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Abstract—Recently, various attention-based networks have
achieved state-of-art results on image captioning tasks. However,
this simple mechanism is insufficient to modelling and reasoning
the relationships between the visual regions required for scene
understanding. In this research, we propose a visual relational
reasoning module to implicit learning semantic and spatial
relationships between pairs of relevant visual objects and infers
the feature output that is most relevant to the currently generated
word. Furthermore, a context gate is introduced to dynamically
control the contribution of visual region attention modules
and visual relational reasoning module which allows predicting
different words according to different type of features (visual or
visual relationship). We evaluate our model on the MSCOCO
dataset and achieved state-of-the-art results. Qualitative analysis
shows that our visual relational reasoning model can dynamically
model and reason the most relevant features of different types
of generated words and improve the quality of the caption.

I. INTRODUCTION

As a high-level visual task, the image caption which aims
to describe the correctly content of an image has received
more and more attention from academia. This technology has
a great potential impact on a wide range of applications such
as helping visually impaired or robot visual understanding.
Image caption is a challenging task for machines because it
not only requires a comprehensive understanding of objects,
scene, and their mutual relations, but also needs to describe
the content of an image with semantically and syntactically
correct sentences.

Recently, the encoder-decoder based image caption model
with attention mechanism has achieved extraordinary perfor-
mances. The convolutional neural network (CNN) is often
used as an encoder to transform a image into a feature
vector, and then input it into the Long Short-Term Memory
(LSTM) Network decoder to generate a word at each time
step. Based on the Soft attention mechanism [1], [2] proposed
a visual sentinel mechanism, which allows the model to choose
whether to focus on the image at each time step. [3] proposes a
model that combines bottom-up and top-down attention model,
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which can attend to images at the level of salient objects. [4]
proposes a multi-stage prediction framework with increasingly
refined attention weights for image captioning. [5] proposes
a Hierarchical Attention Network that calculate the attention
of different modal visual features and perform feature fusion
through parallel multivariate residual modules.

However, the focus of these models is still to make better
use of the visual objects feature extract from the images,
ignore the impact of the relationship among visual objects
during generation. For instance, when the model generates a
description “A young girl holding a tennis racquet on a tennis
court”, it should figure out the relationship “holding” between
“girl” and “racquet”, and the relationship “on” between “girl”
and “tennis court”. On one hand, we think that in a human
system, when a person is describing a picture, it is usually
necessary to consider the relationship between the pair of
objects and the overall context to accurately describe the
relationship. On the other hand, this reasoning process is not
needed when describing specific objects. Therefore, we think
that describing different types of words should be handled by
different modules, which requires a mechanism to control.

To resolve the above restrictions, we propose a visual
relational reasoning model, which is inspired by the relational
network proposed in [6]. First, to improve the efficiency, we
use the visual attention module to select the visual regions
that are most related to the currently generated words. Then,
Our relational reasoning model can simultaneously encode the
semantic, spatial, and contextual relationships between these
object pairs. Subsequently, we use an attention mechanism
to dynamically reasoning the visual relationship features that
select related ones for the LSTM decoder. Finally, in order
to cooperate with the attention mechanism that is good at
generating visual object words, a context gating mechanism is
introduced to dynamically control the contributions of different
types of features. It can make gradients of different types of
words back propagate correctly to different modules, so that
the model can be trained end-to-end. Our visual relational
reasoning model is designed based on the R-CNN-LSTM
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framework, which combines the bottom-up regional attention
model in [3]. Faster R-CNN as a image encoder can generate
visual region feature and their spatial feature. The visual object
features output by the visual attention module and the visual
relationship features output by the relational reasoning module
will be input in context gate to decide which feature to use to
generate the next word.

Overall, the main contributions of this paper are summarized
as follows:

• We propose a visual relational reasoning model that can
implicitly model the semantic, spatial, and contextual
relationships between visual regions of related, and infer
a relationship feature that is most relevant to the current
generated word.

• We introduce a context gate mechanism to adaptively
control the contribution of features of different types.

• We conduct a number of experiments on the MSCOCO
dataset and the results show that our model outperforms
the state-of-the-art approaches.

II. RELATED WORK

Recent image captioning work is mainly based on encoder-
decoder framework [1], [7]–[11] that uses CNN to encode
image features and then enter RNN to generate sentences.
Specifically, [8] first proposed an end-to-end image caption
network based on the seq-to-seq model framework, and utiliz-
ing LSTM as a decoder to generate sentences. Based on [8],
[1] further proposes soft and hard attention mechanism, which
allows the model to focus on the relevant regions of the image
at each generation time step. Because there are non-visual
words in the sentence that do not need attention, [2] proposed a
visual sentinel mechanism, which allows the model to choose
whether to focus on the image at each time step. Recently,
[12] extracts semantic attributes from images and generates
semantic attention [11] at each generation time step to enhance
the quality of caption. Most recently, [3] proposes a model
that combines bottom-up and top-down attention mechanism,
which can attend to images at the level of salient objects. [4]
proposes a multi-stage prediction framework with increasingly
refined attention weights for image captioning. [5] proposes
a Hierarchical Attention Network that calculate the attention
of different modal visual features and perform feature fusion
through parallel multivariate residual modules. However, these
models ignore the visual relationship between regions. The
spatial information of these visual regions and the relationship
between them are also neglected.

[13] first proposed work to exploring the visual rela-
tionships between image regions. It uses graph convolutional
networks and LSTM architectures for the first time. This
structure uses GCN to build semantic and spatial graphs
between image regions, and then inputs the extracted semantic
and spatial relationship features into an LSTM-based decoding
architecture with attention mechanism to generate sentences.
Its spatial and semantic graph edges are all generated by
pre-trained networks using the Visual Genome dataset [14].
The 11 categories in spatial relations and 21 categories of

semantic relations are both predefined. However, this model
has some limitations. First, its semantic and spatial relationship
graphs need to be trained separately. Secondly, the relational
features of this model are mainly generated by pre-trained
models, GCN is only a feature refinement model that connects
pre-trained networks and image caption networks. This main
network of this model has no ability to dynamically explore
the relationships between image regions during the training
process.

[6] recently proposed the Relation Network (RN) architec-
ture for visual question answering, designed specifically for
augmenting relational reasoning performance. The RN reasons
about all image regions pairs explicitly. Image region embed-
dings are generated with a CNN, and questions are embedded
with an LSTM. For each region pair, the embeddings of the
region pairs and the question embedding are concatenated,
and passed through a MLP, generating a feature vector for
that region pair. These vectors are then summed to a final
embedding used for classification.

Inspired by RN’s encoding mechanism of relationship fea-
tures, we design a visual relational reasoning model base on
object pair that dynamically encode and infer the implicitly
semantic, spatial and contextual relationships between visual
regions. Compare with using GCN mechanism to encoding
multiple relationship graphs for all visual regions, we have
designed a rank embedding mechanism that uses a common
attention mechanism to generate a part of the visual regions
that are most relevant to the current generated word. The rank
embedding mechanisms can greatly reduce the computational
complexity of the model. At the same time, the model can
simultaneously encode implicitly semantic, spatial and con-
textual relationships, which does not need predefined relation-
ship classes. Finally, with the context gating mechanism, the
relational reasoning model can be used with other attention
models to help generate the different types of words.

In summary, our method has two advantages over previous
models. First, we design a relational reasoning network that
using the visual region’s visual features and spatial features
can dynamically generate the relationship features, and then
reason the most relevant output through the attention mech-
anism. Second, we introduced the context gating mechanism
to adaptively control the contribution of features on different
types, so this allows the relational reasoning module to coop-
erate with the visual attention module to generate high-quality
captions.

III. MODEL

A. Over All

Given an image I, the image captioning model needs to
generate a caption sequence S = {w1, w2, . . . , wT } , wt ∈ D,
where D is the vocabulary dictionary and T is the sequence
length. As illustrated in Fig. 1, We adopt the R-CNN-LSTM
proposed by [3] for image captioning. In particular, we use
an object detection module (Faster R-CNN) to detect objects
V = {v1, v2, . . . , vN}, each vn ∈ RDv is a d-dimensional
visual object vector, and its coordinates b = (x, y, w, h) of the
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Fig. 1. The overview framework of our relational reasoning model, which is composed of Encoder module, Visual Attention module, Relational Reasoning
module, Context gate and Decoder module. The model takes the images and the words generated at last time step as input and outputs the next words.

bounding box with center (x, y), width w and height h within
image. As a semantic decoder, RNN is leveraged to guide
the generation of attention and caption sequences. based on
the top-down attention framework in [3], we adopt a 2-layer
LSTM [15] as a decoder in this paper.

To decouple attention guidance and sequence generation,
We design the Visual Attention Module and the Relation
Reasoning Module to allow them to process image features
in parallel. The visual attention module is applied to generate
attention features in every time step, while the relational
reasoning module aims to encode and infers the visual re-
lationship among the visual object in an image.

We construct a cascaded LSTM structure that includes a
visual LSTM and a language LSTM. The visual LSTM is
applied to perceive global information of images and guide
visual attention module to generate attention features and
guide relational reasoning module to obtain the visual rela-
tionship features. While the language LSTM guides caption
generation. Finally, we construct a context gate that control
the contribution of object context and relation context. The
overall structure of our model is shown in Fig. 1. During the
generation process, the visual encoder extracts visual object
features. The visual LSTM reviews the global information of
the image at each moment and guides attention models and
relational reasoning module to refine features. The features
of the different modules are entered into the context gate to

control the features to be output. The language LSTM gener-
ates a word at each moment given last word and multimodal
features.

The process can be defined by the following formulas:

b, V = Encoder(I) (1)

hVt = LSTMV ([hLt−1, v̄, E(Wt)]) (2)

At, αt = Attention(hVt , V ) (3)

Rt = Relation(hVt , V, b, αt) (4)

C = Contextgate(hVt , Rt, At, b) (5)

hLt = LSTML([C, hVt ]) (6)

Wt = arg max
S

softmax(Woh
L
t + bo) (7)

where Encoder(I) represents feature extractor and E() is the
embedding function which maps the one-hot representation
into the embedding space. v̄ = 1

N

∑N
n=1 vn is the mean-

pooled region feature. LSTMV , Attention(), Relation(),
Contextgate() and LSTML represent visual LSTM, visual
attention module, relational reasoning module, context gate
and language LSTM, respectively.
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Fig. 2. The illustration of Relational Reasoning Module. First the rank embedding mechanism will select the highest K regions of the attention value obtained
by the visual attention module. Then the visual relationship feature encoder can build pairwise combinations of k region proposals, where in turn we get
K(K-1) possible region pairs. Finally, the visual relationship fusion can dynamically reasoning the visual relationship features that select related ones for the
LSTM decoder.

B. Visual Attention Module

The soft attention mechanism [1] is introduced into our
framework as visual attention module. The traditional attention
mechanism has fully demonstrated its advantages in generating
visual words. Therefore, the purpose of the visual attention
module is to focus on the visual region features that are most
relevant to the visual word at the current time step, rather than
considering the relationship among each visual region features.
Given the visual region features V and the output hVt of the
visual LSTM, our visual attention module uses the following
formula to normalize attention weights:

at = W t
atanh(WvaV +Whah

V
t ) (8)

αt = softmax(at) (9)

where Wva ∈ RH×V , Wha ∈ RH×Mand Wa ∈ RHare
learned parameters. The attended image feature used as input
to the language LSTM is calculated as a weighted sum of all
input feature:

At =

K∑
i=1

αtvi (10)

C. Relational Reasoning Module

We extend the model with a relational reasoning module,
based on the Relation Network (RN) architecture [6]. Intu-
itively, this module can dynamically encode and reasoning the
visual relationship at each time step t, by explicitly considering

combinations of image region pairs. The visual relational
reasoning module consists of three parts: rank embedding,
visual relationship encodier, and visual relationship fusion.
(1) The rank embedding mechanism can use visual attention
module to select a subset of visual region features. (2) The
visual relationship encoder can encode the semantic, spatial
and context relationships between object pairs. (3) The visual
relationship fusion can infer the visual relationship features
that are most relevant to the visual relationship words at the
current time step. The overall relational reasoning module
framework is illustrated in Fig. 2.

1) Rank Embedding: The Rank Embedding mechanism
aims to augment the relationship encoding efficient of the
follow-up model. This design is mainly used to combine the
visual attention module to filter the visual region features,
which can greatly reduce the computational complexity and
parameters while improving the efficiency of the model. First,
the attention weights α are used to select the m most relevant
regions Va ∈ V where |Va| = k,k < n, and the selected
regions correspond to the k highest attention weights.

2) Visual Relationship Encoder: The Visual relationship
encoder can encode the semantic, spatial and context rela-
tionships between the k visual region features selected in the
previous step.

Specifically, illustrated by the middle part in Fig. 2,
we first build pairwise combinations of visual features
{v1, v2, . . . , vk} ∈ Va, where in turn we get k(k − 1)



possible visual object feature pairs [vi, vj ], set i 6= j, while
i, j ∈ [1, k],and concatenation together with hidden unit hVt
and spatial feature . We define the pairwise object relationship
encoder as a composite function below:

ri,j = MLP ([vi, vj ,WSsij , h
V
t ]) (11)

Where WS ∈ RDH×6is transformation matrices, and the
spatial feature sij is defined similarly to [16] as:

sij =

[
xi − xj√
wjhj

,
yi − yj√
wjhj

,

√
wihi
wjhj

,
wj
hj
,
wi
hi
,
bj ∩ bi
bj ∪ bi

]
∈ R6

(12)
3) Visual Relation Fusion: The visual relationship fusion is

used to reasoning the related relationship features for output.
We choose the attention mechanism to infer the relationship
feature r. The formula is as follows:

zt = WR
k tanh(WR

vark +WR
hah

V
t ) (13)

αRt = softmax(zt) (14)

Where, WR
k ∈ R1×Da ,WR

va ∈ RDa×Dv ,WR
ha ∈ RDa×Dhare

transformation matrices. WR
va and WR

ha map the visual rela-
tionship feature rk and language feature htV into the same
shared feature space. Based on the weight matrix, relational
inference features Rt are obtained by weighted addition at
each time step.

Rt =

m∑
i=1

m∑
j=1

αRt,i,jri,j (15)

D. Context Gating

Inspired by the gating mechanism in LSTM [15] and the
work [17] in dense video captioning, we introduce a context
gating mechanism into our model dynamically to control the
contribution of visual region level context and visual relation
level context on the word prediction. When obtaining the
visual relationship features R and the visual attention features
A, we learn a context gate to dynamically control them. First,
we project the two different features into the same space:

C̃R = tanh(WRR) (16)

C̃V = tanh(WAA) (17)

where WR,WA are the transformation matrices. The context
gate is then calculated by a nonlinear sigmoid function:

gctx = σ(Wg[C̃R, C̃V , h
V
t ]) (18)

where hVt is the previous visual LSTM state and gctx is a
2048-d weight vector. We could fuse the relation features and
the visual object features as follows:

C = [(1− gctx) ◦R, gctx ◦A] (19)

TABLE I
THE PERFORMANCE OF THE ABLATION EXPERIMENT ON RELATION AND

OBJECT FEATURES WITH DIFFERENT COMBINATION.

Model B-1 B-4 M R C S
Add 75.8 35.2 27.1 56.2 111.3 20.1
Concat 76.3 35.7 27.4 56.4 113.5 20.2
Context gating 77.6 36.9 27.9 56.8 115.5 20.8

TABLE II
THE PERFORMANCE OF THE ABLATION EXPERIMENT ON DIFFERENT K

COMBINATIONS IN RANK EMBEDDING MODULE.

m B-1 B-4 M R C S
3 76.4 35.3 27.2 56.3 111.2 20.1
5 76.3 35.7 27.4 56.4 113.5 20.3
7 77.6 36.9 27.9 56.8 115.5 20.8
11 77.3 36.4 27.7 56.7 115.4 20.6

E. Model Learning
Firstly, we adopt the usual cross entropy loss (XE) to

optimize our model. Considering the XE is not the final metric
for image caption task, we further adopt the CIDEr [18] as
the objective function to finetune our model. Specially, we
minimize the negative expectation score of CIDEr as follows:

L(θ) = −Ews∼pθ [CIDEr(ws)] (20)

According to [18], the expected gradient for single sample
ws ∼ pθ is:

∇θL(θ) ≈ −(CIDEr(ws)− CIDEr(w))∇θ log pθ(w
s)
(21)

where ws = (ws1, . . . , w
s
T ), ws is the sequence sample from

the model, CIDEr(w) is the reward score obtained by
predicted sequence.

IV. EXPERIMENTS

A. Datasets and Evaluation metrics
The MSCOCO dataset [19] is the largest public dataset for

image caption, so we introduce it as a benchmark dataset.
The dataset contains 123,287 images and is split into 82,783
for training and 40,504 for validation. Each image has 5
description of human annotations. For evalution, we use the
Karpathy’s splits [1] which contain 113,287, 5,000, and5,000
images for training, validation and evalution. To fairly evaluate
the quality of the generated caption, we introduce the evalu-
ation criteria widely applied in previous works: BLEU [20],
METEOR [21], ROUGEL [22], CIDEr [18] and SPICE [23].

B. Image Features
We use recent bottom up features [3] to represent our

image as a region feature set. It generated by faster R-CNN
[24] pretrained on Visual Genome [14] in conjunction with
ResNet-101 [25]. First, Faster R-CNN detects top 36 highest
confidence salient object regions in the image and generates
corresponding bounding boxes. Then ResNet-101 is used to
extract the 2048-dimensional region features in the feature
map of the last convolution layer. bounding box coordinates
are further used to calculate spatial features.



TABLE III
THE PERFORMANCE OF OUR MODEL ON THE MSCOCO KARPATHY’S TEST SPLIT.

Model B-1 B-4 METEOR ROUGE-L CIDEr SPICE
Att2in - 31.3 26 54.3 101.3 -

Adaptive 74.2 33.2 26.6 - 108.5 19.5
NBT 75.5 34.7 27.1 - 107.2 20.1

Updown 77.2 36.2 27.0 56.4 113.5 20.3
Ours:VREA(XE) 77.6 36.9 27.9 56.8 115.5 20.8

Att2in - 33.3 26.3 55.3 111.4 -
Updown 79.8 36.3 27.7 56.9 120.1 21.4

Ours:VREA(CIDEr) 80.2 37.4 28.1 57.2 122.1 21.9

Fig. 3. We visualized the image regions with the highest attention weight in the visual attention module and the visual relational reasoning module for the
relationship words. For the visual relationship words and visual words in the description, the blue box indicates the image region of the maximum attention
weight generated by the visual attention module, and the red box indicates the image region pair of the maximum attention weight generated by the visual
relational reasoning module.

Fig. 4. The visualization of the gate values of the different types of words in
context gate. The green and yellow colours represent the highest and lowest
score respectively.

C. Implement Details

We first convert all the captions to low case and replace
words less than 5 times with an UNKNOW token. Then, we
build a word vocabulary with 10,010 unique words. The word
embedding size is 1024. We set the hidden size of the two
LSTM are both 1024, k = 7 objects for the relational reasoning
module. The hidden size of the visual attention module is set to
512. Our whole model is trained by Adam [26] optimizer with
batch size 128. For the training with cross entropy, we initially
set the leaning rate as 5× 10−4 and is reduced by 20% every
3 epochs. The maximum iteration is set as 40 epochs. When
cross entropy training is over, we start the self-critical training
and achieves best CIDEr score on validation set. We start the
training with learning rate 5 × 10−5 reduced by 20% every
3 epochs for 30 epochs. At inference, beam search strategy
is adopted and we set the beam size as 5. The training takes
about 6 days on Nvidia Quadro M4000 GPU.



D. Quantitative Analysis

To better understand the effect of our context gating strategy,
we carry out an ablation study and the results are exhibited in
TABLE. I. Compared with the previous methods that apply
concatenation or addition to integrate features, our context
gate achieves an improvement of 3.6% and 1.7% in terms
of the CIDEr metric. This indicates that our context gate can
improve the quality of descriptions by dynamically control the
contribution of different features.

To illustrate the influence of different parameter k in rank
embedding module, we further carry out an ablation study and
the results are shown in TABLE. II. We find that the number
of regions m have a greater impact on performance, where k =
3 model is 1.6% lower than the CIDEr metric of k = 5 models.
However, too large k does not necessarily improve the overall
performance, so we choose k = 7 for our relational reasoning
model.

For evaluation on MSCOCO dataset, we report the perfor-
mance of our model in comparison with the current state-
of-the-art methods: Adaptive [2], Att2in [27], NBT [28] and
Updown [3]. TABLE. III demonstrate the results on the
MSCOCO Karparthy test split. From the table, we can find that
our model has advantages in all metrics. With XE objective,
our model has an superiority over updown model with an
improvement of 1.6% in terms of the CIDEr metric. With
CIDEr objective,We can see that all metrics have improved
by 1%-6%. Compared to the other models, our model has
advantages over updown model with an improvement of 1.7%
in terms of the CIDEr metric.

E. Qualitative Analysis

To qualitatively evaluate our proposed visual relational
reasoning module, we visualized the image regions with the
highest attention weight in the visual attention module and
the visual relational reasoning module for the relationship
words in generated descriptions in Fig. 3. For the visual
relationship words and visual words in the description, the
blue box indicates the image region of the maximum attention
weight generated by the visual attention module, and the red
box indicates the image region pair of the maximum attention
weight generated by the visual relationship reasoning. In the
word ”eating” in the top of Fig. 3, the red region pair generated
by the visual reasoning module correctly noticed the area
mouth and carrot, while the blue area generated by the visual
attention module incorrectly noticed the other areas. But the
blue box generated by visual attention module can accurately
notice the position of the visual words ”girl” and ”racquet”
in the picture. In the word ”holding” in the bottom of Fig. 3,
the red region pair generated by the visual reasoning module
correctly noticed the area arms and turnips, while the blue area
generated by the visual attention module incorrectly noticed
the other areas. But the blue box generated by visual attention
module can accurately notice the position of the visual words
”girl” and ”carrot” in the picture. The above visualization can
prove that our visual relational module can accurately encode
and reason about relationships to better generate descriptions.

In order to qualitatively analyze our context gating mecha-
nism, we exhibit the visualizations of the context gate when
predicting the words “girl” and “holding” in Fig. 4. Each
row represents a weight vector, and the green and yellow
colours denote the highest and lowest score respectively. We
observe that the amount of information derived from each
module highly depends on the types of different words. More
information will come from the relational reasoning module
when the question involves the relationship of visual objects.
In Fig. 4, different shades of gate values reveals the amount
of information derived from each module. When predicting an
object word, the relationship weight vector will significantly
reduce weight. When predicting the relationship word, it can
be seen that the relationship vector is obviously activated.
It indicates that the context gate can adaptively control the
contribution of the visual feature and the visual relationship
feature when predicting different types of words.

V. CONCLUSION

In this paper, we propose a visual relational reasoning
model for image caption. The key of our work is to propose
a visual relational reasoning module to explicitly modelling
and reasoning the relationship about pairs of relevant visual
objects. Moreover, a context gate is introduced to dynamically
control the contribution of different modules according to
the context which allows predicting different words accord-
ing to different features. We validated the proposed model
through Quantitative analysis and achieved state-of-the-art
results on the MSCOCO dataset. Further, we visualized the
relational reasoning module and context gating, and performed
a qualitative analysis to demonstrate the relationship reasoning
and feature selection capabilities of the relational reasoning
module model.
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