an ablation study. We also evaluate
our approach on the publicly available Stereo Hand Tracking
(SHT) dataset [46]. Finally, we assess the potential of the
proposed method to support other methods that perform depth-
based 3D hand pose estimation.

A. Hand-related Datasets

Works related to hand appearance and shape modeling as
well as pose estimation, require datasets appropriately anno-
tated with ground truth for the purposes of objective, quantita-
tive comparison of competitive approaches, and also - when-
ever applicable - for training. Therefore, numerous datasets
have been proposed so far in the relevant literature.Input
modalities such as monocular RGB, stereo, multiview, and
depth are covered. Also, scenarios including egocentric view-
point, hand-object interaction, and hand-hand interaction are
available.

The training and evaluation tasks of the problem we are
addressing in this work call for a dataset that includes aligned
RGB and depth observations of hands. The RGB input should
be unaltered, since the goal is to apply our method to regular
color input. Some datasets [47], [48] warp the RGB image to
the depth map, introducing big black holes in the images that
defeat this goal. Another dataset [49] segments the hand in the
image and masks the background with a black color. Given
that one of our goals is also to learn this segmentation, the



TABLE I
DATASETS ON HUMAN HANDS. FOR THE PURPOSES OF THIS WORK,

ALIGNED PAIRS OF RGB AND DEPTH DATA ARE REQUIRED.

Dataset RGB Depth Alignment
Gomez [51] X - -
Simon [52] X - -
Bambach [53] X - -
Dreuw [54] X - -
Yuen [55] X - -
Tang [33] - X -
Sun [56] - X -
Yuan [57] - X -
Xu [58] - X -
Tompson [47] Warped X -
Tkatch [48] Warped X -
Rogez [59] X X -
Sridhar [32] X X -
Zhang [46] X X -
Kanhangad [49] No BG X X
Zimmermann [38] X X X
Tzionas [50] X X X

dataset becomes unusable. Two additional requirements are the
presence of multiple actors and close-up views of the depicted
hand(s), so that details on the variation of hand shapes across
humans and under articulation are adequately captured.

Table I presents the most relevant datasets to our work.
Columns list some of the requirements mentioned above
(availability of RGB and depth data and of their alignment).
Evidently, only the datasets by Zimmerman and Brox [38],
called “Rendered Handpose Dataset” (RHD) and Tzionas et
al. [50], called “Hands in Action” have aligned RGB and
depth data. Unfortunately, the RHD dataset [38] is synthetic,
and, although it has a large variation on hand sizes, shapes
and appearances, it is of rather low resolution (320 × 240)
and contains distant views of a hand. The Hands in Action
dataset [50] contains real world data, and the depth is captured
by a structured light sensor. The actor diversity is small and
the view is not closeup, in images of resolution 640× 480.
The HandRGBD Dataset: Despite the existence of several
hand datasets, none of them fully covers the requirements of
this work. Consequently, we resorted to creating HandRGBD,
our own dataset of aligned RGB and hand depth images.

As the capturing device, we employed a Kinect V2 [60]
because of its high quality color camera, and the Time of Flight
depth sensor. Among the available options, this provided the
best combination of image and depth resolution and quality.
The native SDK does not provide an alignment of the depth
data to the RGB image, only the opposite, resulting in black
holes in the RGB image. Therefore, we used the library
libfreenect2 [61]3 that supports this functionality, simultane-
ously scaling and aligning the depth on the color image.

HandRGBD consists of 20, 601 images along with their
depth maps. These come from 47 sequences, each consisting
of approximately 450 frames. In total, 17 subjects (13 male,
4 female) contributed to the dataset. The depicted hands are
in closeup view, in distances ranging from 40cm to 100cm

3Available online at https://github.com/OpenKinect/libfreenect2.

from the sensor. Some of the captured images contain two
hands that interact (strongly, in some cases). All subjects were
recorded more than once and in a variety of illumination
conditions. Special care was taken to capture the hands in front
of different background scenes, facilitating the generalization
of foreground/background segmentation. The subjects were
instructed to keep their hand(s) roughly in the center of the
camera field of view, but some images were also captured
with hands close to the image edges. The subjects were also
instructed to perform free hand motions, exploring as much
as possible the hand articulation space.
The SHT Dataset: Given that the SHT dataset by Zhang et
al. [46] is annotated with 3D hand poses, we employed it,
mainly for the quantitative evaluation of the proposed approach
on the task of supporting 3D hand pose estimation. Since this
dataset does not have aligned RGB and depth streams, we
manually mapped the depth map on the pixels of the RGB
images using the provided calibration.

B. Training Details

We implemented the proposed approach using the PyTorch
framework [62]. The Adam optimizer was used to train it for
100 epochs, with a learning rate value of 10−3, weight decay
of 10−5 and a learning rate scheduler with γ = 0.5 applied
every 30 epochs. For training, we employed an Nvidia GTX
1080 Ti GPU. On that machine, each epoch took about 825
seconds. For all the experiments, the input size to the network
was a 256× 256 RGB image, and the output a 64× 64 depth
map. For these resolutions, the inference time for a single
image ranges from 7 to 31ms, depending on the number of
stages (see also Table II).

We split HandRGBD into a training set of 19, 104 samples
and a test set of 1, 497 samples, from sequences that are
not included in the training set. Specifically, we left aside 3
sequences of our dataset for testing, with 1 female and 2 male
subjects. This choice was made because of the ratio between
the recorded sequences of female and male subjects. Moreover,
each of the three test sequences have backgrounds that appear
only in these three sequences. Following the same reasoning,
for the experiments on the SHT dataset, 11 out of 12 sequences
(16, 500 samples) were used for training and the remaining
sequence (1, 500 samples) was used for testing.

As already mentioned, data augmentation was used in order
to increase the generalization potential of the network. Each
training sample was randomly flipped horizontally with proba-
bility 0.5. Also, a random rotation in the range of [−90◦, 90◦]
was applied. For the random cropping, a bounding box of
size 0.8 of the original size was selected. Finally, a random
intensity value in the range of [−20, 20] for each color channel
was added for color jittering.

C. Evaluation Metrics

Depth estimation accuracy: For each hand pixel we consider
the absolute difference of ground truth and estimated depth.
The first error metric E (in mm) is the average of all these
differences for all actual hand pixels and all frames of a test set.

http://www.rovit.ua.es/dataset/mhpdataset/
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http://vision.soic.indiana.edu/projects/egohands/
http://www-i6.informatik.rwth-aachen.de/aslr/fingerspelling.php
http://cvrr.ucsd.edu/vivachallenge/index.php/hands/hand-tracking/
https://labicvl.github.io/hand.html
https://jimmysuen.github.io/
http://icvl.ee.ic.ac.uk/hands17/challenge/
http://hpes.bii.a-star.edu.sg/
http://cims.nyu.edu/%7Etompson/NYU_Hand_Pose_Dataset.htm
http://lgg.epfl.ch/publications/2016/HModel/index.php
http://pascal.inrialpes.fr/data2/grogez/UCI-EGO/UCI-EGO.tar.gz
http://handtracker.mpi-inf.mpg.de/projects/handtracker_iccv2013/dexter1.htm
https://sites.google.com/site/zhjw1988/
http://www4.comp.polyu.edu.hk/~csajaykr/Database/3Dhand/Hand3DPose.htm
https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html
http://files.is.tue.mpg.de/dtzionas/Hand-Object-Capture/
https://github.com/OpenKinect/libfreenect2


TABLE II
ABLATIVE STUDY FOR THE PROPOSED HAND DEPTH ESTIMATION.

Architecture Error E (mm) IoU Runtime
0 Mask, 1 Depth Stage 39.75 0.62 7.07ms
1 Mask, 2 Depth Stages 33.16 0.65 16.35ms
1 Mask, 3 Depth Stages 29.04 0.70 20.82ms
1 Mask, 4 Depth Stages 28.05 0.73 25.73ms
1 Mask, 5 Depth Stages 28.83 0.72 30.93ms
2 Mask, 4 Depth Stages 25.00 0.73 31.21ms
3 Mask, 3 Depth Stages 24.64 0.81 31.01ms
4 Mask, 2 Depth Stages 34.42 0.68 31.51ms

A second error metric is the percentage F (e) of hand pixels in
the test set for which the absolute difference between ground
truth and estimated depth is less that a threshold e.
Hand/background segmentation: The proposed method also
produces a segmentation of the hand regions from the back-
ground. To assess this, we compute the IoU (Intersection over
Union) criterion for this classification.

D. Ablative Study

We evaluate different architectural choices (Section III-B)
based on a subset of HandRGBD. Specifically, variants of the
proposed method were trained on 4, 500 images (subset of the
main, training dataset) and tested on 500 separate images (one
of the dataset’s test sequences).

An important hyper-parameter of the proposed network
is the number of intermediate supervision stages that target
the mask segmentation. Experimenting with different training
strategies for the proposed network, it became apparent that
the hand segmentation mask is an important cue for the task at
hand. In a preliminary experiment, the ground truth segmenta-
tion mask was provided as a fourth channel concatenated along
with the RGB image to the network. This experiment lowered
significantly the depth estimation error, indicating that the
segmentation mask is indeed useful. It is therefore important
to use this cue as an intermediate supervision target, since it
aids the task of the network.

In a network with a fixed number of hourglass modules,
some of the first hourglass module outputs target segmentation
masks and the rest target depths. We performed an experiment
to determine the optimal number of stages for each of the two
tasks, experimenting also with the total number of hourglass
modules. The results of these experiments are summarized in
Table II. The results of highest accuracy are highlighted with
bold font. From this information we can conclude that, in fact,
the segmentation cue is equally important to the depth map
itself. The best performing network with six stages was trained
with the first three stages targeted as segmentation mask and
the rest targeting depth.

E. Hand Depth Estimation Accuracy

Relative depth estimation accuracy: We explored the perfor-
mance of the best performing variant (line 7 in Table II) when
trained on the full training set of HandRGBD (Section IV-B).
The depth estimation error was E = 22.88mm and the esti-
mated IoU was equal to 0.84. When the same variant is trained
on the training set of SHT and tested on the corresponding test
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Fig. 5. The error metric F (e) for the depth accuracy estimation experiment
on the HandRGBD and SHT test sets.

set, we obtain E = 16.40mm and IoU= 0.88. Fig. 5 shows the
metric F (e) for both experiments. Finally, when this variant
is trained in the union of the two training sets and tested in
the union of the test sets, we obtain a depth estimation error
E of 19.14mm and IoU of 0.87.

Absolute depth estimation accuracy: A slight modification
of the proposed network enables the estimation of an absolute
depth map of a hand. The last feature vector of the proposed
architecture is used to estimate (a) the relative depth map using
a 1 × 1 convolution as already described, and (b) a single
absolute depth value, using as additional input the bounding
box of the observed hand within the input frame. Specifically,
three stages of convolution and max-pooling are applied, and
then two fully connected layers are used to estimate a single
value, the median depth, using the quantity D[H] of Eq.2 as
ground truth. In total, the additional parameters required for
this branch are less than 5 × 105, a small percentage of the
3.55 × 107 parameters for the proposed setup using 3 mask
and 3 depth stages. Using this modification to the proposed
architecture, we achieve an average absolute depth error E of
28.27mm on the test set of SHT with IoU equal to 0.86.

F. Supporting 3D Hand Pose Estimation

We assessed the quality of the depth estimated by the
proposed method by evaluating the extend at which it can
support depth-based 3D hand pose estimation. To do so, we
employed the test set part of the SHT dataset on which we
applied the Pose-REN 3D hand pose estimation method of
Chen et al. [63]. We chose this method because it is a recently
proposed approach that achieves close to state-of-the-art hand
pose estimation and uses depth information. We applied Pose-
REN in two different experimental conditions: C1, on the
actual depth information of the testset as this was measured by
the Intel Real Sense F200 sensor, and C2, on the depth that has
been estimated by our method. By doing so, we can assess the
potential of our method to provide depth maps that are usable
by higher-level hand perception methods. We quantified the 3D
hand pose estimation error by measuring the average distance
of the estimated hand joints from their ground truth locations.
We did that for the case of (a) relative depth estimation and
(b) absolute depth estimation. For (a), the estimated hand is



Fig. 6. Indicative depth estimation results on the 3 test sequences of HandRGBD. For each sequence (4 columns per sequence) we show the RGB input (1st
column), ground truth depth (2nd column), estimated depth (3rd column) and difference between ground truth and estimated depth (4th column).

TABLE III
3D HAND POSE ESTIMATION ERROR (IN mm) OF Pose-REN [63] ON THE

SHT DATASET FOR RELATIVE AND ABSOLUTE DEPTHS. C1: GROUND
TRUTH DEPTHS, C2: DEPTHS ESTIMATED BY OUR METHOD.

Relative depth Absolute depth
C1 C2 C1 C2

3D hand
pose error 47.87 49.70 51.67 58.26

assumed to be located at its ground truth position. For (b), the
accuracy of the estimated 3D hand pose is affected by errors
in the estimation of the absolute depth.

Table III summarizes the obtained results. As expected, 3D
hand pose estimation is more accurate in the case of relative
depths compared to the case of absolute depths. However, the
discrepancy between the conditions C1 (ground truth depth)
and C2 (depth estimated by our method) is smaller. Thus,
Pose-REN is only 2 − 7mm more accurate when applied to
real depth data, compared to when it is applied to the depth
data estimated by our method. This is a strong indication that
the proposed method can support 3D hand pose estimation.

G. Qualitative Results

Fig. 6 shows representative depth estimation results on three
sequences of the test set of HandRGBD. For each sequence,
we show the input RGB image, the ground truth depth map,
the estimated one, and their color-coded difference. It can be
verified that the depth maps estimated by our method are very
close to the ones measured by the depth sensor.

More experimental results, including representative depth
estimation results on the SHT dataset together with their
corresponding hand pose estimations, are available in the
supplementary material4 accompanying this paper.

V. CONCLUSION

We presented the first method that has been specifically
designed to estimate the depth map of a human hand based

4https://youtu.be/q0sw8dZ3LlU

on a single RGB frame. The proposed method consists of
a specially designed convolutional neural network that has
been trained and evaluated on HandRGBD, a new dataset of
aligned RGB and depth hand images. Extensive experiments
evaluated design choices of the proposed method, verified
its depth estimation accuracy and provided evidence on the
potential of the method to support existing depth-based hand
pose estimation methods. The obtained results demonstrate
that for the specific context of hands observation, the pro-
posed method constitutes an important step towards turning
a conventional RGB camera to an RGBD one. Furthermore,
the experimental evaluation of the proposed approach shows
that the task-specific intermediate supervision using the hand
mask visual cue is more beneficial for the training process than
directly using the target depth map for intermediate training.
Future plans include the refinement of the results using higher
accuracy data acquired by a laser-based depth sensor, as well
as testing our method for other depth reconstruction tasks.
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