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Abstract—In this paper, we study the effect of label
noise on deep learning models for paraphrase identifi-
cation. Curriculum learning, a learning paradigm that
learns easy samples first and then gradually proceeds
with hard ones, has shown excellent results in dealing
with label noise for deep neural networks (DNNs).
However, most previous studies focus on image clas-
sification, and design their curriculum only based on
training losses of samples, ignoring domain-specific
knowledge. In this paper, we propose a predefined
curriculum learning based framework, incorporating
both training losses of samples and domain-specific
knowledge, to train robust deep models for paraphrase
identification (PI) with label noise. Through extensive
experiments on two popular PI benchmarks, we show
that 1)the performance of the deep paraphrase identi-
fication model can drop sharply at the case of severe
label noise; 2)our approach can significantly improve
generalization performance of deep networks trained
on corrupted data especially at extremely high levels
of label noise; 3)our method can outperform several
state-of-the-art label corruption robust methods.

Index Terms—paraphrase identification, label noise,
curriculum learning, deep learning

I. Introduction
Paraphrase Identification (PI), detecting whether two

sentences convey the same meaning, has been widely
applied in community-based question answering [1] and
conversational assistant systems [2]. Nowadays, a large
number of end-to-end deep neural networks (DNNs) for PI
have been proposed and achieved promising results [3–7].
However, the presence of label noise can seriously impair
the performance of DNNs, which has been extensively
studied in image classification [8–14], but few works exist
in the field of PI. While label noise widely exists in
the existing datasets of paraphrase identification, due to
automatic labeling [15, 16] and non-expert labeling [17].
To fill this gap, we study the effect of label noise on deep
learning models for PI, and how to advance them at the
case of label noise.

Few methods have been proposed to leverage curricu-
lum learning [18] to train robust deep models, which are
inspired by studies from Arpit et al. [19] that DNNs tend
to learn easy samples first, and then gradually adat to hard

ones. But most of them come from the image domain. For
example, Jiang el al. [9] proposed a data-driven curriculum
(called MentorNet) for image classification, which needs
an additional network and some clean labeled samples to
output a dynamic curriculum. Zhu et al. [20] proposed
a self-paced curriculum framework for face recognition.
Existing studies have shown that this direction is promis-
ing. However, they are mainly based on losses of training
samples, ignoring domain-specific knowledge.„

We argue that an ideal curriculum needs to incorporate
domain-specific prior knowledge. To this end, this paper
proposes a predefined curriculum learning based frame-
work, combining both training losses and prior knowledge,
to train robust deep models for PI with label noise,
which consists of two stages: curriculum design and model
training.

In the first stage (curriculum design), we employ a
hybrid measurement, composed of a linear weighting of
two practical measures, to automatically measure the noise
probability (complexity) for each paraphrase pair. Then,
we sort all training samples in ascending order according to
the final hybrid measurement to generate our curriculum.

In the second stage (model training), we divide all
training samples equally into several groups, according to
the above generated curriculum. As such, we firstly utilize
simple and low-level noisy instances from the preceding
groups to train a basic model, and then gradually augment
hard and high-level noisy samples. In this way, deep
models can expectantly be affected by noisy data as late as
possible, and meanwhile take full advantage of clean data.

To verify the effectiveness of our approach, extensive
experiments are conducted on two popular English and
Chinese PI benchmarks, QQP [6] and LCQWC [21]. Ex-
perimental results show that our method can significant-
ly improve generalization performance of deep networks
trained with corrupted labels, and can outperform other
state-of-the-art methods.

The main contributions of this paper are as follows:
(1) To the best of our knowledge, we are the first to

study the effect of label noise on deep learning models for
paraphrase identification.
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(2) We propose a newly curriculum learning based
framework to train robust deep models for paraphrase
identification with label noise. And we develop two mea-
sures to define the noise probability (complexity) of para-
phrase sentence pairs, and find that the linear weighted
combination of them can achieve better results.

(3) We conduct extensive experiments on both Chinse
and English PI benchmarks to verify the effectiveness and
robustness of our method.

II. Related Work
A. Paraphrase Identification

The goal of paraphrase identification(PI) is to judge
whether two sentences express the same meaning. Nowa-
days, a large number of deep PI models have been pro-
posed and achieved promising results [3–7]. However, none
of them were designed explicitly to tackle the issue of label
noise. To make up for this deficiency, this paper explores
how to improve the state-of-the-art deep models for PI in
the setting of corrupted labels.

B. Curriculum Learning
Curriculum learning, inspired by the learning principle

from humans and amimals, is a learning paradigm that
trains easy samples first, and then gradually proceeds with
hard ones, proposed by Bengio et al. [18]. After that,
Kumar et al. [22] presented a dynamic curriculum called
self-paced learning, which prefers samples of small loss.
Following were a series of improved versions of self-paced
learning [23–25]. Moreover, some previous studies in the
literature showed the usefulness of curriculum learning in
dealing with noisy samples [26–28]. Unlike these works,
our approach targets paraphrase identification, and lever-
ages a static predefined curriculum, which combines both
training losses of instances and domain-specific knowledge.

C. Learning from noisy labels
Learning from noisy labels is a long-lasting topic in the

machine learning community, and can date back to three
decades ago [10]. Here, we only review approches related
to our work, aiming to address the issue of label noise for
DNNs.

These label noise robust methods can roughly be divided
into the following three categories.

i) Developing robust loss functions. The goal of these
methods is to formulate noise-robust loss functions for
DNNs. For example, MAE (Mean Absolute Error) [29] is
proposed to resist label noise for DNNs, but can increase
difficulty in training. To address this issue, Zhang et al.
[30] presented the GCE (Generalized Cross Entropy) loss
function, an extention of MAE and CCE (Categorical
Cross Entropy). The advantage of these methods is their
generality and non-invasive to the existing architectures
and algorithms.

ii) Modifying the outputs of base models. This line of
research mainly focus on estimating the noise transition

matrix. For instance, Sukhbaatar et al. [11] estimated the
noise transiton matrix by introducing an extra noise layer
on top of the base network, to match the label noise
distribution. However, the noise transition matrix is non-
trival to learn. To address this issue, Goldberger et al. [12]
put on an additional softmax layer with the base model.
Hendrycks et al. [14] made use of a small fraction of trusted
data to estimate the noise matrix. Jindal et al. [31] applied
appropriate initialization to the noise layer, introduced on
top of the target model, and achieved impressive results
for text classification. Although many attempts have been
conducted, it is still not easy to accurately estimate the
noise transition matrix.

iii) Using selected samples. To get rid of estimation of
the noise transition matrix, another branch of methods
focus on training on selected samples [9, 20, 32, 33]. The
core problem of these methods is the identification of noisy
samples, of which the representative ones are MentorNet
[9], SPDL [20], Co-teaching [33]. The MentorNet pre-
trains an extra noise classifier with some clean annotated
data, and provides a learned curriculum for the target
network. Another version of the MentorNet leverages the
self-paced curriculum, at the case of no access to clean
data. As an extention, the SPDL [20] pre-trains the target
network on some clean data before using the self-paced
curriculum framework. The Co-teaching [33] trains two
networks simutaneously, and updates models only utilizing
a small fraction of small-loss samples provided by the peer
network.

However, most of the above methods target image clas-
sification. In this paper, we present a curriculum learning
based framework to train robust DNNs for paraphrase
identification with corrupted labels. Our work is very
similar to the MentorNet [9] and SPDL [20], but requires
no clean data. Moreover, to encode richer information to
recognize noisy samples, our method predefines a static
curriculum, which can not only leverage training loss
information, but also utilize prior knowledge excavated
from the target task.

III. Method

A. Label Noise
Paraphrase identification is commonly tackled as a su-

pervised binary classification problem. Most previous s-
tudies focus on learning deep models with good generaliza-
tion performance on the large-scale clean labeled training
dataset D = {(X1, y1), (X2, y2), ..., (Xn, yn)}, where Xi is
the ith paraphrase sentence pair, and yi ∈ {0, 1} is the
golden label. However, such large-scale refined datasets are
usually expensive and time-consuming to collect.

Thus, this paper instead focuses on training robust
deep models for papraphrase identification with corrupted
labels, generated artificially by injecting noise into clean
data. Here, we take class-conditioned uniform label flip
noise. Specifically, given noise rate p (0<p<1, also known



as noise level), we can firstly produce a corruption transi-
tion matrix:

C = pIK + (1− p)
(K − 1)(IIK − IK), (1)

where K denotes the category number, IK represents the
identity matrix, and IIK is the matrix with all ones. Ci,j =
p{ỹ = j|y = i} means the probability of a sample from
category i is wrongly labeled as category j, where ỹ is
noisy label and y is clean label. After flipping the labels of
training samples drawn according to the transition matrix
C, we can get a noisy training dataset with a pre-given
noise rate p. The validation set uses the same method of
adding noise. We do not alter the test dataset.
B. Label Noise Robust Curriculum

It is easy to think of utilizing training losses to measure
the noise probability (complexity) of a sample. As such,
we firstly train a deep model on the corrupted training
dataset for several epochs, and record the training losses
of each sample in each epoch. The key problem is how
to use these losses to generate some appropriate metric
so as to distinct noisy samples significantly. Studies by
Arpit et al. show that DNNs fit fastly with clean samples
and slowly with noisy samples. Based on these findings,
we design an easy and effective metric, called loss based
noise metric(NM loss), to compute the noise probability
(complexity) of a sample. We define NM loss as the mean
value of a sequence of losses for a training sample in the
first k epochs as follows:

NM loss(Xi) = 1
k

k∑
j=1

lossj(Xi), (2)

where Xi = (si1, si2), sij represents the jth sentence in
the sample Xi, j ∈ {1, 2} and k is a parameter.

In addition to the above metric based on training
losses, we further develop another metric dedicated to
the paraphrase identification task. This metric steps from
a common phenomenon: paraphrase pairs with small
literal similarity tends to be hard samples, and non-
paraphrase pairs with large literal similarity tends
to be hard samples, and vice versa. We implement
this idea with Jaccard similarity coefficient 1 between
two sentences. In this way, similarity based noise metric
(NM sim) of a given sample Xi is defined as follows:

NM sim(Xi) =
{

1− Jac(si1, si2), Xi is paraphrase,

Jac(si1, si2), Xi is non− paraphrase,
(3)

where Jac is the abbreviation of Jaccard.
Based on the above two measures, we get the final

noise metric for a given sample Xi as follows:

NM(Xi) = λNM loss(Xi) + (1− λ)NM sim(Xi),
(4)

1 https://en.wikipedia.org/wiki/Jaccard index

where λ is a tradeoff parameter.

C. Label Noise Robust Curriculum Framework to Learn
Deep Models

Algorithm 1 Predefined curriculum learning for deep
paraphrase identification
Input: Corrupted training dataset Dt; Corrupted Valida-

tion dataset Dv; Maximum epochs T ; Learning rate α;
Mini-batch size H; A deep paraphrase identification
model f(θ); tradeoff parameter λ; Sample group num-
ber Ng; Epoch number k to compue loss-based noise
metric.

Output: Optimal parameter θ∗ for Dt.
1: Train the classifier on Dt to get and store training

losses of each sample in each epoch.
2: Calculate the noise probability for each sample by

metrics introduced in (4).
3: Sort training samples according to noise probability in

ascending order to get the sorted dataset D̃t.
4: Initialize the network f(θ).
5: unit num← size(D̃t)/Ng

6: for j = 1→ Ng do
7: sub dataset = D̃t[0 : unit num ∗ j]
8: for t = 1→ T do
9: Fetch a mini-batch {(xi, yi)}H

1 from sub dataset
randomly.

10: Update the network f(θ) with SGD.
11: end for
12: Evaluate f(θ) on Dv.
13: end for
14: return the best model f(θ∗) evaluated on Dv.

Our proposed predefined curriculum learning framework
is presented in Algorithm 1. First of all, we prepare the
curriculum for the model training stage. To get the loss-
based metric, we train a deep classifier network f(θ) on
the corrupted dataset Dt for T epochs, and get the loss
sequence of each sample. Similarity-based metric is gener-
ated during the data preparation phase. Applying Formula
(4), we can get the final noise metric for each sample.
Next, based on the final noise metric of each sample, we
sort Dt in ascending order to get a sorted dataset D̃t. For
D̃t, we divide it into Ng groups equally. Our method is
based on the curriculum learning framework. That is to
say, we retrain the deep classifier network f(θ) by feeding
simple and low-level noisy samples first, and gradually
adding hard and high-level noisy samples. In this way, our
proposed framework can not only get the benefits from
clean samples, but also effectively avoid the damage to
the generalization performance caused by noisy samples.

D. Classifier
Note that our approach is a general framework to ad-

dress the issue of label noise for paraphrase identification



(PI), which can adapt to any implementation of deep text
matching models. In this paper, to tradeoff the balance
between efficiency and effectiveness, we use RE2 [5] as
our base model, as RE2 can achieve promising performace
comparing to the state-of-the-art with remarkable efficien-
cy for text matching tasks.

The overall architecture of RE2 consists of five layers:
the embedding layer, the alignment layer, the fusion layer,
the pooling layer and the prediction layer. To save space,
we only briefly introduce them here. We introduce readers
to see more details in [5].

Embedding Layer. For two sentences s1 and s2,
where s1 = (s1

1, s
1
2, ..., s

1
l1

), s2 = (s2
1, s

2
2, ..., s

2
l2

) with l1 and
l2 tokens respectively, the goal of the embedding layer is to
transform tokens in each sentence into fixed length word
embeddings in order to get better representations.

Alignment Layer. The purpose of this layer is to
compute the aligned representations by the attention
mechanism:

eij = F (s1
i )TF (s2

j ), (5)

where F (·) is a single-layer feed-forward network. After
calculating the similarity score eij between s1

i and s2
j , the

output of this layer is as follows:

a1
i =

l2∑
j=1

exp(eij)∑l2
k=1 eik

s2
j ,

a2
j =

l1∑
i=1

exp(eij)∑l1
k=1 ekj

s1
i ,

(6)

Fusion Layer. To better get local interactive informa-
tion between two sentences, RE2 provides three perspec-
tives in the fusion layer, and takes the concatenation of
their results as the final output of this layer.

f1,1
i = G1([s1

i ; a1
i ]),

f1,2
i = G2([s1

i ; s1
i − a1

i ]),
f1,3

i = G3([s1
i ; s1

i ◦ a1
i ]),

f1
i = G([f1,1

i ; f1,2
i ; f1,3

i ])

(7)

where G1, G2, G3 and G are one-layer feed-forward net-
works with independent parameters, [; ] denotes the con-
catenation operation, and ◦ represents element-wise mul-
tiplication.

Pooling Layer. Through the fusion layer, every token
in each sequence corresponds to a rich contextual repre-
sentation. The goal of the pooling layer is to covert each
sequence into a fixed-length vector v1 (or v2) using pooling
operations, such as max pooling.

Prediction Layer. Like most previous works, the
prediction layer takes two vector represententions v1 and
v2 from the pooling layer as inputs, and outputs the
prediction probability:

ŷ = H([v1; v2; |v1 − v2|; v1 ◦ v2]), (8)

where H is a multi-layer perceptron with an additional
softmax layer.

What’s mentioned above is only a simple version of
RE2, where the alignment layer and the fusion layer
together can be viewed as a block. Moreover, to produce
richer features, RE2 stacks several blocks with the help of
residual connections. In detail, the input of the n-th block
b(n)(n ≥ 2) is the concatenation of the output of the first
block b(1) (the output of the embedding layer) and the
summation of the outputs from the previous two blocks:

b(n) = [b(1); o(n−1) + o(n−2)], (9)

In this setting, the input of the pooling layer comes from
the output of the last block.

IV. Experiment

In this section, to empirically demonstrate the effec-
tiveness of our method, on two popular datasets from
different languages (Chinese and English), we evaluate the
performance of our proposed framework and compare our
results with other state-of-the-art methods.

A. Datasets

Chinese paraphrase dataset. LCQMC [21] is a
newly public large-scale Chinese paraphrase dataset. It
has been already splited into three parts: a training set
containing 238,766 instances, a development set with 8,802
instances, and a test set with 12,500 instances. We find
that there are some completely duplicate instances in the
training set, and even some instances with opposite labels
while sharing the same sentence pair. In order to obtain
a relatively clean training set, we remove the instances
with opposite labels, and keep only one copy for those
completely duplicate instances. In the end, we get 238,055
training instances. The Jaccard similarity between two
sentences is calculated with Chinese phrases, segmented
by jieba2, a common Chinese text segmentation tool.

English paraphrase dataset. QQP [6] is a large-scale
English paraphrase dataset and also consists of various
question pairs. It contains 404,279 question pairs with
binary labels to tell whether they are duplicate or not.
We randomly split it into three parts: a training set with
384,279 instances, a validation set with 10,000 instances
and a test set with 10,000 instances. Moreover, words are
lowercased and tokenized with the nltk toolkit [34] before
calculating sentence similarity.

Noise dataset generation. For each task, we con-
struct noisy datasets by switching the labels of randomly
selected clean training data and validating data with a
noise rate parameter, ranging in [0.1, 0.2, 0.3, 0.4].

2 https://github.com/fxsjy/jieba



B. Baselines
In addition to the base deep model (Standard) trained

directly on noisy datasets, we compare our method with
some other state-of-the-art baselines. Note that most of
them are tailored for image classification, hence we reim-
plement them on top of our base model, and choose the
appropriate hyperparameters on the validation set.

1) Standard: A simple and effective deep text matching
model, taken as our base deep model, proposed by Yange
et al. [5].

2) Co-teaching: A method proposed by Han et al.
[33], which trains two networks simutaneously and updates
models using only some fraction of small-loss training
instances from the peer network.

3) Forward: A classic label noise robust approach [13]
by estimating the noise transition matrix. Here we utilize
the true noise transition matrix known in advance to
provide a stronger baseline.

4) Tq: A label noise robust function, proposed by Zhang
et al. [30], as an extention of MAE (Mean Absolute Error)
and CCE (Categorical Cross Function) loss functions.

5) NMwRegu01: A newly proposed method [31] by
introducing a noise layer on top of the target model and
applying appropriate initialization methods, to achieve
impressive results for text classification. We apply the
optimal initialization strategy following their work.

6) Self-paced: A curriculum learning based method
with a dynamic curriculum [25], provided only according
to training losses of each sample.

C. Implementation Details
Note that the goal of this work is to advance the per-

formance of the deep base model at the case of corrupted
labels. To this end and for a fair comparison, the same
base deep model RE2 3 and hyperparameters are utilized
for all compared approaches.

All methods are implemented with PyTorch and trained
on Tesla K80 GPUs. The parameter settings and imple-
mentation details are listed as follows. We train all models
for 10 epochs. In all experiments, we take He initialization
[35] to initialize model parameters and normalize them
by weight normalization [36]. In order to improve the
base model’s performance, we also initialize the word
embedding layer with the pretrained word embeddings
and fix them during training. For the Chinese corpus, we
use the publicly available word2vec Chinese word vectors
with 300 dimensions trained on Sogou news [37]. For the
English corpus, we utilize the GloVe embeddings [38] with
300 dimensions. We take GeLU as our activation function.
The batch size is 100. The max sequence length is 64. For
the base model RE2, we set the hidden size to 150 and
the kernel size to 3, and apply dropout with a probability
of 0.2 before every convolutional layer and fully-connected
layer. The numbers of blocks and convolutional encoders

3 https://github.com/alibaba-edu/simple-effective-text-matching

are set to 1 and 2 respectively for efficient training. We
train all models using the Adam optimizer with the default
parameters β1 and β2 to be 0.9 and 0.999 respectively
and minimize the same cross entropy loss. The initial
learning rate is set to 0.001. We apply gradient clipping
of 10.0. Accurancy is used as the evaluation metric for all
experiments.

D. Results and Discussion
In this section, we compare our framework with oth-

er state-of-the-art methods on two popular paraphrase
identification datasets. Table 1 reports the testing clas-
sificattion accurancy on both datasets in the presence of
label noise artificially generated at random. The results
from Standard method show that the performance of the
deep paraphrase identification model can drop sharply
at the case of severe label noise. For example, when the
noise level is 40%, the accuracy of the base model drops
11.89% and 7.98% on QQP and LCQMC respectively,
compared to the results on clean data. It can also be
observed that our method outperforms significantly the
Standard method on two different language corpus at all
level of label noise, which shows the effectiveness and good
generalization of our method. Moreover, in most cases,
our approach performs better than other state-of-the-art
methods. Especially the advantage over the Self-paced
method demonstrates the usefulness of incorporating prior
knowledge from the target task into curriculum learning
process. More interestingly, we also observe an improve-
ment of 0.6% and 2.53% on QQP and LCQMC respectively
over the baselines with clean labels, perhaps due to label
noise inherent in the datasets.

Furthermore, to demonstate the robustness of our
method, we also conduct various experiments to verify: 1)
the effect of different data size; 2) the effect of different
noise metric balance factor λ; 3) the effect of different
group number Ng; and 4) the effect of the different first k
epoch.

1) Effect of Different Data Size. To verify the general-
ization ability of label noise robust methods on datasets
with different sizes, we conduct experiments by varying the
training data size of QQP. Specifically, we randomly select
10,000, 20,000, 50,000 and 100,000 instances as training
set respectively, and retain the original validation and test
set. We apply the same strategy to inject label noise. The
results are shown in Table 2. As expected, on different
size of datasets, our method outperforms significantly the
Standard baseline, and performs better than other state-
of-the-art methods.

Due to the limit of space, we only investigate the
last three factors on QQP dataset with 10,000 training
instances and 10% random noise.

2) Effect of Different Noise Metric Balance Factor
Fig. 1 shows the effect of different noise metric balance

factor on classification performance. We vary the noise
metric balance factor on x-axis by fixing the group number



Table1: Test performance for entire datasets QQP and LCQMC
Database QQP LCQMChhhhhhhhhhhMethod

Noise Rate (%) 0 10 20 30 40 0 10 20 30 40

Standard [5] 82.87 81.38 80.94 76.31 70.98 81.45 79.74 80.11 76.58 73.47
Tq [30] \ 79.78 78.62 76.18 74.96 \ 78.62 77.30 73.74 75.13
NMwRegu01 [31] 79.45 82.64 81.01 76.02 71.93 82.14 79.29 79.84 73.16 72.49
Forward [13] \ 81.66 80.22 77.47 71.54 \ 81.15 80.82 76.91 74.34
Co-teaching [33] \ 81.56 78.37 75.74 71.22 \ 81.11 79.98 78.18 75.86
Self-paced [25] 81.45 82.01 80.23 77.70 71.99 82.99 82.14 82.28 78.44 76.71
Ours 83.47 82.69 81.55 78.77 74.99 83.98 82.75 82.91 78.78 76.26

Table2: Effect of data size on label noise classification performance for QQP
Database QQP 10000 QQP 20000hhhhhhhhhhhMethod

Noise Rate (%) 0 10 20 30 40 0 10 20 30 40

Standard [5] 73.25 72.67 71.04 65.72 61.20 75.23 73.53 72.39 69.24 62.14
Tq [30] \ 72.07 70.33 66.93 62.30 \ 73.19 71.27 69.67 62.49
NMwRegu01 [31] 71.58 72.18 71.30 64.95 62.19 74.56 73.14 71.78 69.32 62.24
Forward [13] \ 71.73 70.81 65.55 61.66 \ 73.08 72.55 70.24 64.78
Co-teaching [33] \ 71.80 68.35 61.13 58.73 \ 73.51 72.21 68.36 62.44
Self-paced [25] 72.10 71.01 69.91 65.33 60.90 74.96 74.43 71.28 69.98 64.29
Ours 73.91 73.92 71.71 68.61 65.88 76.85 74.14 72.91 70.63 67.65

Database QQP 50000 QQP 100000hhhhhhhhhhhMethod
Noise Rate (%) 0 10 20 30 40 0 10 20 30 40

Standard [5] 77.52 76.16 74.43 72.18 64.99 78.68 77.91 76.53 74.72 69.78
Tq [30] \ 76.37 74.72 70.99 67.83 \ 77.66 76.79 73.32 70.71
NMwRegu01 [31] 74.47 75.50 75.54 70.30 64.78 74.91 77.72 76.73 73.96 68.15
Forward [13] \ 76.24 74.81 72.33 66.69 \ 78.11 77.15 74.60 70.59
Co-teaching [33] \ 75.07 73.71 72.22 62.54 \ 77.82 74.20 72.07 69.02
Self-paced [25] 77.46 76.08 74.49 72.57 64.56 79.09 78.11 77.11 73.71 68.31
Ours 78.82 78.52 76.69 72.62 70.41 80.47 78.46 77.18 75.45 71.37

Fig. 1: Effect of noise metric balance factor λ with k=6
and Ng = 3.

Ng to 3 and the epoch number k to 6. In Fig. 1, we find
the optimal value of the balance factor λ is 0.8, between
0.0 and 1.0, which demonstrats the effectiveness of our
motivation that the combination of the two proposed noise
metrics can achieve better results.

3) Effect of Different Group Number
We also observe the effect of different group number

on classification performance. In this setting, we vary the

Fig. 2: Effect of different group number Ng with k=6 and
λ = 0.8.

group number on x-axis by fixing the noise metric balance
factor λ to 0.8 and the epoch number k to 6. In Fig. 2,
we can find that the optimal value of Ng is 3. Note that
it will degenerate to the Standard baseline when Ng is set
to 1. Meanwhile, raising Ng would increase computational
cost. Hence, we make a tradeoff and set Ng to 3 for



all experiments, the suitability of which has also been
demonstrated by empirical results here.

4) Effect of Different First k Epoch

Fig. 3: Effect of different first k epoch with Ng = 3 and
λ = 0.8.

We further investigate the effect of different first k
epoch. In Fig. 3, we plot the classification performance
against epoch k on x-axis by fixing group number Ng to 3
and noise metric balance factor λ to 0.8. As shown in Fig.
3, the optimal value of k is around 6. And a small k (2)
and an overly large k (10) often lead to poor performance.
A probable explanation is that when k is small, the model
training is not enough to significantly distinguish between
clean and noisy samples; and when k becomes large, the
model starts to remember noisy samples, as a result, the
losses of noisy samples drop sharply, and meanwhile the
losses of clean samples can be turbulent. Hence, we set k
to 6 for all of our experiments, as it usually achieves better
results on the validatation set.

Conclusions and Future Work
In this paper, we study the effect of label noise on deep

learning models for paraphrase identification, and propose
a robust curriculum learning based framework to advance
the performance of the deep base model at the case of
corrupted labels. We show that the performance of the
deep paraphrase identication model can drop sharply at
the case of severe label noise. Extensive experiments on
two public English and Chinese paraphrase identification
benchmarks show that our approach can significantly im-
prove generalization performance of deep networks trained
on corrupted data especially at extremely high levels of
label noise, and can meanwhile outperform several state-
of-the-art label corruption robust methods.

In the future, we will extend our method to more chal-
lenging real-world noisy paraphrase identification dataset-
s, such as those datasets collected by automatic paraphrase
generation or predicted by existing classifiers. Our method

may also adapt to weakly-supervised domain adaptation
for paraphrase identification with label noise present in
the source domain.
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