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Abstract—Various representations have been developed for
acoustic scene classifications (ASC) task using spectral informa-
tion. However, there is a wide gap in dealing with acoustic scene
representations. In this paper, we propose to use a single fre-
quency filtering (SFF) approach, which provides good temporal
and spectral resolution at each instant. Single-frequency filtering
cepstral coefficients (SFFCC) with deep neural network (DNN)
model as the classifier is used for the experimentation on DCASE
2019 and DCASE 2018 Task 1, development data of subtasks A
and B. From the conducted experiments on the development
datasets, the usage of the SFFCC features significantly improved
ASC performance. This approach has got 35th team rank out
of 46 submissions to the corresponding DCASE 2019 Task 1A
challenge with a 52.6% classification accuracy on the evaluation
dataset. Also, the effect of raw waveforms taken as features for
ASC using DNNs was observed.

Index Terms—Log Mel band energies, Single Frequency Filter-
ing Cepstral Coefficients (SFFCC), Acoustic Scene Classification
(ASC), Deep Neural Network (DNN).

I. INTRODUCTION

Classification of predefined acoustic scenes from the test
audio recordings is known as acoustic scene classification
(ASC) (eg., Park, Metro, etc,.). ASC is a very interesting
research field nowadays as it has various applications like
monitoring sound by smartphones and robots, sound moni-
toring by artificial intelligence (AI), etc [1], [2]. Detection
and Classification of Acoustic Scenes and Events (DCASE)
challenge organizers have motivated this field by providing
public datasets and baseline systems from the past few years.
Due to that, this field has good scientific submissions towards
scene representations. In DCASE 2013 baseline, a bag of
frames was used for ASC representations and the Gaussian
mixture model (GMM) model for classification [1]. In DCASE
2016 baseline, Mel frequency cepstral coefficients (MFCC)s
were used for acoustic scene representations and GMM model
for classification [3], [4]. Acoustic event detection in real-life
recordings using MFCC and hidden Markov model (HMM)
were proposed for ASC [5]. In DCASE 2017, log-Mel band
energies and multilayer perceptron models were proposed for
ASC in [6]. In DCASE 2018, log-Mel band energies and
convolutional neural network (CNN) models were proposed
for ASC in [7]. Generative Adversarial Network (GAN) based
acoustic scene training set augmentation and selection using
support vector machine (SVM) hyper-plane were proposed
for ASC in [8]. Double image features and the CNN model
were proposed for ASC in [9]. An ensemble of spectrograms

based on adaptive temporal divisions based ASC was done
in [10]. Wavelet transform-based Mel-scaled features for ASC
is presented in [11]. DNN based multi-level feature ensemble
for ASC was presented in [12]. Audio feature space analysis
for ASC was presented in [13]. CNNs for ASC were investi-
gated in [14], [15]. A multi-level attention model for weakly
supervised audio classification was proposed in [16]. The
significance of phase in single frequency filtering outputs of
speech signals was described in [17]. In our approach, SFFCCs
were used to represent the acoustic scenes and DNN model is
used for classifying the acoustic scenes. The main motivation
behind SFFCC handicraft representation of an acoustic scene
is that these features capture spectro-temporal information
at each instant in mismatched conditions robustly. Acoustic
scene detection is possible as it can capture instantaneous
spectral variations with high temporal and spectral resolution
in the low-frequency regions [18]. Also in [18], SFF envelopes
were used for speech and non speech detection as it captures
spectral differences between speech and non speech even in
the presence of low signal to noise regions highly. Due to that,
SFFCC are useful to capture spectral differences more finely
between acoustic scenes even in mismatched recording condi-
tions. Motivated by this, we proposed to investigate acoustic
scene representations using SFFCC and DNN modelling for
ASC and also investigated the effect of raw waveforms with
our proposed DNN architecture on DCASE 2018 task1 subtask
A.

The remainder of the paper is organized as follows. In
Section II, SFFCC features extraction is presented. Section III
describes the experimental settings and the database used. In
Section IV, Section V, and Section VI, results and discussion
are presented. Finally, Section VII provides conclusions.

II. SFFCC FEATURES EXTRACTION

In this section, features are extracted using single frequency
filtering and feature extraction process was found from [18]–
[20]. The aim of Single Frequency Filtering (SFF) is to
capture the amplitude envelope of the signal as a function of
time. Using these SFF envelopes, we can observe the spectral
difference between clean and mismatched recordings more
clearly [18]. The spectro-temporal resolution can be adjusted
by varying the r parameter used in single pole filter transfer
function. The SFF method steps are as follows [18]–[20].
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Fig. 1. Block diagram of SFFCC feature extraction.

• The input audio signal x[n] is pre-emphasized to enhance
the signal.

s[n] = x[n] − α ∗ x[n− 1], here, α = 0.97 used. (1)

• s[n] is multiplied with a complex exponential ejw̄kn,
where w̄k = π−wk = π− 2πfk/fs. Then the frequency
shifted signal is denoted by

s[n, k] = s[n]ejw̄kn, (2)

where k lies between 0...M, and M refers to the total
number of components extracted from speech which is
equal to fs/(2*frequency-hop). Here fs refers to sampling
frequency, and a frequency hop of 50 Hz is used in this
study.

• The frequency shifted signal is fed through a single-pole
filter H(z), where

H(z) = 1/1 + rz−1 (3)

here, r = 0.995 is considered.
• The output signal y[n, k] is represented by

y[n, k] = −ry[n− 1, k] + s[n, k] (4)

the amplitude envelope of the signal is given by

v[n, k] =
√

(yr[n, k])2 + (yj [n, k])2 (5)

where yr, yj represents the real and imaginary parts
respectively. The term v[n, k] corresponds to the SFF
envelope of the signal at frequency fk . The magnitude
spectrum can be obtained for each instant of n.

• Cepstrum c[n, k] is computed from v[n, k], and is given
by

c[n, k] = IFFT (log(v[n, k])) (6)

From c[n, k], first 40 cepstral coefficients are considered
and they are named as single frequency filtering cepstral
coefficients (SFFCCs). The SFFCCs can be obtained at each
sampling instant. In this study, using the low SNR instants
within 20 ms segment, the cepstral coefficients were extracted.
In each segment, the low SNR instant is represented by l. Here
l is given by

lk = argmin
i
Ek[i] (7)

and

E[n] =

K∑
k=0

v[n, k] (8)

Where E[n] is the instantaneous energy. Then the schematic
block diagram of SFFCCs extraction is shown in Figure 1.

Here, we considered 40 dimensions static, 40 dimensions
delta, 40 dimensions double delta features for a frame size
of 40 ms with 50% hop length from the entire audio signal,
totalling to a 120 dimensional feature vector.

III. EXPERIMENTAL SETTINGS

The proposed system consists of feature extraction and
classification (DNN Modelling) as depicted in Figure 2. In
the feature extraction step, SFFCC and log-Mel band energies
are extracted for both training and test data of TAU Urban
Acoustic Scenes 2019 and 2018 development dataset of sub-
tasks A and B. In the classification step, DNN model is used
as a classifier, where it has 1 input layer, 3 hidden layers,
and an output layer. Input layer neurons are 120 with linear
activation. Each hidden layer has 200 neurons with rectified
linear unit (ReLU) activation. An output layer has 10 neurons
with softmax activation. ADAM weight optimizer is used at a
learning rate of 0.005 to regulate the overfitting [21]. This feed
forward neural network architecture and hyperparameters are
used for getting the optimal performance. Being frame level
supervised training, the standard score normalized data is fed
to DNN. The classification was carried based on the majority
vote by audio track level. DNNs learn handcrafted features
well than CNNs as CNNs learn its own features from the
spectrograms. Based on this intuition, we considered standard
DNN as a classifier. Further, to improve performance, we used
a weighted summation rule for implementation of late fusion
using DNN scores. The experimental systems are given below:
S1: SFFCC with DNN,
S2: log-Mel band energies with DNN,
S3: DNN scores level fusion of SFFCC and log-Mel band
energies.

A. Experimental data
For experimentation, we used the development data (DD)

of TAU Urban Acoustic Scenes 2019, TAU Urban Acoustic
Scenes 2019 Mobile, TAU Urban Acoustic Scenes 2018 and
TAU Urban Acoustic Scenes 2018 Mobile. Further, DCASE
2019, 2018 database, baseline system details and subtasks
A and B description can be found from [7], [22], [23]. In
this paper, feature extraction and acoustic scene classification
modelling is implemented using MATLAB. Feature extraction,
training and testing is done using Nvidia GeForce GTX 1080
Ti GPU.

B. Decision Strategy
For individual feature sets, computation of DNN score

fusion of any two different features is performed as follows:
Let us consider the fusion of SFFCC and log-Mel band
energies. If Xi

SFFCC and Xi
log−Mel band energies are the DNN

scores generated by two models for the ith acoustic scene, then
a combined score is given by

Xi
combined = αXi

SFFCC+(1−α)Xi
log−Mel band energies. (9)

We observed an improvement in performance for all experi-
ments at α = 0.4.



Fig. 2. Block diagram for ASC task implementation using DNN classifier.

IV. RESULTS AND DISCUSSIONS

A. DCASE 2019 task 1 subtask A results analysis

This subtask is considered as basic ASC task. Table I
presents the results for DCASE 2019 task 1 subtask A using
the proposed system and baseline system. From the table,
it can be observed that individual log-Mel band energies
perform better than SFFCC. Further, it is observed that the
DNN score fusion of SFFCC and log-Mel band energies (S3)
give a considerable improvement in classification accuracy.
Using proposed features (S3), except Park class, the remaining
classes are well classified when compared to DCASE 2019
baseline. From the table, it can also be observed that the
proposed system gives an improvement in the average accu-
racy. The relative improvements of 3.2%, 4.3%, and 7.9% are
obtained for S1-S3, respectively, as compared to the DCASE
2019 baseline system.

B. DCASE 2019 task 1 subtask B results analysis

The results of DCASE 2019 task 1 subtask B are presented
in Tables II and III. This subtask is concerned with the
situation in which an application will be tested with a few
different types of audio recording devices (device A, device
B-Samsung Galaxy S7 and device C-iPhone SE), not the same
device like the one used to record the development data. The
results of the subtask B are given in Table II for the DCASE
2019 baseline and the proposed system which uses the DNN
score fusion of SFFCC and log-Mel band energies (S3).

From Table III, it can be noted that individual SFFCC
features perform better than log-Mel band energies. It can be
observed that the DNN score fusion of SFFCC and log-Mel
band energies in the proposed system (S3) has given significant
improvement compared to the DCASE 2019 baseline system.
Overall, 6.3% relative improvement is achieved with the
proposed system. From Table II, using proposed features (S3),
except Metro, Shopping mall and Street pedestrian classes,
remaining all classes are well classified for subtask B. Further,
we have also experimented with the other proposed systems
(S1, S2, and S3). The average (B, C) performance obtained
with proposed feature sets was shown in Table III. From the
Table, it can be observed that all the proposed systems have
given an improvement in the average (B, C) accuracy. The
relative improvements of 4.4%, 3.9%, and 6.3% are obtained

for S1-S3 respectively, as compared to the DCASE 2019
baseline system.

C. DCASE 2018 task 1 subtask A results analysis

Table IV gives the results for DCASE 2018 task 1 subtask A
using the proposed study and baseline system. From the table,
it can be observed that individual log-Mel band energies per-
form better than SFFCC. Further, it is observed that the DNN
score fusion of SFFCC and log-Mel band energies (S3) gives
a considerable improvement in classification accuracy and
indicates complementary information, which can be concluded
based on 12.0% of relative improvement. Using proposed
features (S3), except Airport class, the remaining classes are
well classified when compared to DCASE 2018 baseline. From
the table, it can also be observed that the proposed system
gives an improvement in the average accuracy. The relative
improvements of 6%, 8.5%, and 12.0% are obtained for S1-
S3, respectively, as compared to the DCASE 2018 baseline
system.

D. DCASE 2018 task 1 subtask B results analysis

The results of DCASE 2018 task 1 subtask B are presented
in Tables V and VI. The results of the subtask B are given
in Table V for the DCASE 2018 baseline and the proposed
system (S3). The average (B, C) performance obtained with
proposed feature sets was shown in Table VI. From the table,
it can be observed that all the proposed systems give an
improvement in the average (B, C) accuracy. The relative
improvements of 12.7%, 8.3%, and 15.0% are obtained for
S1-S3, respectively, as compared to the DCASE 2018 baseline
system. From this Table VI, individual log-Mel band ener-
gies perform better than SFFCC features. For two features
combined, the proposed system S3 gave better performance
than S1 and S2 with a relative performance improvement of
15.0% compared to DCASE 2018 baseline system. It can be
observed that the DNN score fusion of SFFCC and log-Mel
band energies in the proposed system (S3) gives significant
improvement compared to the DCASE 2018 baseline system.
From Table V, using proposed features (S3), except the Airport
class, the remaining classes are well classified when compared
to DCASE 2018 subtask B baseline.



TABLE I
RESULTS FOR DCASE 2019 TASK1 SUBTASK A (S1: SFFCC WITH DNN, S2: LOG-MEL BAND ENERGIES WITH DNN, S3: DNN SCORE LEVEL FUSION

OF SFFCC AND LOG-MEL BAND ENERGIES).

Class Name Baseline-2019 [22] (%) S1 (%) S2 (%) S3 (%)

Airport 48.4 64.6 47.3 63.4
Bus 62.3 77.8 69.4 77.1

Metro 65.1 69.5 64.2 73.2
Metro station 54.5 51.0 57.7 57.7

Park 83.1 80.3 81.1 81.9
Public square 40.7 48.3 49.1 47.3
Shopping mall 59.4 49.7 73.5 70.5

Street pedestrian 60.9 65.3 67.6 70.6
Street traffic 86.7 89.1 91.5 92.0

Tram 64.0 61.2 66.3 70.0
Average 62.5(± 0.6) 65.7 66.8 70.4

TABLE II
RESULTS FOR DCASE 2019 TASK1 SUBTASK B FOR THE PROPOSED SYSTEM (S3). A: RECORDING DEVICE (ZOOM F8 AUDIO RECORDER) , B:

RECORDING MOBILE DEVICE (SAMSUNG GALAXY S7) AND C: RECORDING MOBILE DEVICE (IPHONE SE).

Class Name Baseline-2019 [22] S3
A (%) B (%) C (%) Average (B,C) (%) A (%) B (%) C (%) Average(B,C) (%)

Airport 51.2 18.3 24.1 21.2 60.6 14.8 27.8 21.3
Bus 68.0 40.4 70.0 55.2 78.3 61.1 79.6 70.4

Metro 62.4 50.7 36.1 43.4 68.4 51.9 33.3 42.6
Metro Station 54.4 28.7 36.1 30.0 54.0 37.0 35.2 36.1

Park 80.4 45.2 57.0 51.1 79.8 92.6 90.7 91.7
Public square 35.4 22.8 11.3 17.0 48.1 38.9 13.0 26.0
Shopping mall 64.4 63.5 64.8 64.2 69.4 46.3 66.7 56.5

Street pedestrian 63.3 37.0 37.6 37.3 69.5 24.1 35.2 29.7
Street traffic 85.8 77.0 86.5 81.8 92.5 85.2 90.7 88.0

Tram 52.2 12.0 12.6 12.3 68.3 16.7 13.0 14.9
Average 61.9(±0.8) 39.6(±2.7) 43.1(±2.2) 41.4(±1.7) 68.9 46.9 48.5 47.7

TABLE III
AVERAGE (B,C) ACCURACIES FOR DCASE 2019 SUBTASK B.

Accuracy Baseline-2019 [22] (%) S1 (%) S2 (%) S3 (%)
Average 41.4 (± 1.7) 45.8 45.3 47.7

V. DCASE 2019 TASK 1A CHALLENGE RESULTS

This approach gave 52.6% classification accuracy on evolu-
tion data. Evolution dataset accuracies corresponding to Seen
cities and Unseen cities are shown in Table VII [24].

VI. COMPARISION BETWEEN VARIOUS SYSTEMS

Table VIII shows the comparison between systems of
DCASE 2018, DCASE 2019, baseline systems, top rank state
of art systems of DCASE 2018, DCASE 2019 and proposed
system. From the table, our proposed system outperforms the
baseline systems of DCASE 2018 and DCASE 2019 subtask
A and subtask B respectively. Also, our proposed system
performed nearer to top rank performance of subtask A and
subtask B of DCASE 2018 challenge, whereas in the case
of DCASE 2019 challenge, our proposed system outperforms
the baseline systems of DCASE 2018 and DCASE 2019
subtask A and subtask B respectively. The top rank systems
of DCASE 2018 and DCASE 2019 have been suffering more
computations and memory than our proposed system due to
the ensembling of multi neural networks using CNN models

with various spectrograms for getting improved performance
[10].

The raw waveform with 40 ms frame length and 20ms over-
lap vectors and our proposed DNN architecture performance of
ASC task using DCASE 2018 task1 subtask A development
data is shown in Table IX. The mean accuracy on DCASE
2018 task 1 subtask A dataset on the raw waveforms using
our proposed DNN approach got 31.2% accuracy. The low
performance is achieved due to unstructured data present in
the raw waveforms of acoustic scenes.

VII. CONCLUSIONS

This scientific approach proposes a different idea in terms
of feature extraction for ASC. We conclude that from the
proposed system (S3) performance in DCASE 2019, 2018
task1 subtask A and B log-Mel band energies performed better
on subtask A but SFFCCs better performed on subtask B.
This study concludes that log-Mel band energies are useful
in a clean environment, whereas SFFCCs perform better in
mismatched environments. The reason behind SFFCCs better



TABLE IV
RESULTS FOR DCASE 2018 TASK1 SUBTASK A.

Class Name Baseline-2018 [23] (%) S1 (%) S2 (%) S3 (%)

Airport 72.9 71.7 50.9 74.0
Bus 62.9 67.4 74.0 78.9

Metro 51.2 71.3 75.9 78.5
Metro station 55.4 57.1 62.2 63.3

Park 79.1 77.3 86.0 84.3
Public square 40.4 38.4 45.8 45.4
Shopping mall 49.6 65.6 89.6 78.5

Street pedestrian 50.0 63.2 48.2 59.1
Street traffic 80.5 86.6 90.2 90.7

Tram 55.0 59.0 59.4 64.0
Average 59.7(± 0.7) 65.7 68.2 71.7

TABLE V
RESULTS FOR TASK1 DCASE 2018 SUBTASK B FOR THE PROPOSED SYSTEM (S3).

Acoustic Scene Baseline-2018 [23] S3
A (%) B (%) C (%) (B,C)(%) A (%) B (%) C (%) (B,C)(%)

Airport 73.4 68.9 76.1 72.5 61.9 33.3 38.9 36.1
Bus 56.7 70.6 86.1 78.3 71.5 77.8 88.9 83.3

Metro 46.6 23.9 17.2 20.6 62.1 61.1 50.0 55.6
Metro Station 52.9 33.9 31.7 32.8 64.9 55.6 38.9 47.2

Park 80.8 67.2 51.1 59.2 84.7 83.3 88.9 86.1
Public square 37.9 22.8 26.7 24.7 50.5 61.1 44.4 52.8
Shopping mall 46.4 58.3 63.9 61.1 72.4 77.8 88.9 83.3

Street pedestrian 55.5 16.7 25.0 20.8 55.9 33.3 50.0 41.7
Street traffic 82.5 69.4 63.3 66.4 89.0 72.2 83.3 77.8

Tram 56.5 18.9 20.6 19.7 75.9 44.4 38.9 41.7
Average 58.9(±0.8) 45.1(±3.6) 46.2(±4.2) 45.6(±3.6) 68.9 60.0 61.1 60.6

TABLE VI
AVERAGE (B, C) ACCURACIES FOR DCASE 2018 TASK1B.

Accuracy Baseline-2018 [23] (%) S1 (%) S2 (%) S3 (%)
45.6(± 3.6) 58.3 53.9 60.6

TABLE VII
ACCURACIES FOR DCASE 2019 TASK1 SUBTASK A ON EVOLUTION

DATASET (ED), SEEN CITIES (SC)EVOLUTION DATASET AND UNSEEN
CITIES (UC) EVOLUTION DATASET.

Accuracy ED [24] (%) DD (%) SC (ED) (%) UC (ED) (%)
52.6 70.4 54.8 41.3

performance is due to good capture of spectral variations of
acoustic scenes in mismatched environment recordings than
clean environment recordings. The relative improvement of
7.9% and 6.3% in performance was achieved when compared
to DCASE 2019 task1 subtask A and B baselines respectively.
The relative improvement of 12.0% and 15.0% in performance
was achieved when compared to DCASE 2018 task1 subtask A
and B baselines respectively. By observing the performance of
raw waveforms on DCASE 2018 task1 subtask A development
data, we can concluded that research on feature representation
and fusion of different features is needed for better perfor-
mance of ASC task. Then the future work could be devoted
to exploring different features for ASC.

TABLE VIII
RESULTS COMPARISIONS ON DCASE 2018, 2019 TASK1 SUBTASK A,

SUBTASK B AND PROPOSED SYSTEM

Systems subtask A (%) subtask B (%)
DCASE 2018
Baseline 59.7 (± 0.7) 45.6 (± 3.6)

DCASE 2018
Rank 1 76.9 [10] 63.6 [25]

Proposed
System (S3) 71.7 60.6

DCASE 2019
Baseline 62.5 (± 0.6) 41.4 (± 1.7)

DCASE 2019
Rank1 85.0 [26] 70.0 [27]

Proposed
System (S3) 70.4 47.7

TABLE IX
THE PERFORMANCE OF PROPOSED SYSTEM TAKEN RAW WAVEFORM AS

FEATURES USING DCASE 2018 TASK1 SUBTASK A DEVELOPMENT
DATASET

Database Accuracy (%)
DCASE 2018 task1 subtask A
development dataset 31.2
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