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Abstract—The task of Knowledge Base Question Answer-
ing(KBQA) is to provide a convenient way for the human to more
efficiently and easily answer natural language questions using
the substantial and valuable knowledge in the KB. Predicate
generation is the most important sub-task of KBQA, which aims
to generate the predicate paths from head entity to tail entity.
Existing models mostly employ a seq2seq method to handle this
task. However, the seq2seq method essentially is a classification
model, which needs to know the number of the categories in
advance. Meanwhile, KBs often are incompleteness and questions
are always unbounded, which would cause the problem that
the predicates of the questions would be beyond predefined
categories. Obviously, the seq2seq model cannot handle this
problem. In this paper, to solve the problem above, we explore
to build an scoring module with strong genelization to score the
predicates not in predefined categories, and also to improve the
performance of the seq2seq method.

To bridge the gap, we carefully design a reasoning mod-
ule to score the predicates through reasonably employing the
attention mechanism with memory ability. Simultaneously, in
order to improve the generalization of the reasoning module,
we try to use multi-task learning to enrich the represent of
the reasoning module based on the idea of transfer learning.
Massive experiments are conducted on two popular benchmark
datasets—SimpleQuestion(SimQ) and WebQuestion(WebQ). The
experimental results demonstrate that the proposed relation
reasoning framework outperforms the state-of-the-art methods.

Index Terms—KBQA, End-to-End Network, Multi-hop Rea-
soning, Multi-task Learning

I. INTRODUCTION

The ever-increasing availability of data and knowledge
requires significant progress on extracting the wealth infor-
mation for user. In particular, Knowledge Bases(KB), such as
DBpedia [1], and Freebase [2], contain vast amounts of triple
facts gained from increasing information. In knowledge base,
each directed edge, along with its head entity and tail entity,
constitute a triple(i.e.,head entity,predicate,tail entity), which
is also named as a fact. Knowledge bases are usually huge
and not easily accessible for users as they need to know the
query statement as well as the structure and relations in the
KB.

Question answering over knowledge base provides a way
for artificial intelligence systems to incorporate knowledge
bases as a key ingredient to answer human questions, with
applications ranging from search engine design to conversa-

tional agent building. It targets at automatically translating
the end users’ natural language(NL) questions into structured
queries such as SPARQL [3], and returning tail entities and/or
predicate paths in the KB as answers. Existing models [4]–
[9] mostly contain entity linking module and relation detec-
tion module. Entity linking is responsible for detecting head
entities in the question and linking them to KB. Relation
detection is responsible for selecting the best from candidate
predicates. Recently, some researchers [9] pay attention to the
generation of the predication path via using the seq2seq [10]
model, which could reduce the number of the candidate paths.
However, the KBQA problem is far from solved since the
domains of end users’ questions are often unbounded, and
any KB is far from complete. New questions might involve
predicates that are different from the training set, or out of the
predefined categories. The seq2seq framework can’t handle
this scenario since it is limited to fixed known categories
and it extremely depends on the pattern of training samples.
Recently, embedding methods have achieved great success in
many NLP fields. The key idea is to represent each predicate
as a low-dimensional vector, such that the relation information
in the KB could be preserved. In addition, similar predicates
tend to have similar vectors. That motivate us to to design an
adaptive module based on embedding methods to score the
predicates beyond predefined categories.

However, there still remains two major challenges for
building an adaptive module. First, a predicate have various
different represents. i.e., the represent of KB and NL. If the
module just relies on one of these represents, that would
cause the problem of the ambiguity of the predicate. For
example, the predicate ”people.person.nationality” is similar
to ”people.person.place of birth” in KB, since they have
similar structure in KB. However, someone’s nationality may
not be the same as the place of birth. Second, the general
adaptive modules often don’t contain memory ability, e.g.,
CNN(Convolutional Neural Network) and DNN (Deep Neural
Network). However, the generation of the predicate is a
reasoning process. The inference of the predicate should fully
consider the context of the question. For example, the corrent
predicate path of the question ”What is the name of Obama’s
father?” is (”people.person.parents”,”type.object.name”). Both
current knowledge context(CKC, acting as a dynamic environ-
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ment in KB, the definition in section III) at first hop and second
hop have the same predicate ”type.object.name”. If following
the traditional adaptive modules, the model would give the
same weight to the predicate ”type.object.name” at first hop
and second hop. But it is logical that the model should give
the weight to the predicate according to the context of the
question.

Through analyzing the problems, we aim to solve three
research questions in the generation of the predicates. (i)
How to construct an adaptive reasoning module to handle the
problem that the categories of the predicate is unbound? (ii)
How to leverage various embeddings of the predicate to solve
the problem that the semantic information of similar structural
predicates is different? (iii) How to leverage the reasoning
context to make the adaptive module contain reasoning ability?
Following these questions, we propose a novel general model
with dynamical relation reasoning module. Simultaneously,
inspired by the idea of transfer learning, we try to use multi-
task learning to enrich the represent of the reasoning module.
In conclusion, we highlight the contributions of this paper as
follows:
• We construct the CKC acting as dynamic enviroment in

KB. The CKC contains the KB/NL information of the
predicate, which can improve the performance of the
model.

• We design an adaptive reasoning module(the definition
is in IV-B2) to solve the three problems raised in this
paper, including (i) the categories of the predicate is
unfixed, (ii) the question that similar structural predicate
is indistinguishable, (iii)and the question that an adaptive
module dose not have reasoning ability.

• In order to enchance the generalization of the reasoning
module, based on the idea of transfer learning, we try
to use multi-task learning to enrich the represent of the
reasoning module.

II. RELATED WORK

The approaches proposed to tackle the KBQA task can be
roughly categorized into two groups, semantic parsing (SP)
and information retrieval (IR).

SP-based methods aim to learn semantic parses which parse
natural language question into logical forms and then query
knowledge base to lookup answers. Earlier SP-based meth-
ods directly parse natural language questions into structured
queries [11]. Recently, SP-based methods try to exploit IR-
based techniques [7], [12], [13] by matching the same space
between the question and semantic parsing tree. However, SP-
based approachs more or less depend on hand-crafted rules
as supervised information, which causes high labor costs for
open-domain question answering.

IR-based methods retrieve a set of candidate answers and
then conduct further analysis to rank these answers [4]–[6],
[8], [14]–[17]. Most of them focus on mapping answers and
questions into the same embedding space, which could query
the KB independently according to its schema without any
grammar or lexicon. In recent reasearchs, IR-based methods

mostly are superior to SP-based methods. In these IR-based
methods, there are mainly two kinds of methods based on
deep neural networks, ranking methods [4]–[8] and relation
generative methods [9]. Both ranking methods and relation
generative methods can be described as the following pro-
cesses, head entity detection, the generation of main predicate
paths, filtering predicate paths and returning the tail entity. D
ferently, the former filter the whole candidate predicate paths
using pre-defined rules, while the latter use seq2seq [10] to
generate candidate predicate paths. Bordes et al.(2014) [18]
are the first to apply an embedding-based approach for KBQA.
Later, Bordes et al.(2014) [19] propose a subgraph embed-
ding method, which encodes more information of the candi-
date subgraghs. Golub et al.(2016) [16] propose a character-
level approach based on encoder-decoder architecture with
the attention mechanism. Wang et al.(2018) [9] propose an
APVA(entity alignment, path label prediction, verification,
object answering) architecture, which train verification and
path label prediction alternately. Xu et al.(2018) [8] enrich
the question represent using completing-CNN and comparing-
CNN. Our method is inspired by Xu et al.(2018) and Wang
et al.(2018), but differently, we propose an adaptive module,
which solves the scenario that new questions might involve
predicates beyond the training samples.

III. PROBLEM STATEMENT

Definition 1 (Current Knowledge Context): The CKC is
a set of relation edges around the entity vertex at each hop
in KB. For example, as shown in Figure 1, the first hop CKC
is a set of the predicates around the first entity e1 detected in
the question.

Fig. 1. An example of the multi-hop question. CKC is the set of predicates
around entity.

Task Definition: We use (h,p,t) to represent a fact, which
means that there exists a predicate p from a head entity h to a
tail entity t. Let K be a knowledge base that consists of a large
number of facts. The total numbers of predicates and entities
are represented as P and E . The answer to q may be multiple
facts which form a path in the KB. For example, the answer
could involve two triples (a,r1,b) and (b,r2,c) concatenated
in tandem. This corresponds to the path (a,r1,b,r2,c) in the
KB. Denote by P∗ is the set of all finite-length sequences



predicates. We still denote an answer, multi-hop or single-
hop, as a triple (h,p,t) while considering p∈ P∗. Let Q be
a set of questions. Given the conditions described above, we
now formally define our problem.

Given a knowledge base K associated with all its predicates’
and entities’ names and the embedding representations of
KB/NL, as well as a set of questions Q associated with
corresponding head entities and predicate paths, we aim to
design a multi-task learning framework that takes a new
question as input and automatically returns the corresponding
predicate paths and tail entity.

IV. OUR APPROACH

Figure 2 shows the workflow of our framework. We use
the freebase as our KB. As usual for traditional models, our
framework have three main modules, entity detection, relation
generation and relation detection.

Given a natural language question q, we employ the follow-
ing steps to return the answers. (i) The entity detection module
recognizes the alias of the head entity1, and then performs the
alias linking to get the entities in KB. (ii) After getting all
entities, the relation generation module would generate/predict
a candidate predicate paths using reasoning module on literal-
level and semantic-level. (iii) Finally, with the help of the
reasoning module, the relation detection returns top-k (h,p,t)
triples, which can be transformed to SPARQL query language
to get the final answers.

Fig. 2. The overview of the proposed KB-QA system. The detail of reason
module is in Figure 3.

A. Entity Detection

Given a question, the goal of the entity detection module is
to find all possible head entity names using certain selection
strategies. In this part, similar to Qu et al. (2018) [17], our goal
is to get all possible head entities. We employ a BIGRU [20]
network and treat the entity detection as a sequential binary
classification task that decides whether each word in a sentence
should belong to entity mention. Getting a set of words with

1In freebase, each entity has only one identification code. The topic words
are the alias of the entity. For example, the alias of the entity ”m.05v8c” is
”philippines”.

a positive label, we use edit distance algorithm2 to deal with
logogram of some ambiguous entities. Moreover, we use entity
linking result3 to enrich the candidate entity set.

B. Relation Generation

The architecture of this part is shown in Figure 3. This
module generates the relation path from the head entity to the
tail entity, and mainly contains an encode layer and a decode
layer. The encode layer captures the semantic information
of the question. The decode layer generates relation paths
according to the context representation of the encode layer.

1) Encode Layer: Given a question Q, this part aims to
effectively represent the information of question. As is shown
in Figure 3.

First of all, we look up a word embedding matrix W ∈
R|Vw|×d to convert the original Q into word embeddings
{q(tok)i }, where |Vw| denotes the vocabulary size of natural
language words, and d denotes the embedding dimension.
Embedding matrix is initialized using Glove [21](which is
a pre-trained file), and it is fine-tuned during the training
process. Then we construct a pattern of this question through
replacing the keyword with e, and leverage question pattern
to represent long-range dependencies between the answer and
the head entity. Because the start of the query path in the
question is always analogous. We simply treat the question
as ascending sequence pattern, and keyword is fixed at 37.
For example, as shown in figure 3 for the question ”what
time zone in the e”, keyword subscript is 37, the subscript
of the question is (32 33 34 35 36 37). Then the subscript of
the question is converted into embeddings {q(p)} through the
sequence embedding matrix P ∈ R|Vp|×d , where |Vp| denotes
the maximum length of the question. Finally we combine two
representations as {qi} = {q(tok)i }+{q(p)i }, which are fed into
a GRU network. We use the output hidden of GRU at final
timestep as the reasoning context of first hop l1, and employ
each timestep hidden {ui} to construct similarity matrix in
reasoning module.

2) Decode Layer: Given the represent of encode layer {qi},
this layer aim to generate the predicate path via static part
and dynamic part. Static part is a classical decode layer of
seq2seq model, which records information of the reasoning
path to update the context. Dynamic part is a scoring module,
which can score the predicate in CKC. Since the predicate
is unlimited, it would face the following two scenarios in
the prediction of predicates: (i) When the predicates are in
predefined categories, it can improve the prediction of the
static part via weighted sum. (ii) When the predicates are
beyond predefined categories, it directly score the predicate,
and then select the best predicate via normalization.

2The process is [l+1, r+1, l-1, r-1, l+2, r + 2,...], where l+1 means add one
word from left side, r-1 means discard one word from right side.

3for SimQ, and the entity-linking result can be downloaded from
https://github.com/Gorov/SimpleQuestions-EntityLinking; for WebQ,
https://github.com/scottyih/STAGG



Fig. 3. The overview of relation generation. The core of this task is the reasoning module, which captures the information between question and relation
in the CKC on literal-level α and semantic-level β. θ acts as dynamic probability in relation prediction, while acts as weight in relation detection. γ acts as
static probability. Final probability of relation generation λ combines dynamic part and static part.

Reasoning Module(Dynamic Part): We aim to answer the
three questions raised in this paper using this module. (i) The
reasoning module is a component used to calculate the score of
the predicate, which is not restricted by predefined predicates’
categories. That can solve the question one. (ii) We construct
two part in reasoning module from literal part and semantic
part, so that reasoning module could understand the informa-
tion of the predicate from several different perspectives. That
can solve the question two. (iii)Instead of employing the gate
mechanism, we directly use attention mechanism to make the
module contain certain memory ability and reasoning ability.
That can solve the question three.

• Literal Part: Similarity matrix could better construct
the representation of semantic vector space between
question and predicate, and convolutional neural network
can capture the features of similarity matrix from row
and column. These features support reasoning module to
distinguish semantic information of similar predicate.
Given a question with length Lq and a predicate with
length Lp, we first map their tokens into a sequence of
word embedding vectors {ui} and {vj}, based on a pre-
trained embeddings such as GloVe [21]. Then we employ
{ui} and {vj} to construct a similarity matrix M as the
basic of the channel, and use the CNN network to extract
different levels of matching patterns. Finally, we apply the
max pooling to amplify the feature both from question to
predicate zi1 and from predicate to question zi2. A fully
connected layer is then applied to hidden state [zi1; z

i
2], its

result opi is the score between question and predicate from
NL, the corresponding probability is αp

i . opi is computed
via the following equations.

αp
i =

exp(opi )∑nk

t=0 exp(o
p
t )

(1)

opi =W3[z
i
1; z

i
2] + b (2)

zi1 =W2σ(W1[y
(1,0); y(1,K)] + b1) + b2 (3)

zi2 =W2σ(W1[y
(2,0); y(2,K)] + b1) + b2 (4)

y
(1,k)
i = max

0≤t<d1

dki,t (5)

y
(2,k)
j = max

0≤t<d2

dkt,j (6)

dki,j = σ(

nk−1∑
s=0

nk−1∑
t=0

wk
s,tMi+s,j+t + bk) (7)

Mij = ui ⊗ vj (8)

Where wk is the k-th kernel. nk denotes the size of the
k-th kernel. ReLU is adopted as the active function σ. zi1
denotes the aspect of the question to i-th relation in the
p-th hop CKC. zi2 denotes the aspect of i-th relation to
the question in the p-th hop CKC. Wk is the learnable
parameters of the k-th MLP layer. αp

i is the attention
weight of i-th relation in the p-th hop CKC on literal-
level.

• Semantic Part: TransE [22] is the method of KB embed-
ding, which could capture the structural information of
KB. The reasoning context lp contain the context of the
question, which could make the reasoning module have
memory ability. Instead of using the gate mechanism,
we employ an attention mechanism on semantic-level βp

i ,
which aims to learn the different contributions between



reasoning context lp−1 and predicates hpi at each hop.
The dynamic probability distribution θpi can be measured
as followed:

θpi = f([βp
i ;α

p
i ]) (9)

βp
i =

exp(wp
i )∑n

t=0 exp(w
p
i )

(10)

wp
i = V T tanh(WT [hpi ; l

p−1]) (11)

Where θpi is dynamic probability of i-th relation in the
p-th hop CKC. βp

i denotes semantic weight of (p-1)-th
reasoning context to the i-th relation in the p-th hop CKC,
and n is the relation length of the CKC. WT ∈ R2d×d

and V T ∈ Rd×1 are intermediate learnable parameters.
f(.) is simple MLP without bias.

Final Relation Predication(Static part):We think that the
final prediction result of the predicate should consider both
dynamic part and static part. In the NLP task, GRU acts as
memory storage. We employ the output of unidirectional GRU
at p-th hop as the static probability distributions γpi , and use θpi
in (12) as dynamic probability distributions. The final relation
probability distributions λpi at p-th hop could be defined as
follows:

λpi = h([θpi ; γi]) (12)

γi = GRU(γi−1, li) (13)

Where function h(.) is MLP function. GRU(.) is GRU
function, which can gerenate the hidden vector γi at i-th hop,
li is the current predicate.

C. Relation Detection

After getting a set of (h,p,t) triples, we need this part to score
these triples. As shown in Figure 4, this part mainly contains
two parts, reasoning module and ranking. The parameters of
reasoning module is the same as decode layer. The main
problem of reasoning module in this part is to construct CKC.
We consider the predicate path as CKC, and use the weighted
sum of the predicate as the context of predicate path. Finally,
the model gets the final score through a simple dot product.

1) Sharing Reasoning Module: After the previous steps,
we get candidate relation path (s, r1, r2, ..., rn). As for the
relation detection task, the responsibility of the reasoning
module is to capture the contribution of relation in relation
path. We consider the candidate relation path as the first hop
CKC, and the formula of the representation h of relation path
as follows:

h =

n∑
i=0

θihi (14)

Where hi denotes i-th relation in a relation path, and θi acts
as i-th relation weight in a relation path.

2) Ranking: Relation detection is used to calculate the
score Srel between question and candidate relation paths
r1,2,...,n using reasoning module. To enhance our model,
similar to Yu et al.(2017), we use entity re-ranking methods
involving computations of two scores, the score of the entity
Sentity and the score of candidate relation paths Srel. The
final score can be measured as follows:

Srerank(q, r
p
1,2,...,n) = m ∗ Srel(q, r1,2,...,n)+

(1−m) ∗ Sentity(q, r
p
1,2,...,n)

(15)

Srel(q, r1,2,...,n) = (q ⊗ h) (16)

Where, q is the context representation of the question. m is a
hyper-parameter. The values of Sentity(q, r

p
1,2,...,n) is publicly

available on the website4.

Fig. 4. The overview of relation detection. The left is the context of question
sharing the same encode layer in relation generation. The right is the context
of the relation path.

D. Loss Function

For our proposed model, we use masked-softmax cross
entropy loss function to train relation prediction module. And
we use hinge loss to train relation detection, which maximizes
the margin between gold sample relation path rp+ and negative
sample relation path rp−. rp− could be generated as following
step:(i) firstly, we use the whole relations as negative sample
set which excludes each hop relation. (ii) At each hop, we
generate each hop from negative sample set randomly. D is
a set consisting of the gold relation paths. The hinge loss
formulas as follow:

loss1 = −
∑
ri∈R

q(ri)log(p(ri)) (17)

loss2(q, rp−, rp+) = l (18)

l =
∑

(q,rp+)∈D

max(0, λ+ S(q, rp−)− S(q, rp+)) (19)

where p(ri) is ri the probability of the prediction generated
by the model at i-th hop, q(ri) is the predicate label at i-th
hop.

4for SimQ, https://github.com/Gorov/SimpleQuestions-EntityLinking; for
WebQ, https://github.com/scottyih/STAGG



V. EXPERIMENT

This section describes an extensive evaluation of our model
against state-of-the-art KBQA methods. We use the Freebase
as our KB, and use the SimpleQuestion and WebQuestion as
our dataset.

A. Dataset

SimpleQuestion(SimQ):SimQ consists of 108,442 ques-
tions written by human English-speaking annotators. The
dataset is partitioned randomly into 75,910 training question,
10,845 validation question, and 21,687 test questions. The
questions in SimQ are all single-hop and single-answer.

WebQuestion(WebQ):WebQ5 contains 3,778 training ex-
ample and 2,032 test examples. Each question can have mul-
tiple correct answers. In our experiment, we use a development
version of the dataset 6, which contains potential noise, such
as incorrect relation paths and missing of relation paths.

FreeBase:The answer triples or paths in SimQ and WebQ
are all in FreeBase. For SimQ, we use a subset of FreeBase—
FB2M, which includes 2,150,604 entities, 6701 relations and
14,180,937 triples. The answer triples in SimQ can all be
found in FB2M, whereas not the all answer paths in WebQ
are accessible in FB2M. Thus, for the KBQA tasks, the KB
associated with SimQ is chosen as FB2M, and that with WebQ
is chosen as the entire Freebase7.

B. Setting

We initialize word embedding using pre-trained GloVe [21]
vector with word embedding of size 300, and the global free-
base model is also trained separately. In this model, TransE8

[23] uses FB2M to construct the schame graph for both SimQ
and WebQ datasets. The dimension of the relation embedding
space is chosen as 100. The hidden layer of GRU has size
300, and hinge loss margin is set to 2. The number of CNN
channel is 12 and the kernel size is set to 3. For optimization,
parameters are trained using Adam [24] with a learning rate
of 0.0005 in mini-batch setting with batch size 64. Drouput
is used to regularize CNN and linear-layer in our experiment
and is set to 0.3.

For negative sample, the sampleing size of SimQ is set to
5, and the sampleing size of WebQ is set to 50.

C. Baseline
• Yih et al.(2015) use query graph generation method,

where KBQA task is formulated as a staged search
problem converting the question into query language with
constraints and aggregations.

• Jain et al.(2016) use memory network to solve multi-
hop reasoning problem through treating the triple (s,r,o)
as memory slot at each hop, which creates probability
distribution for candidate triple.

5nlp.stanford.edu/software/sempre
6https://github.com/brmson/dataset-factoid-webquestions
7the freebase version can be downloaded in

https://github.com/percyliang/sempre
8https://github.com/thunlp/KB2E

TABLE I
KBQA RESULTS ON SIMQ AND WEBQ TEST SETS.ACC=ACCURACY

Model WebQ(F1 %) SimQ(Acc %)
(Yih et al.,2015) 52.5 76.4
(Jain et al.2016) 55.6 63.9
(Yu et al.,2017) - 77.0
(Hao et al.,2017) 42.9 -
(Qu et al.,2018) - 77.9
(Wang et al.,2018) - 81.5
(Chen et al.,2019) 55.7 -
(Tong et al.,2019) 44.1 -
Our Method 57.6 82.3

• Yu et al.(2019) employ hierarchical residual BiLSTM
relation detector to improve the performance of relation
detection, and make use of S-mart( [25]) to re-ranking
the result of the entity linking.

• The best model (Wang et al.,2018) refines the training
framework of multi-components, and proposes a kind of
novel SGD iterative training.

• Qu et al.(2018) prove the effectiveness between question
words and relation words based on CNN in SimQ, but
their model is limited to only solve single hop question.

• Chen et al.(2019) employ complex bidirectional attention
and memory network to capture interactions between the
questions and the KB.

• Tong et al.(2019) propose a new KG-QA approach by
leveraging the domain context, with the help of a cross-
attention model. And they also parse the question tree and
utilize meta-path to enrich the representation for answers,
which enhances the performance of KBQA.

D. Result

The results of our experiment are presented in Table I. From
the results, compared with the best baseline, our model makes
improvement of 0.8% accuracy on SimQ, and 1.9% F1 on
WebQ. In Wang et al.(2018) researcher, they conclude that the
bottleneck of existing model is relation detection. Following
their findings, we imporve the accuracy of the predicates
before relation detection, such that the model achieve the best
result.

However, we have to illustrate the environment of WebQ.
There are not predicate paths on original WebQ, so predicate
paths must be generated by search algorithm. That may cause
different experimental environments. For the sake of fairness,
we use the public dataset about predicate paths on WebQ9,
which contains potential noise. And we compared with the
model of the same experimental environment on WebQ.

1) Ablation Study: Both the model Yu et al.(2017) and Yih
et al.(2015) add extra features in generating relation paths, e.g.,
constraints and aggregation. Since the original dataset don’t
have these extra information, these works need to reannotate
the training sample using human cost. However, before starting
their work, they all need to generate the main predicate path,
just like relation generation module does. In other words, these

9https://github.com/brmson/dataset-factoid-webquestions



TABLE II
EXPERIMENTAL RESULTS ON WEBQ AND SIMQ. THIS IS THE ACCURACY

OF THE TOP-1 RELATION PATH ON WEBQ AND SIMQ

Model WebQ(Acc %) SimQ(Acc %)
(Yih et al.,2015) 63.9 76.4
(Yu et al.,2017) 63.9 77.0
Our Method(All) 65.02 82.3
Our Method(w/o reasoning module) 60.12 79.4
Our Method(w/o literal part) 63.32 80.5
Our Method(w/o semantic part) 62.59 80.2
Our Method(w/o jointing training) 64.21 81.4

extra features can be embed to our model to improve the
performance.

Ablation study of our model is shown in Table II. First,
supposed that leaving out the reasoning module, our frame-
work would become the simplest model for handling KBQA.
The result of the second line shows that the drop is more ob-
vious on WebQ when leaving out the reasoning module(from
65.02% to 60.12%). That demonstrates the effectiveness of
our reasoning module. Second, the reasoning module without
jointing training yields a better result on WebQ(from 60.12%
to 64.21). Both literal part and semantic part also improve
the performence of our model in different degrees (the result
of the line 3 and the reault of the line 4). Third, the multi-
task learning method improves our system (from 64.21%
to 65.02%), because the multi-task learning helps reasoning
module to learn more different feature from different tasks.

Comparing the result of the drop rate on SimQ and WebQ
when leaving out the reasoning module(4.9% vs 2.9%), our
reasoning module has a greater impact on WebQ than SimQ,
because the longer the length of the predicate path, the greater
the influence of the reasoning module on the performance of
the model. That also illustrates the effectiveness of our module.

2) Interpretability Analysis: We evaluate the effectiveness
of the proposed framework. In this section, we aim to answer
the following two research questions via using case study:

• How to solve the question that similar structural predicate
is indistinguishable.

• How to leverage the reasoning context to make the
adaptive module contain reasoning ability?

To answer question one, as showed in Figure 5. The
heatmap of the weight generated by a example question
”where was blessed kateri born”. Obviously, our model
successfully capture the semantic information of the cor-
rect predicate ”people.person.place of birth” and the sim-
ilar predicate ”people.person.nationality”. However, in the
final prediction of predicates, the weight of the predi-
cate ”people.person.place of birth” is higher than the pred-
icate ”people.person.nationality”, because the predicate ”peo-
ple.person.place of birth” is closer to the question in semantic
information. That proves that our model can distinguish subtle
difference in the similar structural predicates.

To answer question two, figure 6 shows the heatmap of
the weight generated by a example the question ”What is
the name of Obama’s father”. The weight of the predicate

Fig. 5. The weight between the question and the predicate. Red is
higher weight. The top picture is the heatmap of the correct predicate
”people.person.place of birth”, the bottom picture is the heatmap of other
predicates in common CKC. These similarity matrix are extracted from one
of CNN cores.

”type.object.name” in first hop CKC is lower than sencod
hop CKC, because the reasoning context impacts the weight
of the predicate. That illustrates that reasoning module have
reasoning ability, such that it can generate the corresponding
weights of the predicates according to the reasoning context.

VI. CONCLUSION

In this paper, to our best of knowledge, we are the first to
model the interactions between questions and the underlying
KB for the KBQA task at each hop dynamically. We proposed
an adaptive module with powerful generalization, which could
help existing model to solve the scenario of dynamic envi-
roment KB through scoring the predicates beyond the train-
ing samples. Finally, we use multi-task learning to help the
reasoning module to reduce variance and improve our model



Fig. 6. Weight heatmap generated by the reasoning module. The weight of
the predicate ”type.object.name” at different hop in question ”What is the
name of Obama’s father”. Red is higher weight

fault-tolerant ability. The experimental results demonstate the
effectiveness of our model.

In future work, we intend to add the constrains of question
into predicate path, which can is translated into the problem
of the matching of the query graph. And we would try better
pre-trained model to enhance our model. Simultaneously, the
challenge of this problem is changed to how to model graph
embedding.
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