A Hybrid 3DVar-EnKF Data Assimilation Approach
Based on Multilayer Perceptron
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Abstract—The quality and accuracy of Numerical Weather
Prediction (NWP) is based on its initial conditions (ICs),
boundary conditions and forecast models. Data assimilation
(DA) is a crucial procedure to optimally estimate the actual
atmospheric state (known as the analysis field) as ICs for NWP
by integrating available information, including the observation
and the background field. Instead of only focusing on the speed-
up for DA in virtue of the customized neural networks, this pa-
per exploratively introduces the spatial-temporal peculiarities
to construct a new hybrid data assimilation approach based
on multilayer perceptron (MLP); and, its effectiveness and
validity are verified in two classical nonlinear dynamic models.
The results of experiments demonstrate that the Cache-MLP
generally produces similar or smaller root mean square errors
(RMSE) with much less time consuming, compared to the con-
ventional 3D-Var and EnKF DA methods, and noticeably, the
Cache-MLP has a more robust representation of turning points
in the trajectories of the state variables. The final Backtracked-
MLP learns a propriate weight matrix to couple previous
two traditional DA methods and increases the accuracy by
10.32% in the Lorenz-63 system while 14.03% in the Lorenz-96
system, in comparison with the empirical hybrid DA method.
To some extent, this method could be a reference to further
researches to optimize the quality of the analysis field, in the
meantime, saving significant computing time and resources by
deep learning.

Index Terms—Data Assimilation, MLP, deep learning, three-
dimensional variational data assimilation (3D-Var), ensemble
Kalman filter (EnKF)

I. Introduction

Numerical Weather Prediction (NWP) was defined
as an initial/boundary value problem by Vihelm
Bjerknes(1904)[1]. The future state of the atmosphere is
determined by its detailed initial state and boundary con-
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ditions, together with forecast models. Data assimilation
(DA) could be described as a process to integrate all
the available sources the observation and the previous
forecast(a.k.a. the background field or first guess), to
obtain the “analysis field”, which is hoped to be the
best estimate of the probability density for the actual
atmospheric state. Namely, the pursuit of DA is to produce
the most accurate initial conditions (ICs) for NWP.
Based on Bayes’ Theorem|[2], two mainstream meth-
ods have flourished in the past three decades. One is
variational DA (Var), another is ensemble DA, which is
based upon the ensemble Kalman filter (EnKF). Basically,
to deal with uncertainty from diverse information, these
methods are guided by a same strategy, using fresh
observations to amend the first guess at the specified
grid-point[3], namely, combining the background fields
and observations by minimizing a cost function that is
a summation of two aspects: one part that penalizes the
distance to the background mean and another penalizes
the distance to the observations. However, the specific
implementation varies from each other. First of all, Var
assimilates straightway a wide range of observations by
giving a static background-error covariance matrix (B),
which is prescribed by once in accordance with climato-
logical data. Hence, the static B is incapable to represent
properly the true spatio-temporal error statistics. In terms
of time, Var is divided into 3D-Var[2] and 4D-Var[4],
the former utilizes single moment data, while the latter
has data from a time window of a given length to
estimate an initial state. Although, in 4D-Var B evolves
implicitly with the flow-dependence and could gain a




much better initial state than 3D-Var, it needs expensive
calculations and relies on linearized and adjoint versions
of the numerical model, which are hard to establish.
Secondly, EnKF[5] offers ensemble-derived B, which is
dramatic and changes as the system evolves, outperforms
B in 3D-Var. Also, the EnKF does not require linearized
or adjoint versions of the model, which saves a huge
computing overhead. Variational and ensemble methods
have brought benefits to DA, but each has its own
unsolved limitations[6]. In order to maximize the benefits
and eliminate the inadequacies of two separate methods,
there appears a bunch of techniques to incorporate them.
The coupling of these methods named as the hybrid data
assimilation. Hybrid DA has been developed to accentuate
the best features of each source of background-error
information, including the statistically robust background-
error covariances of Var and the flow-dependency of EnKF.
The alliance of two background-error covariances to get a
recalibrated and more robust B has been experimentally
proved to be effective[7, 8]. That is, Hybrid DA methods
are competitive with pure Var or ensemble methods.
Nevertheless, different contribution ratios of B from
Var and ensemble DA directly affect the quality of the
“analysis field”[9]. Dealing with the uncertainty and huge
numbers of degrees of freedom B(typically > O(107)) in
DA systems takes great efforts, although, national NWP
centers have the capability to implement Hybrid DA in
operational systems[10], they use empirical proportions to
ease tremendous computational cost yet sacrifice the best
accuracy. The scheme of Var and ensemble B accounting
for half of each was adopted by the tasks of the UK Met
Office[11], while using one-third of the former and two-
thirds of the latter was tested by the GSI assimilation
system in the United States[12].

Machine learning (ML) is a data-driven method, which
can contribute to solving the space-time related problems
of Earth system science to some extent[13]. Among them,
the functions of the “physical” sub-model, which simulate
the evolution of the Earth system, refers to that based
on physical theory, empirical parameters are adopted,
and semi-empirical property exists, so this ”physical”
sub-model can be replaced by a ML model. Naturally,
the nonlinear neural networks could link to dynamical
models to form hybrid neural-dynamical models to be a
new class of variational data assimilation[14]. Based on
a neural network method, Liaqat et al.[15] developed a
method, which is proposed for approximating dynamical
systems via weak constraint data assimilation formulation
and completed the simulation in the weakly and highly
nonlinear cases of the Lorenz system. Cintra et al.[16-
19] presented an approach for employing artificial neural
networks (NNs) to emulate the local ensemble transform
Kalman filter (LETKF) as a method of DA. One data
assimilation cycle used MLP-DA and LETKF with the
same synthetic observations to test the SPEEDY model,
an atmospheric general circulation model. Resulting in a

similar assimilation quality, the CPU-time cycle assimila-
tion with MLP-DA is 90 times faster than LETKF.

However, the ultimate pursuit of DA is to obtain the
optimal “analysis field” quickly and accurately to serve
NWP. By using a deluge of meteorological data, the ex-
plored neural network DA methods, which are mentioned
previously, have only accelerated the assimilation process
by simulating the existing DA methods without promoting
the performance. The principal reason is that they just
focused on the statistical features of data but ignored
the physical properties of the atmospheric state itself.
The assignment of this article is using Cache-MLP neural
network to simulate and optimize the traditional DA
methods 3D-Var and EnKF employing the physical
laws of atmospheric motion and the temporal character-
istics of atmospheric state variables. Among them, the
Lorenz 63 and the Lorenz 96 classic chaotic models are
used for testing. Furthermore, utilizing a Backtracked-
MLP neural network to couple 3D-Var and EnKF through
learning adaptive combinative weight matrix. In compar-
ison with pure 3D-Var and EnKF, also the experimental
hybrid method, this Hybrid DA optimal approach can
efficiently enhance performance, which is measured by
root-mean-square error (RMSE) between the “analysis
field” and the true state of forecast models.

The structure of this article is as follows. In section 2 we
briefly introduce the related theories of the paper: 3D-Var,
EnKF, MLP. In section 3 we describe the methodology
of a Hybrid DA approach which is based on a Cache-
Backtracked neural network. In section 4 we test the
validity of the Hybrid DA approach by Lorenz model.
Finally, conclusions and discussions are given.

II. Related Theories

A. Three-dimensional variational data assimilation (3D-
Var)

Based on Bayes’ theorem, Var has been the workhorse
of DA in NWP for many years before 1990s[20]. In general,
3D-Var estimates a single initial state of an NWP model.
The “analysis field” is found by minimizing a cost function
J:

J(x) =Jy, + J,
—5l@— " B (@ o") (1)
+(y° — h(x)"R™ (y° — h(x))]

The interpretation of this function J is as follows.

e J, measures the deviation between x and =% to
optimize the fit of the initial state to B.

e J, measures the deviation between y° and H (x) to
optimize the fit of the model’s version of the observa-
tion to the real observation by the observation-error
covariance matrix (R).



Using the nonlinear conjugate gradient method to find
the minimum of eq.(1), then the Jacobian vector of eq.(2)
can be verified as:

VJ(@) = B (2 - a*) - HTR™\(y° ~ h(z)) =0 (2)

where H is defined as:
Oh
H=— 3
. (3)

According to eq.(2), &% is the state that minimizes J
and is given as the solution to

[B~'+ HT'R 'hjz® =B '2* + HTR 'y  (4)
So, the best ”analysis field” is:
wa _ [B—l +HTR_1h]_1[B_1$b +HTR_1y]
— [B71 _|_HTRflh]fl[Bflwb_|_HTR71h(mb)
— HTR 'h(x®) + HTR 1y
=2+ [B'+ HTR 'n] 'HTR '(y — h(z?))

()

This minimization could be regarded as an inverse prob-
lem and it is hard to find the inverse of high-dimensional
matrix B and R. Instead of directly solving eq.(5), using
optimization methods (such as Newton method, quasi-
Newton method, BFGS method, LBFGS method, etc.) to
get the approximate minimum value.

B. Ensemble Kalman filter (EnKF)

The forecast step is

ot (t;) = M;_1 [ (ti—1)]

PF(t;) = Li_ 1 P*(t;_1)LT | + Q(t;_1) ©

The analysis step is

Zlia(ti) = a:f(ti) + I{ldz
P%(t;) = (I - K,H;)P’(t;)
where
d; =y — h(z? (t;))
f T f T1-1 (8)
K, =P’/ (t;,)H; [R, + H; P’ (t,)H" |
P/ is estimated by an ensemble of N data assimilation
systems, which is carried out simultaneously. That is, after
completing the ensemble of analyses at time ¢;_; and the
N forecasts x (¢;), P can be obtained approximately by
1 N
f F _ (e f — T
P~ g el -shel - )
where the overbar in eq.(9) indicates the sample average.

A summary of notation of this article is provided in
Table 1.

TABLE I
Summary of key notation used in this article.
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Linear observation operator
Background-error covariance matrix
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C. Multilayer Perceptron (MLP)

Based on the simulation of the human brain,
Rosenblatt[21] designed the first neural network——the
perceptron through the simple abstraction of biological
neural cells. The perceptron is a linear classifier, that is,
for the linear separable data, the perceptron can learn to
fit the better linear equation. However, the expression ca-
pability of single neuron perceptron model is not enough to
solve more complex problems, especially for high nonlinear
numerical problems. Multilayer Perceptron, which is also
called a feed-forward artificial neural network (ANN), has
a full connection structure, except the input layer, each
node can be seen as a processing unit with a nonlinear
activation function. If each activation function is a linear
function, each node of MLP in any layer can be simplified
as a perceptron. Namely, MLP is a kind of classical deep
neural network, which is a universal approximator. That
is, providing sufficiently many hidden units, MLP with
one hidden layer using appropriate activation functions
are capable of approximating any measurable function
f(@)[22, 23].

The structure of the perceptron and an example of MLP
are shown in Fig.1.

ITI. Methodology
A. The Cache-MLP

In operational systems, using short-range forecasts as
a first guess (%) and incorporating the information from
the fresh observations (y°) to obtain the “analysis field”
(x®) is called an “analysis cycle”(Fig.2).

In 3D-Var or EnKF, it defines the problem of DA to
find the best weight(w) to couple information from two
sources at time t as in eq.(10).

xf = @y +w (yg — h(zy)) (10)

The Cache-MLP is based upon the traditional “analysis
cycle” and captures the training data set which consists of
the first guess and observations to optimize the “analysis
field”. Instead of relying on the data of only one single time,
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in accordance with the flow-dependency of atmospheric
variables, % at time t can be affected by at least the
previous five time steps data (z§_5,x&_;). Together with
data at time t, it constitutes the input variables of the
Cache-MLP, as a means of introducing the temporal
features contained in meteorological data itself which
are exactly crucial. Hereafter, the Cache-MLP solves the
optimization problem of DA by eq.(11).

5 5
Ty = Zwt_iwi’_i + Z vi—_;Yp_; + bias (11)

=0 =0

where w and v are weight matrixes for x® and y°,

respectively. The structure of the Cache-MLP is shown
in Fig.4.

Background |||l xb-| s

ol

B4 R

Ve
Jeteby Observation |||||| Y°= y;” Ingut
Message Yo yzﬂ \

ye (6+6) x variables ~ Store

s Chunks

S / Training.csv
Truth
Xt X*=[x{] Target
1 x variables

Fig. 3. The structure of dataset preparation.
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Fig. 4. Schematic diagram of the Cache-MLP.

The Cache-MLP configuration was defined by empirical

tests, and we found the following characteristics:

1) One input node for a vector, which is obtained
by caching the observations and the background
information at 6 times;

2) Omne output node for the analysis vector results at
time t;

3) Three hidden layer and the number of neurons in
each hidden layer is obtained by numerical experi-
mentation;

4) The rectifier linear unit (ReLU) as the activation
function to obtain the nonlinear results;

5) Learning rate n=0.0005;

6) The loss function is mean square error(MSE);

7) Training stops when the loss reaches 107°.

B. The Backtracked-MLP

In traditional hybrid DA methods, researchers exploded
various techniques to couple pure Var and ensemble
DA method, and the quality of the “analysis field” was
improved indeed by experimental confirmation. Inspired
by the idea of hybrid, the Backtracked-MLP uses the
results from the trained Cache-MLPs as the training data
set. The structure of the Backtracked-MLP is shown in
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Fig.5. The explanation of the operational steps is as
follows.

1) Stage 1: recalling the training data sets, which are
used to train the Cache-MLP neural networks, and
concentrating the 3D-Var chunks and the EnKF
chunks;

2) Stage 2: updating the 3D-Var chunks and the EnKF
chunks, that is, regarding them as the “new” inputs
of the completed and fixed Cache-MLP to get the
output vectors the preliminary optimizations of
the “analysis fields” respectively; Stacking the opti-
mized &% as the input vectors of the Backtracked-
MLP;

3) The structure of the Backtracked-MLP is similar to
the Cache-MLP, also the number of neurons of each
hidden layer is designed by empirical tests.

Finally, the mathematical expression of the hybrid data
assimilation approach to calculate x® can be defined
simply as

225 var =Cache M LP(3Dvar(xt, y?))
&%, xp =Cache M LP(EnKF (%, y?))
xy = BacktrackedM LP(Z5p _vars EonkF)

where ¢ € [t —5,1].

(12)

IV. Experiment and result

In this section, we utilized two classical nonlinear
chaotic dynamical systems, which have been used as
verification models in many researches[10], to test the
validity of the proposed the new hybrid DA method based
on MLP.

A. Lorenz-63——A low dimensional chaotic system

Lorenz-63 system is a simplified mathematical model
for atmospheric convection[24], and offers the advantages
of strong non-linear interactions among three variables.
The evolution of states in Lorenz-63 system can be given
by three ordinary differential equations:

dx
it =o(y —x)
% =z(p—2)—y (13)

where the parameters are set to the standard values to
produce a chaotic regime:a:lO,ﬁ:%,p:QS.

4.1.1 Data preparation

It is hypothesized here that Lorenz-63 system is perfect,
there is no model error so that model-error covariance
matrix @=0; given the initial state xog=1.508870,y¢9=-
1.537121,29=25.46091 and the Lorenz-63 model is inte-
grated in time using a fourth-order Runge-Kutta time
difference scheme with a time step dt=0.01, the number of
analog integration steps 111000, we can obtain the “true
fields” (z?) by integrating the equations in eq.(13) without
data assimilation. In real atmospheric models, the ground
truths of variables generally represent x®. Observation
errors chosen randomly from a Gaussian distribution
are added to the true state to gather the approximate
observations. Besides, we set linear observation operator
h = I and observation-error covariance matrix R = I,
where [ is the third order unit matrix. Similarly, with
the same initial conditions, the data assimilation system
by using conventional DA method 3D-Var (or EnKF)
completes 111000 times assimilation “analysis cycles” and
generate the “analysis fields” (z®). Among them, the
Lorenz-63 system is integrated for the first 1000 time steps
of spinning up, with the aim of reaching steady-state and
to obtain the simulated atmosphere; the middle 100000
steps are used to prepare the training sets for the Cache-
MLP, and the last 10000 steps are the test data.

Spin up Training set Testing set

- - | R

0 1000 101000 111000

Fig. 6. Schematic diagram of data preparation.

Additionally, known the initial state, which is a point
in the state of Lorenz-63 chaotic system, the static back-
ground error covariance B for 3D-Var can be simplified
calculated by the NMC method.

Before the experiment, it must be mentioned that con-
sidering the computational cost, the number of ensemble
members is too small in comparison with the number
of numerical model variables in real Numerical Weather
Prediction systems. In empirical verify, the number of
actual model variables is over 107, while the ensemble size



is set to 80-100 in EnKF normally. Therefore, the statistics
will not guarantee to be representatives of the real states.
That is, because of the limited ensemble members, EnKF
would bring the sampling error that cannot be ignored
in practice[25]. These problems can be lessened with a
procedure called ensemble inflation[26] by multiplicative
processes[27]. Sensitivity experiments were conducted to
find the optimal size of ensemble and the multiplicative
factor for EnKF to generate the training data set with the
least error for the Cache-MLP. Hint, RMSE is widely used
in data assimilation to measure the similarity between a?
and %, which is defined as:

T N

1 s a
7 D0 D (@) — (29):)?

i=0 j=1

RMSE = (14)

where ¢ is the ith state, j is the jth ensemble member.

The results of sensitivity experiments are shown as
follows.

As shown in Fig.7(a), keeping the multiplicative factor
equals to 1.01, and changing the number of ensemble
members, it can be seen that with the increasement of
ensemble members, the sampling error is relieved signifi-
cantly. In consideration of there are only three variables
in Lorenz-63 system and the efficiency of the further
experiment, it is reasonable to choose 20 as the size of
ensemble members (N=20); In Fig.7(b), keeping N=20
and changing the multiplicative factor from 1 to 1.1 with
an interval of 0.01. It can be seen that when the factor
is 1.01, RMSE reaches the minimum value 0.1406. After
sensitivity experiments, the parameters of EnKF N=20
and factor=1.01 are selected ultimately for subsequent
experiments.
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Fig. 7. The results of sensitivity experiments for selecting

(a)ensemble member. (b)multiplicative factor.

4.1.2 The optimal and simulative process of the Cache-
MLP

Setting the same initial state for 3D-Var and EnKF
data assimilation systems, which is x(,=0.7055775,
Y6=2.264438504, 2(,=20.89017307, that is the 101001st
chaos state obtained after 101000 steps of integration
with the initial state as mentioned in the process of data
preparation. Then, we continue to execute 10000 more
“analysis cycles” 50 times to get ready for testing data
sets for the Cache-MLP and calculate the RMSE for each
data set. For the purpose of avoiding the randomness of the
experiment, we repeat 50 times. Fig.8 shows the differences
of various DA methods. Comparing Fig.8(a) and Fig.8(c),

it is clear that having 20 ensemble members and taking the
expansion factor 1.01, EnKF has much better performance
than 3D-Var, whose mean RMSE is 0.1454 while 0.4705
in 3D-Var. Among them, utilizing the Cache-MLP, in
Fig.8(a) and Fig.8(b), the performance of 3D-Var can
be improved 39.85 percentage and the optimized mean
RMSE for 50 times is 0.2830. Although, the Cache-MLP,
its performance of optimization is inconspicuous when
processing the EnKF data set, but it is able to simulate
EnKF well and gets almost the same result according to
Fig.8(c) and Fig.8(d).
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Fig. 8. The RMSE of 50 times experients with various DA
methods for Lorenz-63.(a)Pure 3D-Var.(b)The Cache-MLP for 3D-
Var.(c)Pure EnKF.(d)The Cache-MLP for EnKF.(The solid red line
and value represent the average RMSE of 50 times)

Furthermore, in order to figure out the main improved
behavior in the Cache-MLP, the trajectories of the “analy-
sis fields” from conventional 3D-Var DA and DA with NNs
optimizations are shown. First of all, from a rough view
on the Fig.9, the trajectories of either 3D-Var DA or the
Cache-MLP DA(MLP+DA) can track the real state in all
three axes (x,y,z) on a 10000-long timestep. Then, choosing
one axis and its three partial sequences of trajectories
in the beginning (from 0 to 300), in the middle (from
5000 to 5300) and in the end (from 9700 to 10000) of the
timestep respectively to have a sharper image, we discover
that both 3D-Var DA and MLP+DA perform well in the
monotonically increasing or decreasing parts(Fig.9(a) and
Fig.9(e)). However, MLP+DA is superior to 3D-Var DA
in where the derivative of the trajectory is 0, colloquially,
at the corner(Fig.9(b), Fig.9(c) and Fig.9(d)). In other
words, MLP+DA can seize the unusual tendency much
more sensitive.

4.1.3 The hybrid DA based on the Backtracked-MLP

After training the Cache-MLP model, using it to opti-
mize its training data sets to prepare for the Backtracked-
MLP and redoing the optimal process, the benefit is
obvious and can be seen in the following statistic pictures.
Previously, a simple way to decide the empirical weight
to couple the “analysis fields” of 3D-Var and EnKF is
giving those two methods a fixed proportion, which is
traversing from 0.1 to 1 with the increase rate 0.1, the
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summation of the total rate is 1 in the meantime, that
is rate(3DVar)+rate(EnKF)=1. In accordance with the
figure below, when the ratio of x® from 3D-Var is 10
percent and the rest of ® from EnKF is 0.9, we can get
the experimental minimization mean of RMSE, which is
0.1386(Fig.10).
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Fig. 11. The RMSE of 50 times experiments comparison between
the empirical method and the Backtracked-MLP for Lorenz-63.(The
solid red line and value represent the average RMSE of 50 times)

general value known to cause chaotic behavior. Lorenz-96
is a periodic system which is used to simulate the time
evolution of atmospheric variables commonly.

dditj = ({Ej+1 — {Ejfz)xjfl — Xy + F,] = 1,2, e (15)

where J is the number of state variables.

4.2.1 Data preparation

Also, assuming that the Lorenz-96 system is perfect.
With the same setting as Lorenz-63 system, running
111000 analysis cycles to create the training data sets for
the Cache-MLP, except that there are 40 state variables
in Lorenz-96 while just 3 in Lorenz-63. That is J=40,
F=8, dt=0.01. One primary change is to figure out
another appropriate size of ensemble members, which has
numerous effects on the accuracy of the “analysis field”
and the execution time of the whole “analysis cycles”,
therefore a preliminary experiment has been completed

and the result is shown in Table IT and Fig.12.
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Fig. 10. The results of the empirical method for Lorenz-63.

But in comparison to Fig.11(a) and Fig.11(b), the
Backtracked-MLP defeats the best performance of math-
ematical statistics by learning new optimal weight matrix
through neural networks. And the result of the mean
RMSE is 0.1243, which improves performance by 10.32
percent.

B. Lorenz-96——A high dimensional chaotic system

Compared with Lorenze63, Lorenz-96[28] is a much
more complicated nonlinear dynamical system. Its func-
tion can be defined as eq.(15). Among them, the first
term on the right-hand side is an advection term, while
the second term represents damping. Besides, F represents
an external forcing constant and is set to 8, which is a

TABLE II
The results of the preliminary experiment.
Ensemble | RMSE | time Performance Time
num- (s) Improvement increment
bers(N) (%) (%)
10 0.5216 1547
20 0.3745 1860 28.20 20.23
40 0.3446 | 2531 7.98 36.08
60 0.3360 | 3474 2.50 37.26
4000 0.55
3500 05
0.45
3000 0.4
. 2500 0.35
= 03 W
2 2000
E 025 2
1500 0.2
1000 015
0.1
200 0.05
0 0
10 20 40 60
the number of ensemble
---4--- time of 10000 cycles = —®— RMSE
Fig. 12. The variations of RMSE by the time-consuming.



With the same default setting, namely, having the
same initial state and using a fourth-order Runge-Kutta
time difference scheme with a time step dt=0.01, apart
from designing various size of ensemble members for the
EnKF DA scheme, we finished 50 replicated experiments
for each matching setting and got the following statisti-
cal table. Thereinto, the third column of the following
table shows the mean of the total CPU time when
achieving 10000 “analysis cycles”. The fourth and fifth
columns are calculated between two adjacent lines. For
instance, comparing with N=40, performance improves
2.5% but time-consuming increases 37.26% when N=60.
Considering the computational cost and the accuracy of
the “analysis fields”, N=40 is an advisable choice for
the coming experiments, which can obtain comparatively
lower RMSE with an acceptable time-consuming.

4.2.2 The optimal process of the Cache-MLP

The configuration of the Cache-MLP for the Lorenz-96
system is defined by empirical tests. Comparing Fig.13(a)
with Fig.13(b) and Fig.13(c) with Fig.13(d) respectively,
it is showing that regardless of different DA methods (3D-
Var and EnKF), the Cache-MLP has an improvement of
RMSE to some extent.
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053 0431
043

o

L b Il
TP VYU

0427
0426

0525 0.425
0246 8101214161820 2224262830 32 34 36 384042 44 46 48 50 52 024 6 810121416 182022 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
The number of the experiment

©@ EnKF — average  (d)

The number of the experiment
The Cache-MLP — average
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Fig. 13. The RMSE of 50 times experients with various DA
methods for Lorenz-96.(a)Pure 3D-Var.(b)The Cache-MLP for 3D-
Var.(c)Pure EnKF.(d)The Cache-MLP for EnKF.(The solid red line
and value represent the average RMSE of 50 times)

Different from the Lorenz-63 system, there are 40
variables in the Lorenz-96 system, instead of showing
the trajectories of all variables, we take 4 for instance,
and draw only some small parts of the trajectories of
the “analysis fields” from conventional EnKF DA and
MLP+DA to go further analyze. It is obvious that each
variable behaves badly in the spin up period in the
Lorenz-96 system, while this circumstance is undiscovered
in the Lorenz-63 system, this may be because with the
increase of the number of variables, the uncertainty of
the atmospheric state increases dramatically so that the
Lorenz-96 system would take longer time to spin up and
reach the balanced condition. After that, as shown above,
the capability of the Cache-MLP verges on the EnKF
DA, namely, their tracks almost coincide, just slightly

away from the real state in a few same places. However,
the mean RMSE of the traditional EnKF DA is 0.3446,
comparatively, the Cache-MLP DA promotes a little with
0.3040. Also, from the track circled by a rectangle in
each picture, having a more robust representation at the
turning point may play a key role in the Cache-MLP DA
to gain a small increment in performance.

X1 (State value)
X10 (State value)

X20 (state value)
x30 (State value)

Fig. 14. The trajectories of state values in Lorenz-96.(The black solid
line is the model z?, the blue dotted line is the £® of pure 3D-Var ,
and the red dashed line is the 2® of the Cache-MLP for 3D-Var.)

4.2.3 The hybrid DA besed on the Backtracked-MLP

In traditional and empirical methods, which is based
on mathematical principle rate(3DVar)+rate(EnKF)=1,
to capture the best performance of the “analysis field”,
it can be seen that the value of RMSE is the least while
giving the weight of 30 percent for 3D-Var and the scalar
is 0.2943(Fig.15).

1 0.5283
0.9 0.478
g 08 0.4311
507 0.3885
Q 0.6 03515
%5 05 0.322
204 0.3023
3 03 v 0.2943
F 02 0.2992
0.1 0.3166
0 0.3446

0 005 01 015 02 025 03 035

RMSE

04 045 05 055 06

Fig. 15. The results of the empirical method for Lorenz-96.

However, taking advantage of the Backtracked-MLP, we
can get a lower value of the mean RMSE for 50 times
experiments, which is 0.2530, and it is promoted by 14.03
percent according to the Fig.16(a) and Fig.16(b).

The following Table IIT and Table IV summarize the
experimental results.



(a) Empirical hybrid(0.3var)

0298 0.257

— average (b) The Backtracked-MLP — average
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Fig. 16. The RMSE of 50 times experients comparison between
the empirical method and the Backtracked-MLP for Lorenz-96.(The
solid red line and value represent the average RMSE of 50 times)

TABLE III
Performance comparison between pure conventional DA methods
and the Cache-MLP.

Model DA Conven- | The Cache- Improvement
method tional MLP (%)
RMSE RMSE
Lorenz 3D-Var 0.4705 0.2830 39.85
-63 EnKF 0.1406 0.1454 -3.41
Lorenz 3D-Var 0.5283 0.4283 18.93
-96 EnKF 0.3446 0.3040 11.78

V. Conclusion and discussion

This paper proposes and verifies a hybrid 3DVar-
EnKF DA approach based on MLP. In this research,
DA can be defined as a problem of temporal sequences
depends on historical meteorological records containing
the observations and the first guess. Guided by spatial-
temporal peculiarities, the Cache-MLP, the first part of
the hybrid NNs, utilizes the 3D-Var chunks and EnKF
chunks, which are stacked by six-time information as its
training datasets. The model has fulfilled the mission
of optimizing or simulating the results of the conven-
tional 3D-Var and EnKF DA methods in two classical
nonlinear dynamic models. Among them, in comparison
with pure 3D-Var and EnKF DA in Lorenz-96 system,
the Cache-MLP reaches the improvement of the accuracy
of 18.93% and 11.78% respectively; while in Lorenz-63
system, the Cache-MLP has a significant promotion by
39.85% compared with pure 3D-Var DA, besides it is

TABLE IV
Performance comparison between empirical hybrid DA method and
the Backtracked-MLP.

Model Empirical The Improvement
hybrid Backtracked-MLP (%)
RMSE RMSE
Lorenz- 0.1368 0.1243 10.32
63
Lorenz- 0.2943 0.2530 14.03
96
TABLE V
Run time of 10000 analysis cycles(In seconds).
Model The Cache-MLP EnKF 3D-Var
Lorenz-63 0.02 15.12 46.06
Lorenz-96 0.37 1500.26 175.23

capable to imitate pure EnKF DA well only with slightly
less 3.41%. Noticeably, the Cache-MLP has a more robust
representation of turning points in the whole trajectory.
In addition, the computational efficiency for all methods
are shown in Table V, thereinto, the Cache-MLP is faster
than others in varying degrees, since it just requires
the calculation of forward propagation. Furthermore, the
second part of the new hybrid NNs, the Backtracked-MLP
challenges the existing mathematical hybrid DA method,
uses the optimized “analysis fields”, which are the results
of the previous Cache-MLP as its training dataset to
couple the “analysis fields” from 3D-Var and EnKF. The
final Backtracked-MLP increases the accuracy by 10.32%
in the Lorenz-63 system and 14.03% in the Lorenz-96
system.

The effectiveness and success of the new hybrid DA
approach based upon MLP in optimizing the “analysis
fields” have proved the correctness of the idea of caching
the previous information the observations and the
background fields to obtain the final analysis fields in DA.
In the future, this creative thought and the Cache-MLP
and the Backtracked-MLP neural networks can be applied
in more extensive and complicated atmospheric models.
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