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Abstract—Cross-modal retrieval, given the data of one specific
modality as a query, aims to search the relevant data in other
modalities. Recently, cross-modal hashing has attracted much
attention due to its high efficiency and low storage cost. Its main
idea is to approximate the cross-modality similarity via binary
codes. This kind of method works well when the cross-modal
data is completely observed. However, the real-world application
usually avoids this situation, where part of the information is
unobserved in some modality. Such partial multimodal data will
result in the lack of pairwise information and then destroy the
performance of cross-modal hashing. In this paper, we proposed
a novel unsupervised cross-modal hashing approach, named as
Unsupervised Deep Imputed Hashing (UDIH). It is a two-
stage learning strategy. Firstly, the unobserved pairwise data is
imputed by the proposed generators. Then a neural network
with weighted triplet loss is applied on the correlation graph to
learn the hashing code in the Hamming space for each modality,
where the correlation graph is constructed with the aid of
augmented data. UDIH has the ability to preserve the semantic
consistency and difference among data objects. The extensive
experimental results have shown that the proposed method
outperforms the state-of-the-art methods on two benchmark
datasets (MIRFlickr and NUS-WIDE). The source code could
be available at https://github.com/AkChen/UDIH

Index Terms—cross-modal retrieval, partial multimodal
data,cross-modal hashing, imputation, unsupervised learning

I. INTRODUCTION

Multimodal data has grown dramatically. For example, in
the recommendation system, each product is demonstrated
from multiple views such as pictures, textual description,
and even video, so that users can sufficiently understand its
characteristics. To flexibly meet the users’ requirements, cross-
modal retrieval, instead of single-modal retrieval plays a more
and more important role in real-world applications. Given
the data of one specific modality as a query, cross-modal
retrieval has the ability to search the relevant data in other
modalities. Recently, cross-modal hashing (CMH) becomes
one of the most popular cross-modal retrieval strategies due to
its high efficiency and low storage cost. Most existing CMH
methods are designed by assuming that the multimodal data is
completely observed. However, in practical applications, it is
hard to collect data with full modalities because of various
unpredictable reasons, such as unforeseeable malfunction,
collection mode limitation, etc.
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Fig. 1. The illustration of partial multimodal data. There existing both paired
data objects and unpaired data objects. The blank areas indicate that the
corresponding information is missing due to some unpredictable reasons, such
as unforeseeable malfunction, collection mode limitation, etc.

The other challenging issue in cross-modal retrieval is that
the data of different modalities may be represented in different
feature spaces, which is usually called as ’heterogeneity gap’
[16]. To implement cross-modal retrieval, it is necessary to
collect sufficient pairwise information (the one-to-one cor-
respondence of paired data) so that the consistent semantic
information can be captured from multiple modalities.

However, in real-world applications, partial multi-modal
data without label always exists, as shown in Figure 1. This
situation makes cross-modal retrieval much more challenging
because there is no knowledge to supervise the learning
process. In literatures, researchers began to focus on unsu-
pervised cross-modal hashing (CMH) [1], [5], [7], [8], [19]–
[21], but only few methods are designed to handle incom-
plete multimodal data, called as unsupervised partial cross-
modal hashing (PCMH) [10], [11], [13], [14], [17]. The main
purpose of existing PCMH approaches is to preserve the
pairwise consistency among data objects. In fact, cross-modal
retrieval aims to identify the semantic relations among multi-
modal data objects which are not the same with the pairwise
consistency [3], [22]. Therefore, it is necessary to consider
the semantic consistency and difference among modalities
when learning the hash codes. Meanwhile, their performance
significantly depends on the amount of pairwise information,
which limits their application on partial cross-modal retrieval.

To address the above drawbacks, we propose the Unsuper-
vised Deep Imputed Hashing (UDIH) method from image-text
cross-modal retrieval. It aims to learn the cross-modal hashing
code by sufficient capturing the multi-level features of multi-

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



modal data. Specifically, UDIH consists of two parts. The
first part tries to fill in the incomplete pairwise information
via two generators, one for text data generation from image
information, and the other for image data generation from
text information with the aid of cascaded residual autoencoder
[15]. The augmented pairwise data is used to construct the
correlation graph, on which a deep neural network with a
weighted triplet loss function is designed to learn the hashing
code. Thus, the proposed UDIH is expected to sufficiently
preserve the semantic consistency and difference among multi-
modal data objects.

We summarize the main contributions of this paper as
follows.
• A new unsupervised partial cross-modal hashing (UDIH)

framework is proposed to learn the hashing codes of
multimodal data objects by sufficiently mine the relative
semantic similarity among multiple modalities.

• To make up for the lack of pairwise information, UDIH
imputes the incomplete multimodal data according to the
estimated data distribution, so that the original limited
pairwise information can be sufficiently augmented.

• UDIH constructs a weighted graph to reasonably exploit
the original pairwise information and imputed pairwise
information to effectively capture the cross-modal corre-
lation.

• To correctly represent the multimodal data in Hamming
space, UDIH learns the hashing codes of the augmented
multi-modal data via a neural network with weighted
triplet loss. It has the ability to preserve semantic simi-
larity among multiple modalities.

• The performance of UDIH is thoroughly investigated on
two widely-used datasets, indicating its advantage over
the state-of-the-art baselines.

The remainder of the paper is organized as follows. We
briefly introduce the related works on partial cross-modal re-
trieval methods in Section II. The proposed UDIH framework
is described in Section III. Extensive experimental results are
listed and discussed in Section IV to verify the performance
and the motivation of UDIH. Lastly, we draw a brief conclu-
sion in Section V.

II. RELATED WORK

In this section, we review related works from the follow-
ing aspects: matrix factorization (MF)-based and graph-based
unsupervised PCMH methods.

A. MF-based unsupervised PCMH methods

Matrix factorization models map data to a joint latent factor
space of dimensionality. [6] MF-based methods attempt to
learn an optimal linear matrix to map data into common space
and to learn Hamming representation lastly. For each individ-
ual modality, PM2H [17] learns a modality-specific basis ma-
trix to learn the latent representation of instances by minimiz-
ing the reconstruction error. To break the heterogeneity gap,
PM2H [17] shares the latent representation of all available
paired data. For preserving intral-modality similarity, graph

Laplacian [18] is exploited to preserve the local structure in
the common Hamming space for each modality. Therefore,
by sharing paired data, the relationship between modalities is
established. CCQ [10] is another MF based method in this
area. In order to efficiently reduce quantization error during
hashing learning, CCQ [10] adopts a similarity-preserving
codebook [10] to replace the traditional mapping matrix. By
selecting optimal code from codebooks, data could be directly
mapped to common Hamming space. Similar to PM2H [17],
CCQ [10] breaks the heterogeneity gap by requiring condition
the codes of the inter-modal pairs as consistent as possible.

B. Graph-based unsupervised PCMH methods

Graph-based methods attempt to construct a similarity graph
in the level of original feature space to constraint the hashing
learning. Based on the graph, the similarity among different
modalities can be directly measured. IMH [14] constructs
affinity matrices for each modality to preserve intra-modality
consistency. Then, to make the Hamming representation of
paired data consistent, IMH [14] minimizes the distance of
the hash codes of paired data. Inspired by anchor graph
for hashing learning [9], SPDH [13] constructs an novel
anchor graph based on anchors [9] to measure the cross-modal
similarity. A graph Laplcian [18], constructed by the anchor
graph, will be exploited to map different data to common
space. Moreover, SPDH learns hash codes bit by bit, which
could also reduce quantization error.

In general, these methods have achieved good results, but
there are still some problems. These methods work well on
preserving the data similar. However, the difference between
dissimilar data is not fully considered. Meanwhile, to han-
dle the situation with limited pairwise information, and the
limitation of the only constraint on consistency, we propose
graph-based UDIH in this paper.

III. PROPOSED METHOD

In this section, an Unsupervised Deep Imputed Hashing
(UDIH) is proposed, as shown in Fig.2. UDIH contains two
parts, one for generating pairwise information and the other
one for determining the discrete hamming space by exploiting
the constructed weighted cross-modal correlation graph. In
the pairwise generation, the partial objects will be completed
by exploiting the specific-modal imputation generator which
is trained by the corrupted complete cases. In the discrete
hamming space, the objects’ binary codes will be characterized
by simultaneously preserving the semantic consistency and
difference.

A. Problem Statement

In partial cross modal retrieval, the retrieval database and
query usually consist of objects from different modalities. Here
we use image and text as two modalities to explain our method.
Let S(v) = [X(v),Y(v)] ∈ Rdv×nv (v ∈ {1, 2}) indicate the
training set in the v-th modality, where X(v) = {x(v)

i }ci=1

and Y(v) = {y(v)
i }

nv−c
i=1 . X(v) and Y(v) denote the complete

cases and partial cases. dv and nv are the dimensionality and



Fig. 2. The overall framework of UDIH.

the numbers of samples in the v-th modality, respectively. c is
the number of complete cases. For complete cases, [x

(1)
i ,x

(2)
i ],

the objects have one-to-one correspondence among different
modalities. For partial cases, [y

(1)
i ,o(2)] or [o(1),y

(2)
i ], the

objects are only partially provided. Here o(v) = [0, 0, · · · , 0] ∈
Rdv represents the unobserved elements in the v-modality.

Our goal is to learn modal-specific hash function to de-
termine the common Hamming space. In the common binary
space, image and text can be easily comparable such that cross-
modal retrieval can be readily supported, i.e., given a query
text can efficiently retrieval the relevant images.

Throughout the paper, vectors and matrices are denoted by
lowercase bolded letters (e.g.,a)and uppercase bolded letters
(e.g., A), respectively. ai is the i-th column of A and aij is
the j-th entry of ai. The Frobenius norm of a matrix is defined
as ‖A‖2F =

∑
ij a

2
ij .

B. Pairwise Information Generation

The main idea of UDIH is to impute the unobserved
pairwise data to determine the common Hamming space with
the constructed correlation graph. To achieve the first mission
via the complex relatedness among different modalities, a two-
pathway architecture generator is designed by exploiting the
complete cases to impute the unobserved data. Each pathway
is composed of a set of stacked residual auto-encoder (RAs)

[12] that iteratively model the residual. For the first RA, it
takes the artificially corrupted complete cases {xi}ci=1 as the
input. This problem can be formulated as

Xi1 =

{
[x1

i ;o
2] : text is corrupted

[o1;x2
i ] : image is corrupted

(1)

Its desired output is the difference between the input data
sample and the complete data sample, i.e., ∆Xi1 = xi − xi.
RA aims to make the estimated output to be close to the
desired output as possible. Thus, its loss function can be
calculated as

LRA1 = ‖∆Xi1 −∆Xi1‖2F , (2)

where ∆Xi1 is the output of RA.
To refine the estimation, the input of the remaining RAs

is the summation of the input of the last RA and the output
of the last RA. Specifically, the input of the k-th (k ≥ 2)
RA can be represented as Xik = Xik−1 + ∆Xik−1, where
∆Xik−1 is the output of the last RA. Each RA will be learnt
via minimizing the difference between current estimation and
the complete cases, and therefore the loss function of the k-th
RA can be formulated as

LRAk = ‖∆Xik −∆Xik‖2F (3)



To estimate a function well approximating the complete
data, the imputation generator can be trained with the cor-
rupted data by a forward and layer fashion. More specifically,
each additional RA is trained to further minimize the recon-
struction error of the current RA, so that the estimation can be
refined by combining all the outputs of RAs. Mathematically,
the estimation data sample can be formulated as

x̃i = G(Xi1) = Xi1 +

t∑
k=1

∆Xik,

where t is the number of RA, G(·) is the imputation generator
function.

The joint loss function of modal-specific generator G(v) is
defined as

L(v)
re = ‖xi − x̃i‖2F + λG(v)‖θG(v)‖2F , v ∈ {1, 2}, (4)

where λG(v) and θG(v) are the weight decay parameter and
trained parameters in the v-th imputation generator, respec-
tively. Once achieving the generator, the missing data sample
in each modal {o(v)}2v=1 can be imputed. It is worth noting
that, unlike the existing methods, we only randomly impute pi
image data objects and pt text data objects to avoid introducing
more noise data, which results in the augmented feature
matrix, Z = [z1, z2, · · · , zc+pi+pt

] ∈ R(d1+d2)×(c+pi+pt),
where c is the number of complete cases (zi = [z

(1)
1 , z

(2)
2 ]).

C. Discrete Hamming Space Identification

To significantly improve the cross-modal retrieval speed and
storage, UDIH adopts two-pathway deep layers to determine
the common hamming space. The input of each pathway
is the respective features. Because networks are independent
of each other, inter-modal relationships, correlation graph Z,
are needed to constrain them. The correlation graph aims to
capture the underlying structure across different modalities so
that the data of different modalities but relevant can have small
hamming distance and promote retrieval performance.

As the correlation graph is used to guide the training
Hamming space identification model, it [13] is crucial for
hashing to achieve good performance. However, it is very
challenging to directly analyze the correlation among partial
cross-modal data, as they belong to different modalities and
partial pairwise information is also not available. In most
existing methods [9], [13], [21], K-nearest neighbors graph
is used to model the correlation among partial cross-modal
data. However, this suffers from two drawbacks. One is how
to set the hyperparameter K in an unsupervised manner. The
other one is the semantic similarity calculated by distance can
not be well matched.

To address these two issues, we design a simple yet effective
weighted correlation graph construction approach with the
help of the augmented feature matrix, to uncover similarities
among partial cross-modal data. The main idea is utilizing the
relevant among paired case and the irrelevant among unpaired

case. Then the cross-modal correlation between the i-th image
and the j-th text can be calculated as

W(i, j) =

{
+1.0 ∗Pair(i, j) : i = j

−1.0 ∗Pair(i, j) : i 6= j
, (5)

where

Pair(i, j) =

{
α : Z1

i or Z2
j is imputed

1.0 : otherwise
, (6)

α denotes the reliability of imputed data.
Once receiving the correlation graph, we intend to utilize the

underlying data manifold of different modalities to determine
the hamming space. Intuitively, the data of different modalities
but relevant is desired to have small hamming distance, while
the irrelevant data of different modalities is desired to large
hamming distance, and therefore the retrieval performance can
be improved. UDIH adopts two pathway deep layers to learn
the modality-specific binary codes. It consists of two fully
connected layers.

The first layer severs an intermediate layer that maps the
original modality specific feature into a hidden representation
space with tanh activation function. Mathematically, it can be
formulated as

ρv(z
(v)
i ) = tanh(w(v)

c z
(v)
i + b(v)

c ), v ∈ {1, 2}, (7)

where z
(v)
i is i-th feature data sample of v-th modality, w(v)

c

denotes the weights parameters in the hidden representation
learning layer and b

(v)
c is the bias parameter in v-th pathway.

The other layer serves as common representation learning,
which maps the intermediate feature into common representa-
tion

h(v)(z
(v)
i ) = sigmoid(w

(v)
h ρ(v)(z

(v)
i ) + b

(v)
h ) ∈ (0, 1)r,

v ∈ {1, 2},
(8)

where w
(v)
h denotes the weights parameters in the common

representation learning layer and b
(v)
h is the bias parameter in

v-th pathway.
To improve the modality-specific hash function, the similar-

ity information among original data is desired to preserve as
much as possible, i.e., the related data as consistent as possible,
while the irrelevant is as inconsistent as possible. Thus the
weighted triplet loss function can be defined as

L(v)
sim = max(0, δ + W(i, j)‖h(v)(z

(v)
i )− h(!∗v)(z

(!∗v)
j )‖2F

+W(i, k)‖h(v)(z
(v)
i )− h(!∗v)(z

(!∗v)
k )‖2F ) + λH(v)‖θH(v)‖2F ,

v ∈ {1, 2},

(9)

where data sample i and j is relevant, data sample i and k is
irrelevant via the constructed correlation graph W, θH(v) is the
parameters of the v-th hashing network, δ is a bias parameter.
!∗v = !(2− v) + 1, where !1 = 0 and !0 = 1.

Finally, the corresponding hash function of v-th modality is
defined as:

H(v)(x
(v)
i ) = sign(h(v)(z

(v)
i )− 0.5) ∈ {−1,+1}r, (10)

v ∈ {1, 2}, (11)



The learned hash function H(v)(x
(v)
i ) could map different data

to common hamming space so that the efficiently cross-modal
retrieval task can be available.

IV. EXPERIMENT

In this section, a series of experiments are conducted to
validate the performance of the proposed model UDIH by
comparing with the-state-of-the-art unsupervised partial cross-
modal hashing methods.

A. Datasets

Two kinds of widely-used cross-modality datasets are
adopted to evaluate the performance.

The MIRFlickr [4] dataset contains 25, 000 instances.
Following the experimental protocols in SPDH [13], we select
20, 015 instances for our experiment. The texts are expressed
as 500-D feature vector derived from PCA on the bag of words
vector. And we represent each image as 150-D edge histogram.
We take only 10% of the dataset as our query set and the
rest as the database and training set. The NUS−WIDE
[2] dataset is a public web image dataset and it originally
contains 269,648 instances. Following the experimental pro-
tocols in [13], only the top ten most frequent labels and the
corresponding 186, 577 image-text pairs are kept. The images
are represented by 500-D bag-of-visual-words and tags are
represented by 1000-D tag occurrence vectors. We randomly
select 1% of the dataset as our query set and the rest as the
database and training set.

B. Methodology

To illustrate the effectiveness of our proposed UDIH, there
are five state-of-the-art unsupervised PCMH baselines com-
pared in experiments, including Cluster-CCA [11], CCQ [10],
IMH [14], PM2H [17], and SPDH [13]. We also design a sim-
ple method UDIH-W that do not use pairwise augmentation.
Parameters of all the other methods are carefully tuned accord-
ing to the corresponding literature, and their best performances
are reported here. To make the experimental results more
realistic, the average results of 10 runs are recorded for all the
experiments. In our experiments, Image query Text (I2T ) de-
notes retrieving text by image query, and vice verse. The MAP
score is the mean of average precision (AP) for all queries,
and AP is computed as follows:AP = 1

R

∑T
k=1

k
Rk
× relk,

where T denotes the top T results, R denotes number of
relevant samples, Rk is the number of relevant samples in
the top k retrieved results, and relk = 1 if the k-th retrieved
result is relevant to the query set and 0 otherwise. In our
experiments, we set T = 50. The Partial Data Ratio is
defined as: PDR = (n − c)/n, where n is the number of
instances and c denotes the count of complete cases. To mimic
the real situation, we use PDR to randomly select samples
from training set as partial cases. Network structure is defined
as: RA structure = [d1+d2, 512, 256, d1+d2], hashing network
structure = [dm,1024, r]. The source code could be available
at https://github.com/AkChen/UDIH

C. Results and Discussions

In this section, we first analyze the effectiveness of impu-
tation generators. Then we analyze the effect of parameters.
To prove the effectiveness of proposed UDIH, we compare
our method with several state-of-the-art methods under two
different experiment scenarios. The first one is to compare
them using fixed PDR. Due to the imbalance of fixed PDR,
the second one is to compare them under varying PDR.

1) Ablation study of UDIH: To verify the impact of the
pairwise information generation, we design a UDIH with-
out imputation(UDIH-W). As is shown in Figure 3, UDIH
performs much better than UDIH-W which demonstrates the
importance of the imputation. Without more pairwise infor-
mation, the UDIH-W could only use complete cases to break
the ’heterogeneity gap’ and learn hash codes. By comparing
UDIH-W and UDIH, it is demonstrated that the imputed data
improves the performance of hash learning during training. It
is worth noting that the improvement of imputation on the
NUS-WIDE dataset is not as good as that on MIRFlickr.
This may be due to NUS-WIDE already having more pair-
wise information on the same PDR. Therefore, the retrieval
performance is more obvious when the paired information is
less.

2) Comparison with fixed PDR: We compare the MAP
results of the five methods and our UDIH on different datasets
with the same and different training setting, which is shown
in Table I, Table II, Table III, and Table IV. We conduct
an extreme PDR value of 0.9 to validate the performance of
different methods. Firstly, all partial cases will be exploited
by compared methods, consistent with the original settings of
these methods, while UDIH only uses pi image missed partial
cases and pt text missed partial cases. It can be seen that
our UDIH outperforms the other five methods significantly.
Cluster-CCA [11] has the worst performance among these
methods due to the lack of sufficient pairwise information.
IMH [14] outperforms PM2H [17] on MIRFlickr and NUS-
WIDE while their results worse than SPDH [13], CCQ [10],
and our UDIH. CCQ [10] has promising results due to its
outstanding quantization strategy. However, CCQ [10] only
uses pairwise information to connect the two modalities, and
does not retain intra-modal similarity. Therefore, in the case
of few pairwise information, the effect of reconstruction error
will cover the preserving of consistency, which is opposit of
cross-modal retrieval. Due to the leveraging of cross-modality
similarity, SPDH [13] has secondary performance. Secondly,
we design an additional experiment setting that using the same
pi and pt. As shown in Table III and Table IV, the performance
of most of the compared methods has decreased, but CCQ
[10] has a strange improvement or almost no degradation.
Because the effect of reconstruction errors is reduced, and with
the proposed quantization strategy, the only existing pairwise
information may be more effective for PCMH. Therefore,
UDIH-W also works well without any imputation. Motivated
by this, UDIH augments more pairwise information insdead
of directly learning on all data objects.



TABLE I
THE MAP SCORES OF TWO CROSS-MODAL RETRIEVAL TASKS WITH DIFFERENT pi , pt ON MIRFLICKR. PDR = 0.9

Image query Text Text query Image
Methods 16(BIT) 32(BIT) 64(BIT) 16(BIT) 32(BIT) 64(BIT) pi pt
Cluster-CCA [11] 0.6124 0.6044 0.6125 0.6019 0.6003 0.6125 ALL ALL
CCQ [10] 0.6223 0.6152 0.591 0.6053 0.5910 0.5819 ALL ALL
IMH [14] 0.6217 0.6209 0.6314 0.6309 0.6282 0.6301 ALL ALL
PM2H [17] 0.6223 0.6195 0.5944 0.6013 0.6119 0.5925 ALL ALL
SPDH [13] 0.6402 0.6384 0.6401 0.6381 0.64054 0.6362 ALL ALL
UDIH-W 0.6424 0.6431 0.6484 0.6439 0.6448 0.6435 0.0 0.0
UDIH 0.6624 0.6601 0.6668 0.6648 0.6541 0.6550 0.02*(n-c) 0.01*(n-c)

TABLE II
THE MAP SCORES OF TWO CROSS-MODAL RETRIEVAL TASKS WITH DIFFERENT pi , pt ON NUS-WIDE. PDR = 0.9

Image query Text Text query Image
Methods 16(BIT) 32(BIT) 64(BIT) 16(BIT) 32(BIT) 64(BIT) pi pt
Cluster-CCA [11] 0.4535 0.4235 0.4566 0.4231 0.4175 0.4302 ALL ALL
CCQ [10] 0.5029 0.5131 0.5236 0.5280 0.5426 0.5420 ALL ALL
IMH [14] 0.4651 0.475 0.4921 0.5016 0.5231 0.5281 ALL ALL
PM2H [17] 0.5013 0.4732 0.4651 0.4474 0.4362 0.4012 ALL ALL
SPDH [13] 0.5325 0.5199 0.5218 0.5465 0.5421 0.5435 ALL ALL
UDIH-W 0.5408 0.5519 0.5671 0.5421 0.5537 0.5679 0.0 0.0
UDIH 0.5608 0.5709 0.5971 0.5603 0.5772 0.5898 0.02*(n-c) 0.01*(n-c)

TABLE III
THE MAP SCORES OF TWO CROSS-MODAL RETRIEVAL TASKS WITH THE SAME pi AND pt ON MIRFLICKR. PDR = 0.9

Image query Text Text query Image
Methods 16(BIT) 32(BIT) 64(BIT) 16(BIT) 32(BIT) 64(BIT) pi pt
Cluster-CCA [11] 0.5675 0.5585 0.5705 0.5755 0.5721 0.5767 0.02*(n-c) 0.01*(n-c)
CCQ [10] 0.6191 0.6153 0.6113 0.6243 0.6214 0.6235 0.02*(n-c) 0.01*(n-c)
IMH [14] 0.5806 0.5895 0.5877 0.5821 0.5835 0.5814 0.02*(n-c) 0.01*(n-c)
PM2H [17] 0.5872 0.5877 0.5831 0.5129 0.5134 0.5158 0.02*(n-c) 0.01*(n-c)
SPDH [13] 0.6124 0.6137 0.6156 0.6201 0.6232 0.6185 0.02*(n-c) 0.01*(n-c)
UDIH-W 0.6424 0.6431 0.6484 0.6439 0.6448 0.6435 0.0 0.0
UDIH 0.6624 0.6601 0.6668 0.6648 0.6541 0.6550 0.02*(n-c) 0.01*(n-c)

TABLE IV
THE MAP SCORES OF TWO CROSS-MODAL RETRIEVAL TASKS WITH THE SAME pi AND pt ON NUS-WIDE. PDR = 0.9

Image query Text Text query Image
Methods 16(BIT) 32(BIT) 64(BIT) 16(BIT) 32(BIT) 64(BIT) pi pt
Cluster-CCA [11] 0.4425 0.4401 0.4351 0.4025 0.4175 0.4201 0.02*(n-c) 0.01*(n-c)
CCQ [10] 0.5101 0.5111 0.5153 0.5266 0.5316 0.5333 0.02*(n-c) 0.01*(n-c)
IMH [14] 0.4452 0.4425 0.4429 0.4785 0.4823 0.4833 0.02*(n-c) 0.01*(n-c)
PM2H [17] 0.4355 0.4337 0.4425 0.4425 0.4197 0.4042 0.02*(n-c) 0.01*(n-c)
SPDH [13] 0.5123 0.5079 0.5110 0.5157 0.5131 0.5130 0.02*(n-c) 0.01*(n-c)
UDIH-W 0.5408 0.5519 0.5671 0.5421 0.5537 0.5679 0.0 0.0
UDIH 0.5608 0.5709 0.5971 0.5603 0.5772 0.5898 0.02*(n-c) 0.01*(n-c)

3) Comparison under varying PDR: Though previous
works that could handle partial multimodal data have promis-
ing success, they will be greatly affected when partial data
ratio(PDR) is too high. The reason why PDR effect so much
on CMH is that CMH needs to leverage more pairwise
information, the one-to-one correspondence, to dominantly
learn shared common representation. As is shown in Figure 4,
we can see that the different results on different PDR. Overall
MAP decreases as PDR increases. With the increasing of PDR,
IMH [14], CCQ [10], SPDH [13], and UDIH outperform other
methods. When the PDR approximate to 0, SPDH [13] and
UDIH have similar retrieval performance. When PDR is 0.9,

UDIH always performs well than other methods. SPDH [13]
has a secondary performance. CCQ [10] also has a promising
result, which benefits from its quantization strategy. On the
other hand, when PDR is too high, CCQ [10] and SPDH [13]
has a larger decline rate than other methods while UDIH has
the smallest decline rate. The reason is that UDIH generates
more one-to-one information when more data is missing

4) Effect of Parameters: We futher conduct a series of
experiments to analyze different parameters in the proposed
UDIH. All the experiments are done on both MIRFlickr
and NUS-WIDE datasets with hash bits fixed on 16. In the
proposed UDIH, pi and pt played a decisive role. That is
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Fig. 5. The effect of pi and pt on MIRFlickr and NUS-WIDE at 16 bits

because pi and pt denote the number of augmented data
objects. If too much data is augmented, more noisy data will
be introduced into the training set. Obviously, the number of
complete cases should be inversely proportional to the number
of augmented data objects. Figure 5 shows the results of
different pi and pt. The best pi is around 0.02*(n− c) while
pt is around 0.01*(n − c). Note that this is only a empirical
setting. Intuitively, properly small pi and pt will perform well.
We then analyze the importance of the parameter α. The α
defines the reliability of the generated data object. Figure 6
shows the results of different α. With the increasing of α, the

MAP gradually increases. But when α is larger than 0.4, the
MAP gradually becomes smaller. Because the generated data
object has some differences from the real data distribution.
Finally, we empirically select optimal parameters as follows.
α = [0.4, 0.5]. δ = [2.0,4.0,8.0]. t = [4,5,6]. pi = 0.02∗(n−c).
pt = 0.01 ∗ (n− c). lr = 0.01 . λG1 ,λG2 ,λH1 ,λH2 = 0.001.

V. CONCLUSION

In this paper, we have proposed a UCMH method UDIH
for partial cross-modal retrieval which is a challenging but
common problem. UDIH can impute partial data to generate
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Fig. 6. The effect of α on MIRFlickr and NUS-WIDE at 16 bits

more pairwise information. The weighted cross-modal correla-
tion graph and the two-pathway hashing scheme are exploited
to efficiently learn hash functions with different weights of
data. Both the consistency and difference will be preserved.
Experiments on benchmark datasets verify the effectiveness of
UDIH compared with five state-of-the-art approaches. We also
explained the motivation of pairwise information generation
in the comparison section. However, the main components of
UDIH are learning separately. In the future, we will construct
a jointly learning framework. Moreover, the extension of
preserving intra-modality similarity will be considered in our
future work.

ACKNOWLEDGMENT

This work was supported in part by the National Nat-
ural Science Foundation of China under Grant 61822601,
61773050, and 61632004; the Beijing Natural Science Foun-
dation under Grant Z180006; National Key Research and
Development Program (2017YFC1703506) ; the Fundamental
Research Funds for the Central Universities (2019JBZ110).

REFERENCES

[1] Yue Cao, Mingsheng Long, Jianmin Wang, Qiang Yang, and Philip S Yu.
Deep visual-semantic hashing for cross-modal retrieval. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1445–1454. ACM, 2016.

[2] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and
Yantao Zheng. Nus-wide: a real-world web image database from national
university of singapore. In Proceedings of the ACM international
conference on image and video retrieval, page 48. ACM, 2009.

[3] Cheng Deng, Zhaojia Chen, Xianglong Liu, Xinbo Gao, and Dacheng
Tao. Triplet-based deep hashing network for cross-modal retrieval. IEEE
Transactions on Image Processing, 27(8):3893–3903, 2018.

[4] Mark J Huiskes, Bart Thomee, and Michael S Lew. New trends and
ideas in visual concept detection: the mir flickr retrieval evaluation
initiative. In Proceedings of the international conference on Multimedia
information retrieval, pages 527–536. ACM, 2010.

[5] Qing-Yuan Jiang and Wu-Jun Li. Deep cross-modal hashing. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3232–3240, 2017.

[6] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization
techniques for recommender systems. Computer, (8):30–37, 2009.

[7] Shaishav Kumar and Raghavendra Udupa. Learning hash functions
for cross-view similarity search. In Twenty-Second International Joint
Conference on Artificial Intelligence, 2011.

[8] Zijia Lin, Guiguang Ding, Mingqing Hu, and Jianmin Wang. Semantics-
preserving hashing for cross-view retrieval. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3864–
3872, 2015.

[9] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Hashing with
graphs. 2011.

[10] Mingsheng Long, Yue Cao, Jianmin Wang, and Philip S Yu. Composite
correlation quantization for efficient multimodal retrieval. In Proceed-
ings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval, pages 579–588. ACM, 2016.

[11] Nikhil Rasiwasia, Dhruv Mahajan, Vijay Mahadevan, and Gaurav Ag-
garwal. Cluster canonical correlation analysis. In Artificial Intelligence
and Statistics, pages 823–831, 2014.

[12] Patrick Royston. Multiple imputation of missing values. The Stata
Journal, 4(3):227–241, 2004.

[13] Xiaobo Shen, Fumin Shen, Quan-Sen Sun, Yang Yang, Yun-Hao Yuan,
and Heng Tao Shen. Semi-paired discrete hashing: Learning latent
hash codes for semi-paired cross-view retrieval. IEEE transactions on
cybernetics, 47(12):4275–4288, 2017.

[14] Jingkuan Song, Yang Yang, Yi Yang, Zi Huang, and Heng Tao Shen.
Inter-media hashing for large-scale retrieval from heterogeneous data
sources. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pages 785–796. ACM, 2013.

[15] Luan Tran, Xiaoming Liu, Jiayu Zhou, and Rong Jin. Missing modalities
imputation via cascaded residual autoencoder. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
1405–1414, 2017.

[16] Kaiye Wang, Qiyue Yin, Wei Wang, Shu Wu, and Liang Wang.
A comprehensive survey on cross-modal retrieval. arXiv preprint
arXiv:1607.06215, 2016.

[17] Qifan Wang, Luo Si, and Bin Shen. Learning to hash on partial
multi-modal data. In Twenty-Fourth International Joint Conference on
Artificial Intelligence, 2015.

[18] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In
Advances in neural information processing systems, pages 1753–1760,
2009.

[19] Jianlong Wu, Zhouchen Lin, and Hongbin Zha. Joint dictionary learning
and semantic constrained latent subspace projection for cross-modal
retrieval. In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, pages 1663–1666. ACM,
2018.

[20] Ting-Kun Yan, Xin-Shun Xu, Shanqing Guo, Zi Huang, and Xiao-Lin
Wang. Supervised robust discrete multimodal hashing for cross-media
retrieval. In Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, pages 1271–1280. ACM,
2016.

[21] Jian Zhang, Yuxin Peng, and Mingkuan Yuan. Unsupervised generative
adversarial cross-modal hashing. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[22] Bohan Zhuang, Guosheng Lin, Chunhua Shen, and Ian Reid. Fast train-
ing of triplet-based deep binary embedding networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5955–5964, 2016.




