
End-to-End JPEG Decoding and Artifacts
Suppression Using Heterogeneous Residual

Convolutional Neural Network
1st Jun Niu*

Seattle, WA, USA
j.niu1990@gmail.com

Abstract—Existing deep learning models separate JPEG arti-
facts suppression from the decoding protocol as independent task.
In this work, we take one step forward to design a true end-to-end
heterogeneous residual convolutional neural network (HR-CNN)
with spectrum decomposition and heterogeneous reconstruction
mechanism. Benefitting from the full CNN architecture and
GPU acceleration, the proposed model considerably improves the
reconstruction efficiency. Numerical experiments show that the
overall reconstruction speed reaches to the same magnitude of
the standard CPU JPEG decoding protocol, while both decoding
and artifacts suppression are completed together. We formulate
the JPEG artifacts suppression task as an interactive process of
decoding and image detail reconstructions. A heterogeneous, fully
convolutional, mechanism is proposed to particularly address
the uncorrelated nature of different spectral channels. Directly
starting from the JPEG code in k-space, the network first extracts
the spectral samples channel by channel, and restores the spec-
tral snapshots with expanded throughput. These intermediate
snapshots are then heterogeneously decoded and merged into
the pixel space image. A cascaded residual learning segment
is designed to further enhance the image details. Experiments
verify that the model achieves outstanding performance in JPEG
artifacts suppression, while its full convolutional operations and
elegant network structure offers higher computational efficiency
for practical online usage compared with other deep learning
models on this topic.

Index Terms—JPEG, convolutional neural network, decoding,
artifacts suppression

I. INTRODUCTION

JPEG artifacts suppression aims at removing the noticeable
distortion of digital images caused by the lossy compression
process. Among the many available image compression proto-
cols, JPEG has earned the dominant popularity due to its high
compression ratio and relatively minor humanly perceptible
loss in image quality. The high portability and relatively decent
quality make JPEG images ideal for transmitting through
internet services with limited bandwidth and archiving with
affordable storage resources. However, while numerous im-
ages have been exchanged and stored in JPEG format, very
few of the original lossless raw data remains available. For
the applications where users would like to obtain a high
quality copy of an accessible JPEG image, removing the
compression artifacts and reconstructing the details becomes

*By the time of publishing, Jun Niu is affiliated with Amazon.com, Inc.
This work, however, was done prior to the author’s joining Amazon.

the most applicable, if not the only, approach. On the other
hand, at the age of huge volume of digital images being
shared and transmitted through the internet everyday, JPEG
protocol’s high compression ratio makes it a preferred format
to accommodate the limited internet resources. Compared with
directly sending the lossless images, first receiving the digital
images in JPEG format and then removing the compression
artifacts at the users’ end serves as a more economic and
realistic option.

These specific engineering backgrounds emphasize not only
the statistical performance in artifacts suppression, but also
the computational efficiency in operation. A few numerical
frameworks have been proposed to serve this purpose during
the past decades. One typical category of solutions is based
on the conventional optimization techniques. For example,
Nguyen et al. propose to encode a 64-KB overhead into the
JPEG code [1]. The raw image is then reconstructed from the
JPEG image together with the overhead by solving the con-
strained optimization problem. The reconstructed image shows
a relatively low error. However, most constrained optimization
employs an iterative solver. Since their computational costs
are heavy, these approaches hardly qualify for intensive online
applications.

Another category of solutions focuses on deep learning
models. Although the end-to-end neural network design is
a non-trivial work and the training processes are usually
expensive. Once the training is completed, however, little
pre-/ post-processing would be needed, and prediction on
new inputs is purely a feed-forward process. These merits
make the deep neural network a promising solution for both
offline and online applications. Recently, several deep neural
networks have been proposed for image super-resolution [2],
[3] and image denoising [4]. Chen et al. proposes a strategy
for compression artifacts suppression inspired by the super-
resolution neural networks [5]. Although this is an intriguing
research direction, artifacts suppression is not exactly the same
problem as image super-resolution. Namely, super-resolution
solvers’ primary responsibility is to predict the information
beyond the sampling band, while the artifacts suppression
emphasizes reconstructing information both within and be-
yond the sampling band. A few other deep convolutional
neural networks have also been proposed for JPEG artifacts

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

suppression [6]–[9]. However, they usually have complex
structure with few domain-specific insights. The fundamental
characters of the JPEG protocol is not fully analyzed to
optimize the network structural design. The corresponding
complex architecture leads to unnecessarily large amount of
model parameters and extremely expensive training process.
More importantly, encoding and decoding are central problems
in communication [10]. Existing designs split decoding and
artifacts suppression as two independent steps. For most main
stream compression protocols, such as JPEG, this strategy is
not end-to-end. A decoder must be first called to transform
JPEG code from k-space to pixel space, and artifacts are
then removed from compressed images in pixel domain. The
corresponding computational cost adds additional burden for
real-time applications.

In this work, we propose a novel heterogeneous residual
convolutional neural network (HR-CNN) for JPEG compres-
sion artifacts suppression. The proposed HR-CNN combines
decoding and artifacts suppression into one end-to-end fully
convolutional network, where all segments are optimized in-
teractively. The relatively simplified structure, in turn, also
delivers considerably higher efficiency in operation. Directly
loading the k-space JPEG code into the input layer, the
neural network creates the optimized image in pixel space as
final output. For practical online usage, the network achieves
fast processing, and is less memory consuming due to its
simplified network structure and fully convolutional opera-
tions. To address the uncorrelated nature of k-space codes in
different spectral channels, a spectral decomposition mech-
anism and heterogeneous convolutional operation pipeline
is designed to complete the decoding process. Connecting
the created intermediate features to a residual learning seg-
ment, the decoding and detail reconstruction process are then
interactively optimized. Numerical experiments demonstrate
that the proposed design shows excellent performance in the
peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM). Benefitting from the full CNN architecture and
GPU acceleration, it completes the the end-to-end decoding
and artifacts suppression within comparable time of image
decoding following the standard CPU JPEG protocol. The
overall operational efficiency is far superior to existing two-
step models.

Overall, the contributions of this study are mainly in three
aspects:

1) To our best knowledge, it is the first true end-to-
end model designed for JPEG decoding and artifacts
suppression. Directly loading the k-space JPEG code
into the input layer, a pixel space image is reconstructed
as the model’s output.

2) A novel heterogeneous and fully convolutional mecha-
nism is proposed to address the uncorrelated nature of
spectral channels. Versatile engineerings are thus accom-
modated for features in different spectral channels.

3) The proposed design delivers outstanding performance
under specific training criteria. In the meantime, its
simplified network structure largely improves the com-

putational efficiency in practical online usage.

II. HETEROGENEOUS RESIDUAL CONVOLUTIONAL
NEURAL NETWORK FOR JPEG ARTIFACTS SUPPRESSION

A. Design Overview

The proposed neural network for JPEG artifacts suppres-
sion focuses on two key concepts: heterogeneous processing
across spectral channels and true end-to-end reconstruction.
The standard JPEG protocol encodes digital images with 64
uncorrelated spectral channels. The heterogeneous processing
principle aims to offer a flexible mechanism to engineer the
features in each channel according to their statistical char-
acteristics. Designing the network as true end-to-end avoids
additional computational burden caused by preprocessing, thus
enhances its candidacy for intensive online usage.

Fig. 1: Structural illustration of the heterogeneous residual
convolutional neural network.

Figure 1 provides an overview of the processing pipeline
and the network structure. An end-to-end JPEG artifacts
suppression model maps the k-space JPEG code to a pixel-
space image as close to the ground truth as possible. Directly
loading the JPEG code in k-space into the input layer, the
proposed model first decomposes the JPEG code into 64
spectral channels through parallel convolutional operations.
Here the convolution kernels are designed as a set of coded
masks. For each spectral channel, a full-size snapshot is
created through the one-to-many transposed convolutional
mapping. The obtained spectral space features are then fed
into a decoding module to obtain pixel space counterpart.
The heterogeneous nature of this conceptual decoding process
enforces flexible operations on different channels. A residual
learning segment then further reconstructs the details of the
pixel space image and generates the final output. All network
segments are optimized interactively at the training process.

B. Formulation

Consider a k-space image encoded from the original pixel
space image, X, through the standard JPEG compression
protocol. Denoting this k-space image as Y, our goal is to
recover an image F (Y) that is as close as possible to the
ground truth image X. The proposed neural network wishes
to learn a powerful mapping F (·), which conceptually achieves

four operations: channel extraction and representation, spectral
snapshot reconstruction, decoding and macroblocking artifacts
suppression, and image detail sharpness enhancement.

1) Channel extraction and representation: The k-space
code X consists of the samples across 64 spectral channels,
grouped by 8×8 macro blocks. This network segment extracts
the spectral samples in X channel by channel, and represents
them as a set of spectral space snapshots. Fig. 2 provides
a sketch of this process. Channel extraction serves as the
foundation for the subsequent heterogeneous operation across
different spectral channels. A special convolutional layer is
designed to achieve this goal efficiently. In contrast with
the standard convolutional layers, the convolution kernels in
this layer are engineered as 64 binary coded masks. As is
illustrated in Fig. 3, each binary coded mask is initialized with
63 zero-value entries and 1 one-value entry. In operation, each
mask extracts the snapshot at its assigned channel and maps
the dw,0 × dh,0 dimensional input X into a dw,0

8 ×
dh,0

8 × 64
tensor.

Fig. 2: Convolutional operations to extract samplings in each
channel as one spectral space snapshot.

Fig. 3: Convolution kernels designed as coded masks. The dark
blue blocks denote the matrix entries with value 1; the white
blocks denote the matrix entries with value 0.

Formally, the first layer is expressed as an operation F1:

F1(Y) = W1 ∗Y + B1 (1)

where Y is the input JPEG code; ∗ denotes the convolution
operator; W1 contains n1 filters of size c × f1x × f1y for
channel extraction and scaling, with c denoting the number of
spectral channels of the input JPEG image code, and f1x, f1y
denote the number of orthogonal spectral components in x and
y directions, respectively. Within the context of JPEG artifacts
compression, we have f1x = 8 and f1y = 8. The stride in x
direction is correspondingly set identical to f1x and the stride

in y direction is set identical to f1y . B1 is c−dimensional,
which realizes the translation operation for each channel.

To extract the spectral components channel by channel, each
convolution kernel is designed to maintain the information
carried at one assigned channel, denoted as ch, while the
information in all remaining channels is shielded from both
network training and feed-forward computation:

M ch
ij = δ(i−mod(ch, 8), j − bch/8c), i, j = 0, 1, ..., 7. (2)

Here δ denotes the Dirac delta function.
The coded masks at each channel is a pre-designed constant

tensor. At the back propagation of the training process,

∆F ch
1 = Mch ∗∆Y1 (3)

The gradient of channel ch selected by none-zero component
of Mch propagates freely across the network. On the contrary,
gradients of all other channels are reset to 0 through the zero
components of Mch, thus have no influence on the training of
any other layer.

The subsequent network layers will take the responsibility
to enforce the convolutional operations for decoding and
artifacts suppression. Channel-specific value translation is not
necessary at this step. As a result, we set the bias term B1 is
set to be 0.

In summary, the first layer extracts the snapshot for each
spectral channel through the following mapping,

F ch
1 (Y1) = Mch ∗Y1, ch = 0, 1, ..., 63. (4)

2) Spectral Space Reconstruction: The snapshots at each
spectral channel are reconstructed to the same dimension as
that of the original image in this layer. One of the major
sources of macroblocking artifacts comes from the quanti-
zation step of JPEG compression. The magnitudes of high
frequency components are stored with reduced resolution. To
address this issue, we tackled the challenging task of enriching
the throughput in each layer. The JPEG compression protocol
enforces a many-to-one mapping for the components in each
of the 64 channels. As a results, each snapshot extracted
through Eq. 4 is of dimension dw,0

8 × dh,0

8 . Before moving
into the decoding and artifacts suppression operations, we
first reconstruct each snapshot to its original size through
the transposed convolutional operation. This step conceptually
performs an inverse operation of compression and restores the
one-to-many positional connectivity:

F̃2(Y) = CT
2 · F̃1(Y) +B2 (5)

where · denotes the matrix multiplication; C2 is the matrix
operator of the convolutional operation with kernel W2; F̃1(·)
and F̃2(·) denote the row-major order vector representation
of the tensor outputs of F1(·) and F2(·), respectively. The
convolution kernel W2 contains c filters of size c× f2 × f2,
where c denotes the number of channels in the k-space JPEG
code; f2 is chosen as the block size, 8, so that each snapshot
will be enriched to the full image’s size. The bias term B2 is
c-dimensional. The total number of parameters in this layer is

exactly the same as that in the standard convolutional layer.
the computational cost in training and prediction process thus
will not be significantly impacted.

Through this layer, the dimension of intermediate features
will be mapped from 64× dw,0

8 ×
dh,0

8 to 64× dw,0 × dh,0.
3) Decoding and Macroblocking Artifacts Suppression:

Once the spectral space samplings have been tentatively en-
riched, we continue to the decoding process. The standard
JPEG decoding protocol directly applies the inverse discrete
cosine transform to each 8 × 8 block, through which each
pixel is constructed with the spectral samplings on the same
row and the same column. This process is robust due to
the uncorrelated nature of different spectral channels. On
the contrary, however, the enriched snapshots from Eq. 5
is obtained from the transposed convolutional one-to-many
mapping. The decoding process is correspondingly modified
to be a 3-dimensional convolutional operation. To offer more
flexible processing capacity, a network segment consisting
of 2 cascading convolutional layers is designed to realize
the decoding process. The macroblocking artifacts are also
expected to be partly suppressed with the increased spectral
throughput.

At each step i, the convolution layer perform the feature
engineering as

Fi(Y) = Wi ∗ Fi−1(Y) +Bi, i = 3, 4. (6)

Here W3 corresponds to n3 filters of size c× f3 × f3; B3 is
n3-dimensional, with n3 = 8, f3 = 5. W4 corresponds to n4
filters of size n3×f4×f4; B4 is n4-dimensional, with n4 = 1,
f4 = 3. For all layers in this segment, the convolutional
strides are chosen as 1 in both x and y directions. A ReLu
activation is applied to F5(Y) to futher enforce the non-
negative regularization.

This network segment conceptually constructs a pixel space
image of the original dimension dw,0 × dh,0 from the 64 ×
dw,0 × dh,0 dimensional spectral space features.

4) Image Detail Sharpness Enhancement: After the initial
suppression of macroblocking artifacts in pixel space, extra
reconstruction of the details is necessary to improve the overall
image sharpness. One potential approach to restore the image
details from the lossy compression is to build a mapping
directly from the crude intermediate features with lower sharp-
ness and resolution. However, it turns out to be very difficult to
train a very deep convolutional neural network with sufficient
emphasis on these details. One of the fundamental reasons is
that for most typical choices of loss functions, such as the
mean squared error, the errors caused by the image details get
completely overwhelmed by that caused by the macroblocking
artifacts. As an alternative, here we apply the cascaded residual
learning blocks design to make the neural network optimiza-
tion significantly easier. The key principle of each residual
learning block is to decompose the higher-resolution image
details from the lower-resolution image bulks. Convolutional
layers inside each residual learning block conceptually focus
on the processing of higher-resolutions details. After merging
with the lower-resolution image bulks, features of the complete

image are delivered to the next cascaded residual learning
block for further enhancement.

Operations in this network segment can be formally ex-
pressed as:

Fi(Y) = Wi ∗ Fi−1(Y) +Bi + Fi−3(Y) · [δ(i− 7)+

δ(i− 10) + δ(i− 13) + δ(i− 16)], i = 5, 6, ..., 16.
(7)

In the i-th convolutional layer, Wi contains ni filters of
dimension ni−1 × fi × fi and Bi is ni-dimensional. The
convolutional stride is taken as 1 in both x and y directions.
In the first residual block, we choose n5, f5 as 64 and 11,
respectively; n6, f6 as 16 and 7, respectively; n7, f7 as 1
and 1, respectively. The same design pattern repeats for the
next three residual blocks, which consist of layers i = 8, 9, 10,
i = 11, 12, 13 and i = 14, 15, 16, respectively.

The direct connection between the input and output of
each residual learning block largely increases the training
feasibility. In each block, the three convolutional layers op-
timize the image details through a data-driven manner. The
layer with unit-size convolutional kernels aims to improve the
smoothness of the restored image.

After completing all the operations to enhance the image
detail sharpness, the final output is reconstructed through a
ReLu activation:

F (Y) = ReLu(F16(Y)). (8)

This step not only enforces non-negative regularization to the
pixel value, but also renders the neural network nonlinear
processing capability. The network reconstructs the pixel space
image of the original size, dw,0 × dh,0.

C. Training

Learning the end-to-end mapping function F (·) requires the
estimation of the network parameters Θ = {Wi, Bi}, i =
1, 2, ..., 16. Given a set of ground truth lossless images {Xi}
and the corresponding k-space codes {Yi} created through
standard JPEG compression protocol, we use the mean squared
error (MSE) as the loss function:

L(Θ) =
1

n

n∑
i=1

||F (Yi; Θ)−Xi||2, (9)

where F (Yi; Θ) is neural network’s output corresponds
to Xi; n is the number of training image pairs. Learning
of the network parameters Θ is then completed through the
minimizing the pixel level difference between the ground truth
and the reconstructed image.

Minimizing Eq. 9 through the stochastic gradient descent al-
gorithm with back-propagation, all network segments analyzed
in Section II-B are optimized interactively. Choosing the MSE
as the loss function, the trained neural network equivalently
optimizes the reconstructed images’ peak signal-to-noise ratio
(PSNR). However, according to specific engineering applica-
tions, the loss function can be easily revised to address other
perceptual quality metrics [11].

(a) Model input - JPEG k-space code. (b) 1st channel snapshot after channel-splitting. (c) 1st channel snapshot after
spectral-reconstruction

(d) Snapshot after decoding. (e) Snapshot after the 2nd residual block in
sharpness-enhancement.

(f) Model output - after the 4th residual block in
sharpness-enhancement.

Fig. 4: Ablation Study at Q = 10.

III. EXPERIMENTS AND PERFORMANCE EVALUATION

A. Training Datasets

We crop the training, validation, and testing datasets from
the DIV2K dataset [12]–[14]. The DIV2K dataset consists of
1,000 high quality images of 2K resolution. All images are
originally stored in the PNG format. We consider these images
and any sub-images directly cropped from them as the ground
truth that contains no JPEG compression artifacts. Without
loss of generality, we set the dimension of training images as
128 × 128, though the proposed model is insensitive to the
input image size. Generating Y from X follows the standard
JPEG compression protocol, and is the only processing we
perform to create training, validation, and testing datasets. For
each Q factor, the training dataset consists of 125,000 images
at 128 × 128 resolution. Once the model is trained, it can
reconstruct images at arbitary resolution.

B. Experiments

Based on the ground truth lossless images cropped from
the DIV2K dataset, we follow the standard JPEG compression
process to create the k-space JPEG codes [15]. Without loss
of generality, we only extract the green channel of the RGB
images for further 128× 128 resolution image cropping. The
discrete cosine transform is then applied to each 8×8 block of
the obtain images and transform the image from pixel space
to spectral space. Element-wisely dividing each 8 × 8 block

with the quantization matrix and rounding the floating point
values, the k-space JPEG code is obtained from the ground
truth counterpart. Feeding these k-space JPEG codes into the
heterogeneous convolutional neural network, the network’s
outputs are directly compared with the ground truth images
for training loss calculation or model performance evaluation.

Without loss of generality, here we evaluate the proposed
neural network’s performance at three typical quantization
factors: Q = 10, 30, 50. The network can be trained at any
other Q factors. However, at Q = 50, the perceptual quality of
the JPEG images is already high. The actual needs for artifacts
suppression at even higher quantization factors are not as
critical in practical applications. According to our experience,
the whole training process usually completes in less than 12
hours on single NVIDIA 2080 GPU.

A detailed ablation study is completed to validate
the model’s design strategy. During prediction, intermedi-
ate features are extracted after channel-splitting, spectral-
reconstruction, decoding, and sharpness-enhancement, respec-
tively. Without loss of generality, Fig. 4 provides one typical
set of results. The evolvement of the feature snapshots aligns
with the expected functionality of each network segment and
thus successfully verifies the network design.

The standard JPEG decoding protocol is one special imple-
mentation of F (Y). As the lossy nature of JPEG compression,
the k-space JPEG code stores the high frequency components

TABLE I: Model’s Average Performance over 14,040 Images.

Image Set PSNR
(dB)

SSIM
(%)

IPSNR
(dB)

ISSIM
(%)

Q = 10, JPEG 30.13 89.57 – –
Q = 10, HRCNN 31.79 92.02 1.66 2.45

Q = 30, JPEG 34.29 95.10 – –
Q = 30, HRCNN 35.70 96.13 1.41 1.03

Q = 50, JPEG 36.06 96.52 – –
Q = 50, HRCNN 37.19 97.19 1.13 0.67

TABLE II: Model’s Performance on LIVE1 Dataset.

Image Set PSNR
(dB)

SSIM
(%)

Time Cost
(s)

Q = 10, JPEG 27.19 87.32 2.81
Q = 10, HR-CNN 28.64 89.82 6.29

Q = 30, JPEG 31.00 94.21 2.84
Q = 30, HR-CNN 32.41 95.37 6.27

Q = 50, JPEG 32.87 96.03 2.79
Q = 50, HR-CNN 34.15 96.82 6.31

with reduced resolution and discards part of the spectral space
information. The standard JPEG decoding mechanism cannot,
and is not expected to, compensate the information lost during
the compression process. Here we implemented a decoder
following the standard JPEG protocol on CPU, and use it as
the baseline benchmark for any JPEG decoding algorithms.
The effectiveness of the proposed HR-CNN can be measured
through the improvement over the implemented JPEG decoder.

Figure 5 shows two typical sets of reconstruction results.
Although the training loss function is chosen to emphasize
the PSNR, we also observe a satisfying increase in the SSIM.

C. Model Performance

The model’s statistical performance is evaluated over two
datasets: (1) a testing dataset of 14,040 images at 128 × 128
resolution, each cropped from the testing images in DIV2K
dataset; (2) LIVE1 dataset [21], [22]. None of the images
in both datasets are involved in any model training/ hyper-
parameter tuning process. The relatively large number of
images in the first testing dataset provides an inspection of
the model generalization capability in production. Meanwhile,
testing on LIVE1 dataset aims to provide a performance
comparison with existing artifacts suppression models.

Here we interpret the image reconstruction quality through
two perspectives: the meaningful signal power in the recon-
structed image over the noise (PSNR), and the perceptual
structure quality of the reconstructed image (SSIM). Table I
shows the network’s average performance over 14,040 images
in the first dataset. The training process renders the neural net-
work a preference on optimizing the PSNR by using the MSE
as the loss function. Nevertheless, significant improvements
are observed for both PSNR and SSIM.

TABLE III: Model Comparison on LIVE1 Dataset.

Model IPSNR
(dB)

ISSIM
(%)

Number of
Trainable Parameters

HR-CNN 1.44 2.50

Decoding:
275,089

Detail Enhancement:
232,068
Total:

507,157

AR-CNN [8] 1.19 3.1 106,448

SA-DCT [16] 0.88 1.88 –

L4 [9] 1.31 3.3 71,920

MemNet [17] 1.68 4.6 2,905,421

TNRD [18] 1.38 3.8 26,645

DnCNN [4] 1.42 3.9 668,225

D-GAN [19] -0.48 -1.8 –

DA-CAR [20] 1.31 3.2 106,336

CAS-CNN [6] 1.67 4.2 5,144,000

SA-CAR [20] 1.39 3.5 131,392

Table II shows the neural network’s average performance
over the lossless images in LIVE1 dataset. For Q = 10, 30,
50, the model improves the PSNR (IPSNR) by 1.45 dB, 1.41
dB, 1.28 dB, and improves the SSIM (ISSIM) by 2.50%,
1.16%, 0.79%, respectively. A performance comparison with
existing machine learning models is shown in Table III. Here
we emphasize that our proposed HR-CNN is a true end-
to-end neural network, while all the reference models re-
quire additional pre-processing to convert k-space JPEG code
to pixel space. The HR-CNN achieves leading performance
under PSNR metrics. Its parameters are considerably fewer
than that of models at comparable performance. Benefitting
from the end-to-end fully convolutional structure, HR-CNN
also demonstrates obvious advantages in efficiency. Its total
number of trainable parameters is considerably less than that
of existing models with comparable reconstruction quality.
Numerical experiments also show that HR-CNN consumes
6.3s to decode and recover the LIVE1 datasets with GPU
acceleration. In comparison, decoding the same set of images
following standard JPEG protocol costs 2.81s on CPU. Classic
decoding itself is equivalent to 45% of HR-CNN’s total
processing time.

It should also be noticed that the absolute increase in the
PSNR or the SSIM is not sufficient to fully demonstrate the
power of the model. This emerges from the fact that JPEG
tends to maintain the lower frequency components and reduce
the accuracy when storing the high frequency components.
Even at any given Q factor, the JPEG compression protocol
does not discard the same amount of information for all
instances of digital images. For example, for an image consists
of very complex geometric structures, the JPEG compression
usually results in significant artifacts. This is because the
original image is rich in high frequency components, whose

accuracy are reduced after compression. On the contrary, for
an image with no details, the JPEG protocol usually does
not cause the same noticeable artifacts after compression. In
this case, we should not expect a significant PSNR increase
in the reconstructed image. The model’s processing power in
artifacts suppression needs to be best analyzed through both
the average reported PSNR/ SSIM and their absolute increase
through reconstruction.

IV. CONCLUSIONS

A novel design of heterogeneous residual convolutional
neural network is proposed for JPEG artifacts suppression.
Directly starting from the JPEG code in k-space, we formal-
ize the artifacts suppression task as an interactive process
of decoding, macroblocking artifacts suppression and detail
sharpness enhancement. A spectral decomposition mechanism
with coded mask convolutional kernels is designed to fully
address the uncorrelated nature of different spectral channels
in the JPEG code. After expanding the throughput in each
channel, the spectral snapshots are decoded heterogeneously
to obtain the pixel space image. A residual learning segment
then conceptually takes the responsibility for further detail
sharpness enhancement. The fully convolutional nature and the
elegant structure of the proposed network makes it relatively
easy to train, and computationally efficient for online usage.
Numerical results also validate that the proposed neural work
demonstrates outstanding performance for multiple quantiza-
tion factors.

REFERENCES

[1] R. M. H. Nguyen and M. S. Brown, “Raw image reconstruction using a
self-contained srgb-jpeg image with only 64 kb overhead,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

[2] F. Yang, W. Xu, and Y. Tian, “Image super resolution using deep
convolutional network based on topology aggregation structure,” AIP
Conference Proceedings, vol. 1864, no. 1, p. 020185, 2017.

[3] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 2, pp. 295–307, Feb 2016.

[4] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising,” IEEE
Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, July
2017.

[5] H. Chen, X. He, C. Ren, L. Qing, and Q. Teng, “Cisrdcnn: Super-
resolution of compressed images using deep convolutional neural net-
works,” Neurocomputing, vol. 285, pp. 204 – 219, 2018.

[6] L. Cavigelli, P. Hager, and L. Benini, “Cas-cnn: A deep convolutional
neural network for image compression artifact suppression,” in 2017
International Joint Conference on Neural Networks (IJCNN), May 2017,
pp. 752–759.

[7] D. Maleki, S. Nadalian, M. Mahdi Derakhshani, and M. Amin Sadeghi,
“Blockcnn: A deep network for artifact removal and image com-
pression,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2018.

[8] C. Dong, Y. Deng, C. C. Loy, and X. Tang, “Compression artifacts
reduction by a deep convolutional network,” in 2015 IEEE International
Conference on Computer Vision (ICCV), Dec 2015, pp. 576–584.

[9] P. Svoboda, M. Hradiš, D. Bařina, and P. Zemčı́k, “Compression arti-
facts removal using convolutional neural networks,” Journal of WSCG,
vol. 24, no. 2, pp. 63–72, 2016.

[10] D. J. C. MacKay, Information Theory, Inference & Learning Algorithms.
New York, NY, USA: Cambridge University Press, 2002.

[11] J. M. Johnson, A. Alahi, and F.-F. Li, “Perceptual losses for real-time
style transfer and super-resolution,” in ECCV, 2016.

[12] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image
super-resolution: Dataset and study,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, July 2017.

[13] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, L. Zhang, B. Lim
et al., “Ntire 2017 challenge on single image super-resolution: Methods
and results,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, July 2017.

[14] R. Timofte, S. Gu, J. Wu, L. Van Gool, L. Zhang, M.-H. Yang, M. Haris
et al., “Ntire 2018 challenge on single image super-resolution: Methods
and results,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2018.

[15] A. M. Raid, W. M. Khedr, M. A. El-Dosuky, and W. Ahmed, “Jpeg
image compression using discrete cosine transform - A survey,” CoRR,
vol. abs/1405.6147, 2014.

[16] A. Foi, V. Katkovnik, and K. Egiazarian, “Pointwise shape-adaptive
dct for high-quality denoising and deblocking of grayscale and color
images,” IEEE Transactions on Image Processing, vol. 16, no. 5, pp.
1395–1411, May 2007.

[17] Y. Tai, J. Yang, X. Liu, and C. Xu, “Memnet: A persistent memory
network for image restoration,” in In Proceeding of International Con-
ference on Computer Vision, Venice, Italy, October 2017.

[18] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1256–
1272, June 2017.

[19] L. Galteri, L. Seidenari, M. Bertini, and A. D. Bimbo, “Deep generative
adversarial compression artifact removal,” 2017 IEEE International
Conference on Computer Vision (ICCV), pp. 4836–4845, 2017.

[20] F. Albluwi, V. A. Krylov, and R. Dahyot, “Artifacts reduction in
jpeg-compressed images using cnns,” in Proceedings of the 20th Irish
Machine Vision and Image Processing Conference, 08 2018.

[21] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation
of recent full reference image quality assessment algorithms,” IEEE
Transactions on Image Processing, vol. 15, no. 11, pp. 3440–3451, Nov
2006.

[22] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, April
2004.

[23] Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S. Huang, “D3:
Deep dual-domain based fast restoration of jpeg-compressed images,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[24] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 12, pp. 2481–2495, Dec 2017.

[25] M. Mody, V. Paladiya, and K. Ahuja, “Efficient progressive jpeg decoder
using jpeg baseline hardware,” in 2013 IEEE Second International
Conference on Image Information Processing (ICIIP-2013), Dec 2013,
pp. 369–372.

[26] X. Liu, X. Wu, J. Zhou, and D. Zhao, “Data-driven sparsity-based
restoration of jpeg-compressed images in dual transform-pixel domain,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015, pp. 5171–5178.

[27] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 4, pp. 640–651, April 2017.

(a) Image A, Q = 10, JPEG,
PSNR = 25.16 dB; SSIM = 90.33%

(b) Image A, Q = 10, Reconstructed,
PSNR = 28.20 dB; SSIM = 95.12%

(c) Image A, Q = 30, JPEG,
PSNR = 28.94 dB; SSIM = 95.56%

(d) Image A, Q = 30, Reconstructed,
PSNR = 31.93 dB; SSIM = 97.73%

(e) Image A, Q = 50, JPEG,
PSNR = 30.77 dB; SSIM = 96.93%

(f) Image A, Q = 50, Reconstructed,
PSNR = 33.87 dB; SSIM = 98.39%

(g) Image B, Q = 10, JPEG,
PSNR = 23.63 dB; SSIM = 87.50%

(h) Image B, Q = 10, Reconstructed,
PSNR = 26.10 dB; SSIM = 92.34%

(i) Image B, Q = 30, JPEG,
PSNR = 27.39 dB; SSIM = 94.60%

(j) Image B, Q = 30, Reconstructed,
PSNR = 30.41 dB; SSIM = 97.14%

(k) Image B, Q = 50, JPEG,
PSNR = 29.48 dB; SSIM = 96.41%

(l) Image B, Q = 50, Reconstructed,
PSNR = 32.42 dB; SSIM = 98.14%

Fig. 5: Comparison of Two Typical Sets of JPEG Images and Reconstructed Images at Q = 10, 30, 50.

