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Abstract—Multi-label feature selection is a vital pre-processing
step to reduce computational complexity, improve classification
performance and enhance model interpretability, via selecting a
discriminative subset of features from original high-dimensional
features. Correlation-based feature selection (CFS) criterion
measures the relevance between features and labels, and the
redundancy among features, which has been combined with hill
climbing and genetic algorithm to execute multi-label feature
selection task. However, it is an open problem to search for more
effective optimization tools for CFS. In this paper, through adding
a mutation operation, we modify existing binary bat algorithm
to build its mutation version (MBBA), to adjust the number of
”1” components to be a fix size. Then a new multi-label feature
selection approach is proposed via maximizing CFS criterion
using MBBA, to select a fixed number of discriminative features.
Our experiments on four data sets show that our proposed
method is superior to three state-of-the-art approaches, according
to four sample-based performance evaluation metrics for multi-
label classification.

Index Terms—multi-label learning, feature selection,
correlation-based criterion, bat algorithm, mutation operation

I. INTRODUCTION

The pattern classification is to build a classification model
using labeled training samples and then to predict class labels
for unannotated samples [1], [2]. According to the number
of labels corresponding to a single sample, classification
problems can be divided into two categories: single label
and multi-label ones. Each sample is related to only one
label in the former case, and multiple labels at the same
time in the latter one [3]. Nowadays, there are many multi-
label application areas, for example, text categorization, music
emotion classification, and image annotation [3]. In Fig. 1, ten
images from [4] are shown, where the first row indicates five
single-label images (desert, mountain, sea, sunset and tree) and
the second row lists five multi-label images annotated by the
above five labels.

With the development of various sensor and related post-
processing techniques, a large number of features are avail-
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Fig. 1. Ten original images from Image data set

able, which unavoidably include some redundant and irrel-
evant features in multi-label classification [5]. Such a high-
dimensional data would increase computational complexity,
and even degrade classification performance, which could be
dealt with using feature selection (FS) strategy to select a
small subset of discriminative features from original high-
dimensional features [5], [6]. Compared with the single-label
FS task, multi-label FS one is more difficult since there exist
more complicated relevances between features and labels, and
correlations among labels [7]. Therefore, recently multi-label
FS task becomes a hot issue in pattern recognition, machine
learning, big data and so on [5], [6], [8].

According to the intersection between FS and classifier in
the implementation process, existing FS methods can generally
be divided into three categories: filter, wrapper and embedded
[9]. Filter methods evaluate the quality of features on the basis
of the intrinsic characteristics and structures of data, without
using any learning algorithm [7], [10]. Wrapper techniques
need a proper classifier to estimate the classification perfor-
mance to evaluate the quality of selected features [11], [12].
Embedded methods integrate feature selection into classifier
design and implementation [13], [14]. Generally, the first kind
of methods are more efficient than the last two kinds of
techniques, which results in that more attention has been pain
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to filter-based approaches in multi-label classification.
A filter-based FS method consists of two parts: a proper

evaluation index and a related optimization technique. There
are mainly three kinds of optimization strategies: simple
ranking, greedy search and swarm intelligence. F-statistic and
ReliefF criteria [10], and mutual information-based criterion
[15], are used to evaluate the quality of each feature, and
then some top ranked features are selected through simple
ranking way. The widely used greedy search methods in-
clude hill climbing and sequential forward selection. In [16],
correlation-based criterion is combined with hill climbing.
Sequential forward selection is to optimize Hilbert-Schmidt
independence criterion (HSIC) variant in [17] and mutual
information type indexes in [18], [19], to create the sub-
optimal subset of features. To search for a globally optimal
feature subset, genetic algorithm is used to maximize HSIC
[20] and correlation-based criterion [21], while particle swarm
optimization optimizes mutual information index [22]. It is
still an open problem to find out a more effective swarm
intelligence algorithm for a proper criterion in multi-label FS
field.

Correlation-based feature selection (CFS) criterion original-
ly for single-label FS [23] is to maximize relevance between
features and labels, and minimize redundancy among features,
which has been extended to multi-label feature selection via
hill climbing [16] and genetic algorithm [21]. It is experimen-
tally observed that the general genetic algorithm prefers to
select a half of original features [12]. Bat algorithm (BA) is
one of swarm intelligence algorithms for continuous variables,
which simulates bat echolocation behavior with global and
local search strategies [24]. To fit binary variables, its binary
version (BBA) is generalized in [25], which also could not
control the number of ”1” components. In this paper, we add
a mutation operation used in genetic algorithm originally, to
construct a new BBA version (i.e., MBBA). Then MBBA is
applied to maximize CFS criterion to propose a novel multi-
label FS algorithm (simply CFS-BA), to select a fixed size
subset of discriminative features. Finally, experiments on four
benchmark data sets show that our proposed method works
better, compared with three existing methods in [15], [21],
[22], according to four sample-based evaluation metrics for
multi-label classification [3].

The rest of this paper is organized as follows. In Section
2, we introduce a novel multi-label FS method. Section 3
is associated with our experiments and analysis. Finally, we
conclude our research work in Section 4.

II. NOVEL MULTI-LABEL FEATURE SELECTION METHOD

In this section, a new multi-label FS is proposed, which is
described using four parts: preliminaries, correlation-based FS
criterion, mutation binary bat algorithm, and novel multi-label
FS method.

A. Preliminaries

Assume that a given training data set is denoted by its
real feature matrix X ∈ RD×N and binary label matrix

Y ∈ {0, 1}L×N as follows

X = [x1, ...,xi, ...,xN ] =
[
x1, ...,xj , ...,xD

]T
Y = [y1, ...,yi, ...,yN ] =

[
y1, ...,yj , ...,yL

]T (1)

where N, D and L represent the numbers of samples, fea-
tures and labels, respectively. The i-th sample is described
using its column feature vector xi = [xi1, xi2, ..., xiD]T ∈
RD and label vector yi = [yi1, yi2, ..., yiL]

T ∈ {0, 1}L
(yij = 1 means that the j-th label is relevant). More-
over, xj = [x1j , x2j , ..., xNj ]

T and yj = [y1j , y2j , ..., yNj ]
T

indicate the j-th feature and label vectors, respectively. The
original feature index set is set to F = {1, 2, ..., D}.

The multi-label feature selection is to choose a feature
subset S of size d from the original F (d < D) to remain those
highly relevant and lowly redundant features. To achieve this
task, we adopt correlation-based feature selection (CFS) [23]
criterion to search for a globally optimal subset via binary bat
algorithm (BBA) [25] with mutation operator, in this paper.

B. Correlation-based Multi-label Feature Selection Criterion

Correlation-based feature selection criterion (CFS) is firstly
proposed in [23] for single-label learning, which not only max-
imizes the correlations between features and labels, but also
minimizes the redundances among features. Let Cfl(x

i,yj) be
the correlation measure between i-th feature and j-th label, and
Rff (x

i,xj) be the redundance measure between i-th feature
and j-th one, which could be calculated by Pearson correlation,
mutual information, symmetrical uncertainty and so on. For
a selected feature subset S from F , the average correlation
between the i-the feature and the entire label set is defined as

C̄fL(x
i,Y) =

1

L

L∑
k=1

Cfl(x
i,yk) (2)

and the overall average correlation between those selected
features and all labels as

C̄SL =
1

|S|
∑
i∈S

C̄fL(x
i,Y) =

1

L |S|
∑
i∈S

L∑
k=1

Cfl(x
i,yk)

(3)

where | · | indicates the size of S. The overall redundancy
(R̄SS) among selected features are averaged across all possible
feature pairs, i.e.,

R̄SS =
1

|S|(|S| − 1)

∑
i,j∈S,i̸=j

Rff (x
i,xj). (4)

In this case, the CFS criterion [23] for single-label feature
selection is defined as

CFS(S) =
|S|C̄SL√

|S|+ |S|(|S| − 1) R̄SS

. (5)

In [23], the best first search method is applied for searching
for the d features. The above criterion is also extended to
multi-label case, in which hill climbing search in [16] and
genetic algorithm (GA) in [21] are applied, respectively. The
GA could find out a better subset than heuristic approaches.



Algorithm 1 A multi-label feature selection method via combining CFS with MBBA
Input

X and Y: feature data and label matrices.
M : the size of bat population.
T : the maximal number of iterations.
d: the number of selected features.

Procedure
To initialize five quantities for each bat: si(0), vi(0), fi(0), ri(0), and ai(0) (i = 1, ...,M).
To set t = 1.

Repeat
For i=1 to M do

To generate a global new solution si(t) according to (8).
If a current random number r ∼ U(0, 1) > ri then to create a local new solution si(t) via (9).
If r ∼ U(0, 1) < ai and g(si(t)) > g(s∗) then

to accept the new solution si(t), and to update ri(t+ 1) and ai(t+ 1) via (10) and (11).
To adjust the number of selected features to be d using mutation operator.

t=t+1.
Until (t > T )
To detect an optimal subset S of selected features using the highest g(s).

Output:
S: the subset of selected features.

However, the GA could not give a fixed number of selected
features in practice. In this study, we apply binary bat algo-
rithm [25] to execute feature selection and moreover add a
mutation operation to control the number of selected features.

C. Binary Bat Algorithm with Mutation Operator

Bat algorithm (BA) is a swarm intelligence algorithm in-
spired by bat echolocation behavior [24], [26], [27]. This
algorithm initializes a set of random solutions and then opti-
mizes them iteratively. Specially, some local optimal solutions
are added through random flight around the optimal solution,
to strengthen the local search ability. Compared with other
algorithms (for example, genetic algorithm and particle swarm
optimization), BA is much better in accuracy and effectiveness,
and has no many parameters to be adjusted [24].

Assume that: (a) the size of bat population is set to M;
(b) the dimensions of solution is D; (c) the position of the
i-th bat is denoted by si = [si1,..., sij , ..., ,siD]T (i=1,...,
M); (d) the moving velocity for the i-th bat is depicted
as vi = [vi1, ..., vij , ..., ,viD]T (i=1,...,M); and (e) the pulse
frequency, pulse emission rate and loudness of the i-th bat are
indicated fi, ai and ri, respectively. Additionally, let U(a, b)
be a uniform distribution law in the real interval [a, b].

The BA consists of two parts: global and local search.
For the global search part, after randomly creating the initial
position and velocity for the i-th bat, at the t-th time step, the
original BA updates the following quantities:

fi = fmin + (fmax − fmin)β (6)

vi(t) = vi(t− 1) + [s∗ − si(t− 1)]fi (7)

si(t) = si(t− 1) + vi(t) (8)

where fmin and fmax are the minimum and maximum fre-
quencies, respectively, β∼U(0, 1) denotes a random number
satisfying U(0, 1), and s∗ = [s∗1, ..., s

∗
j , ..., s

∗
D]T represents the

current global optimal solution.
When a random number r ∼ U(0, 1) > ri, a local search

for the i-th bat is executed. After a solution (xold) is randomly
selected from the current optimal solution set, its new solution
(xnew) is generated via the following random walk way:

snew = sold + ā(t)w (9)

where ā(t) represents the average loudness of all the bats at
this time step and w ∼ U(−1, 1) is a random vector which
attempts to adjust the direction and strength of random walk.
Finally let si(t) = snew.

When a random number r ∼ U(0, 1) < ai and
g(si(t)) > g(s∗), we accept the solution si(t) from the
above global or local search step, and then update the
loudness ai and emission pulse rate ri as follows:

ai(t+ 1) = αai(t) (10)

ri(t+ 1) = ri(0)[1− exp(−γt)] (11)

where α and γ are two pre-defined positive constants, and the
initial loudness ai(0) ∼ U(1, 2) and emission rate ri(0) ∼
U(0, 1).

For feature selection, the previous continuous solution si
should be reduced into a binary one, whose ”1” or ”0” com-
ponent represents that a feature is selected or not. Therefore
binary bat algorithm (BBA) was proposed in [25], which uses
the following sigmoid function:

ϕ(vij) =
1

1 + e−vij
(12)



TABLE I
STATISTICAL INFORMATION FOR FOUR BENCHMARK MULTI-LABEL DATA SETS.

Dataset #Domain #Instances #Features #Classes #Average labels
Scene Image 2407 294 6 1.07
Image Image 2000 294 5 1.24
Yeast Biology 2417 103 14 4.24

Emotions Music 593 72 6 1.87

TABLE II
THE NUMBER OF WINS FOR EACH METHOD AND METRIC ACROSS FOUR

DATA SETS

Metric CFS-GA FIMF MMI-PSO CFS-BA
Accuracy 10 2 3 61

Subset Accuracy 13 2 2 59
Hamming loss 12 1 4 59

F1 12 0 0 64
Total wins 47 5 9 243
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Fig. 2. Convergence analysis of CFS-BA on Image

to restrict each bat solution to binary form

sij =

{
1 if ϕ(vij) >σ
0 otherwise

(13)

where σ ∼ U(0, 1).
In this paper, to choose a fixed size for selected feature

subset, we adjust the number of selected features to be d with
mutation operator in genetic algorithm originally, which is also
applied in [22]. Let the number of selected features be d̂. When
d > d̂, the (d− d̂) ”0” components are selected randomly and
then converted into ”1” components. Reversely, we force the
(d̂− d) ”1” elements to be ”0”s. In this study, the above BBA
version with mutation operator is referred to as MBBA simply.

D. Multi-label feature selection method based on CFS and
MBBA

In this subsection, we apply our MBBA to optimize CFS
criterion (5) to build a new multi-label feature selection
method (namely CFS-BA), as shown in Algorithm 1, where
g(s) represents the CFS criterion (5) and the selected feature
subset S consists of those feature indexes with ”1” components
in s. Finally, we select the best binary vector s∗ with the largest
g(s∗) to be our feature selection solution.

III. EXPERIMENTS

In this section, we evaluate our feature selection CFS-BA
using four multi-label data sets via comparing with three
existing methods.

A. Four Benchmark Data Sets

In this paper, we downloaded four widely-validated bench-
mark data sets: Scene, Image, Yeast and Emotions form 1, to
evaluate and compare our algorithm and other existing feature
selection methods, as shown in Table I. This table also shows
some important statistics for these sets, including the numbers
of samples, features, the size of labels, average labels, and
application fields.

B. Compared Methods and Their Key Parameter Settings

In this study, we compare our CFS-BA with CFS-GA [21],
FIMF [15] and MMI-PSO [22]. For three compared approach-
es, we accept their default settings. On our CFS-BA, its key
parameters are assigned as follows: fmin = 0 and fmax = 1
recommended in [25], α = γ = 0.9 used in [24], T = 100 and
M = 100. The CFS criterion (5) is estimated via symmetrical
uncertainty (SU) [23], whose two key components Cfl and
Rff are defined as follows:

Cfl(x
i,yj) = 2

H(xi) +H(yj)−H(xi,yj)

H(xi) +H(yj)
(14)

Rff (x
i,xj) = 2

H(xi) +H(xj)−H(xi,xj)

H(xi) +H(xj)
(15)

where H(·) is the entropy measure in [23], [28], [29], and for
some continuous feature vector xi, its components are bina-
rized into 1 (≥ µi) or 0 (< µi) according to its corresponding
mean value µi.

C. Baseline Classifier and Evaluation Metrics

In order to compare four aforementioned feature selection
method, it is needed to select a proper baseline classifier and
some multi-label classification performance indexes.

In this study, the widely-used multi-label k nearest neigh-
bor method (ML-kNN) with a recommended k = 10 [4] is
considered as our baseline classifier.

The multi-label classification performance is evaluated
via four sample-based metrics, including accuracy, Ham-
ming loss, subset accuracy and F1. For a test sam-
ple vector x, its binary actual and predicted label vec-
tors are denoted by y = [y1, ..., yj , ..., yL]

T ∈ {0, 1}L and

1http://computer.njnu.edu.cn/Lab/LABIC/LABIC Software.html
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Fig. 3. Four sample-based metrics from four FS methods on Scene
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Fig. 4. Four sample-based metrics from four FS methods on Image
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Fig. 5. Four sample-based metrics from four FS methods on Yeast
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Fig. 6. Four sample-based metrics from four FS methods on Emotions

ȳ = [ȳ1, ..., ȳj , ..., ȳL]
T ∈ {0, 1}L, respectively. The first three metrics are defined as following forms:



TABLE III
FOUR METRICS FROM FOUR METHODS AND FOUR DATA SETS WITH 50% SELECTED FEATURES

Metric CFS-GA FIMF MMI-PSO CFS-BA
Scene

Accuracy(↑) 0.616±0.001 0.501±0.001 0.624±0.002 0.642±0.001
Subset accuracy(↑) 0.571±0.002 0.464±0.001 0.572±0.001 0.618±0.001
Hamming loss(↓) 0.102±0.001 0.131±0.001 0.096±0.001 0.090±0.002

F1(↑) 0.683±0.003 0.514±0.002 0.642±0.002 0.712±0.001
Image

Accuracy(↑) 0.488±0.002 0.339±0.001 0.475±0.001 0.509±0.001
Subset accuracy(↑) 0.406±0.001 0.285±0.002 0.403±0.001 0.418±0.002
Hamming loss(↓) 0.175±0.001 0.197±0.001 0.174±0.001 0.170±0.001

F1(↑) 0.569±0.001 0.357±0.001 0.501±0.002 0.582±0.001
Yeast

Accuracy(↑) 0.494±0.001 0.460±0.001 0.471±0.001 0.501±0.001
Subset accuracy(↑) 0.166±0.002 0.142±0.002 0.143±0.001 0.171±0.002
Hamming loss(↓) 0.202±0.001 0.211±0.001 0.204±0.001 0.201±0.001

F1(↑ 0.626±0.002 0.578±0.002 0.565±0.001 0.628±0.002
Emotions

Accuracy(↑) 0.532±0.001 0.471±0.002 0.412±0.001 0.556±0.001
Subset accuracy(↑) 0.282±0.002 0.217±0.001 0.183±0.001 0.302±0.003
Hamming loss(↓) 0.202±0.001 0.225±0.002 0.238±0.002 0.212±0.001

F1(↑) 0.662±0.003 0.555±0.003 0.491±0.002 0.681±0.002

Accuracy(↑) =
∑L

j=1 yj ȳj∑L
j=1(yj+ȳj−yj ȳj)

(16)

Hamming loss(↓) =
∑L

j=1(yj−ȳj)
2

L
(17)

Subset accuracy(↑) =
{

1,
0,

if Hamming loss = 0
otherwise.

(18)
With two proxy metrics: precision and recall, the F1 metric

is defined as
Precision =

∑L
j=1 yj ȳj∑L
j=1 ȳj

(19)

Recall =
∑L

j=1 yj ȳj∑L
j=1 yj

(20)

F1(↑) = 2Precision×Recall
Precision+Recall . (21)

Except for Hamming loss, the higher the other metric values
are, the better the feature selection methods work, as shown
in upper and down arrows (↑ and ↓) in the above definitions.

For a testing set, the above four metrics are averaged
across all testing samples. Additionally, since ten-fold cross
validation is executed, the mean and standard deviation format
is reported in our experiments.

D. Convergence Analysis for CFS-BA

In this sub-section, we regard the CFS criterion (5) as
a function of the number of generations to investigate the
convergence of our CFS-BA on Image, where the 50% features
is selected (i.e., |S| = 147), as shown in Fig. 2. As the
number of generations increases from 1 to 100, the average
and maximum CFS values ascend correspondingly and finally
tend to be stable, which illustrates that our proposed method
is convergent experimentally.

E. Experimental Results and Analysis

In this sub-section, we report our experimental results from
four methods and four data sets. To evaluate the classification
performance of each method comprehensively, we regard each
metric as a function of the proposition of selected features
from 5% to 95% with a step 5%, as shown in Figs. 3-6.

From these four figures, it is observed that at most of
propositions of selected features, our CFS-BA performs the
best. To compare these four FS methods in detail, we use
”win” index [30] to count the number of the best results for
each method and each metric across four data sets and 19
propositions (76 combinations), as shown in Table II. Among
the total 304 wins, our CFS-BA achieves 243 ones, which is
much greater than those from the other three methods.

To obtain a more extensive comparison, we list four metric
values from four methods and four data sets with 50% selected
features in Table III, where the best result is shown in bold font
for each data and each metric. It is found out that our CFS-BA
obtains 15 best metric values, and only CFS-GA performs the
best on Hamming loss from Emotions.

Overall, the above experimental results and analysis demon-
strate the effectiveness of our proposed method, compared with
three state-of-the-art methods.

IV. CONCLUSIONS

In this paper, to control the number of selected features,
we modify the traditional binary bat algorithm via adding a
mutation operation, to present a new bat algorithm version for
feature selection in particular. Combining such an optimization
technique with correlation-based feature selection criterion is
to construct a novel multi-label feature selection approach.
Experiments from four data sets and four evaluation metrics
(accuracy, Hamming loss, subset accuracy and F1) illustrate
that our proposed method is superior to three existing methods.



For future work, we will compare our method with more
existing approaches on more benchmark data sets according
to more evaluation metrics.
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