
SkipConv: Skip Convolution for Computationally
Efficient Deep CNNs

Pravendra Singh
Indian Institute of Technology Kanpur

psingh@iitk.ac.in

Vinay P. Namboodiri
Indian Institute of Technology Kanpur

vinaypn@iitk.ac.in

Abstract—Convolution operation in deep convolutional neural
networks is the most computationally expensive as compared
to other operations. Most of the model computation (FLOPS)
in the deep architecture belong to convolution operation. In
this paper, we are proposing a novel skip convolution operation
that employs significantly fewer computation as compared to
the traditional one without sacrificing model accuracy. Skip
convolution operation produces structured sparsity in the output
feature maps without requiring sparsity in the model parameters
for computation reduction. The existing convolution operation
performs the redundant computation for object feature rep-
resentation while the proposed convolution skips redundant
computation. Our empirical evaluation for various deep models
(VGG, ResNet, MobileNet, and Faster R-CNN) over various
benchmarked datasets (CIFAR-10, CIFAR-100, ImageNet, and
MS-COCO) show that skip convolution reduces the computation
significantly while preserving feature representational capacity.
The proposed approach is model-agnostic and can be applied
over any architecture. The proposed approach does not require a
pretrained model and does train from scratch. Hence we achieve
significant computation reduction at training and test time. We
are also able to reduce computation in an already compact
model such as MobileNet using skip convolution. We also show
empirically that the proposed convolution works well for other
tasks such as object detection. Therefore, SkipConv can be a
widely usable and efficient way of reducing computation in deep
CNN models.

Index Terms—Computation (FLOPS) compression, Convolu-
tional neural network, Image recognition, Deep learning, Com-
putationally efficient CNN

I. INTRODUCTION

Recent advances in deep learning have led to impressive and
significant breakthrough in various domains, such as computer
vision, NLP, information retrieval tasks and generative model
etc. Pushing the performance further typically leads to models
with overly complex and deeper architecture that tends to
increase the model size (number of parameters, depth, and
breadth of layers) and FLOPS considerably. Therefore, train-
ing or test time computational requirements for such complex
models are significantly increased.

The main reason for the success of deep learning is its
automatic representation learning capability over traditionally
handcrafted [1]–[3] representation learning approaches. These
deep learning models consist of a set of convolutional layers,
and each layer contains a set of convolutional filters. Each
convolutional filter learns some kind of representation from
the input. These high-end deep learning models are highly

Fig. 1. The left figure shows the original images, middle figure shows the
images after making alternative rows to zero, and right figure shows the images
after removing even/odd rows from the left side images (best viewed in color).

redundant in terms of computation due to the presence of
spatial redundancy. One way to reduce the computation of
the deep CNNs is to take advantage of spatial redundancy in
the feature maps and bypass redundant computation.

As shown in figure 1 left images, most of the time, each
pixel is surrounded by very similar pixels in the neighborhood.
Therefore each pixel and its nearby pixels contain similar
information except when the pixels lie on edges. Hence, if
we apply the convolution operation by skipping the nearby
pixels (horizontally or vertically), then also we can capture
the necessary information, as shown in figure 1. This skip con-
volution operation produces structured sparsity in the output
feature maps. This approach is also motivated by the Nyquist
sampling theorem that states that a signal, when sampled at
twice the highest frequency rate, can be reconstructed without
loss of information. For an image, the highest frequency would
be attained if one had a checkerboard pattern with alternate
values, which is a special case. For this pattern, one would
have to sample all the pixels to meet the Nyquist criterion.
Other than this particular case, most images have continuous
signals, and sampling alternate rows or columns satisfy this
criterion. Furthermore, a significant amount of computation
can be reduced by skipping convolution operations, which
results in a significant reduction in training/test time. We can
also use structured sparsity in the output feature maps for
computation reduction by internally skipping corresponding
rows of kernels of the convolutional filter. Note that, these skip

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

convolutions are performed over the feature maps. Hence, the
proposed approach is independent of deep CNNs architecture
and can be employed on any deep CNNs for computation
reduction.

The edges in the image are the most informative part. If
all the convolutions by all the convolutional filters skip the
edge pixels, then we may lose some information. Therefore,
the model results in inadequate representation learning and
model performance degrade significantly. However, the chance
of this situation to happen is rare because each layer contains
many convolutional filters. To avoid this rare situation, we
are using a combination of the dense and skip convolutions
at every layer. A subset of filters is selected for the dense
convolutions which produce dense output feature maps. These
filters are also able to capture the useful information from
the edge pixels because of its dense nature. Remaining filters
perform skip convolutions to produce structured sparsity in
the output feature maps. Skip convolutions skip the rows with
some predefined gap to bypass redundant computation. The
major contributions of this work are as follows:

• We propose a model-agnostic SkipConv for reducing
computation in deep CNNs.

• The proposed SkipConv can be directly plugged into any
deep CNNs architecture to reduce model computation.

• Efficient deep CNNs models are obtained by training
from scratch and does not require a pretrained model.

• We can significantly reduce the training as well as test
time computation using the proposed SkipConv.

• We demonstrate the usability of our proposed SkipConv
for various vision tasks such as object classification and
object detection. Our approach outperforms the compared
state-of-the-art FLOPS (computation) compression meth-
ods [4]–[17].

II. RELATED WORK

The recent development of the deep neural network [18]–
[21] achieves state-of-the-art results over the various task. The
high performance comes with the cost of high computational
requirements, which restrains the use of the deep model for
resource-constrained devices. Therefore various approaches
[22]–[32] have been proposed to reduce the computation of
deep convolutional neural networks. The works on model
compression can be divided into the following categories:

A. Efficient Convolutional Filter

Groupwise Convolution (GWC) [18], Depthwise convolu-
tion (DWC) [33] and Pointwise Convolution (PWC) [20] are
the popular convolutional filters used in compact architectures
to reduce the computation. MobileNet [33] uses DWC and
PWC to reduce FLOPS. ResNet [20] uses a bottleneck struc-
ture to reduce computation.

B. Model Compression

Another popular approach for computational reduction is
model compression. These methods can further categorised

as: 1- Connection Pruning [34], 2- Filter Pruning [12], [15],
[17], [35]–[37] and 3- Bits Compression [38]. Filter pruning
approaches are more effective as compared to other approaches
because they prune the whole convolutional filter from the
model. Also, filter pruning approaches do not require any
special hardware/software support to achieve a reduction in
computation.

Various filter pruning approach calculates the importance
of the filter and prunes them based on some criteria followed
by re-training to recover the accuracy drop in the CNN
model. [35] uses a l1 norm to get filter importance for model
compression. [10] uses a scaling factor to scale the outputs
of specific structures in the CNN model and perform filter
pruning by making some of the factors to zero. SPP [11] uses
a probabilistic based approach to compresses the deep CNN.
CP [36] proposes an iterative two-step procedure to prune
convolutional filters in the deep CNN. ThiNet [9] discard
convolutional filters based on next layer statistics. VCNNP [7]
proposes a variational bayesian scheme for compressing the
CNN model. SFP [12] proposes a soft filter pruning approach
to update pruned filters during training. GDP [13] proposes
a global and dynamic model compression technique. GAL
[6] proposes a structured pruning approach using a generative
adversarial learning idea. DBSR [8] uses block sparsity for
model compression. WAE [14] proposes a Wavelet-like auto-
encoder that decomposes the original input image into low-
frequency information and high-frequency to accelerate deep
CNN. NISP [15] uses feature ranking techniques to rank the
importance of each neuron in the final response layer. AMC
[16] proposes a reinforcement learning based AutoML method
for pruning.

Most of the methods in model compression require a
pretrained model and then perform iterative pruning and fine-
tuning to get a compressed model, which is a time-consuming
process. The proposed work to get a computationally efficient
model is more flexible in the sense that it does not require
a pretrained model and reduces training as well as test time
computation.

The above-discussed work increases the model efficiency,
either using new convolutional filters or by discarding the
redundant filters. In the proposed approach, we reduce the
redundant computation by exploiting structured sparsity in
feature maps using the skip convolution operation. Our ap-
proach is model-agnostic and can be applied over any CNN
architecture to increase the model efficiency (speed) further.
Other model compression methods are complementary to the
proposed approach and can be used in conjunction with
SkipConv to get a further reduction in computation. We show
empirically that SkipConv can reduce the significant FLOPS
(computation) even in an already compact model (MobileNet)
without degrading the model performance.

III. SKIPCONV: SKIP CONVOLUTION

Let us assume input feature maps of size Di × Di ×M .
Where Di is the spatial width and height of the input square
feature map, and M is the input depth (number of channels

Fig. 2. The figure shows the input and output feature maps. The blue color is used to represent nonzero values, and yellow color is used to represent zero
values in the feature maps (best viewed in color).

Fig. 3. The figure shows the convolution of 3× 3 kernel over a sparse feature map in the input under various positions. The red color row of 3× 3 kernel
will always be skipped during convolution because corresponding values in the feature map are zero (best viewed in color).

in input feature maps). An output feature maps of size Do ×
Do×N is obtained by applying N convolutional filters of size
K × K ×M . Where K is the kernel size, Do is the spatial
width and height of the output square feature map, and N is
the output depth (number channels in the output feature maps).
Note that P is a parameter which controls the number of dense
feature maps and P ∈ [0, 1].

Out of N , NP convolutional filters will produce NP dense
feature maps in output as shown in figure 2. Therefore NP
convolutional filters will have Xstride = 1 and Ystride = 1.
The remaining (N − NP) convolutional filters will produce
(N−NP) sparse feature maps in the output. The (N−NP)/2
convolutional filters will produce even sparse feature maps
(even rows are zero), and the remaining (N −NP)/2 convo-
lutional filters will produce odd sparse feature maps (odd rows
are zero) as shown in figure 2. The sparse feature map can be
produced by using Xstride = 1, Ystride = 2 (skipping rows
during convolution) and then zero padding at missing rows
position to match spatial size of Do × Do. Therefore, there
will be NP dense feature maps and (N −NP) sparse feature
maps in the output. Similarly, there will be MP dense feature
maps and (M −MP) sparse feature maps in the input. Note
that the sparsity pattern in the sparse feature map is alternative

(alternative zero rows).
Next, we will define the convolution operation on this type

of feature maps. Let us assume the convolutional filter of size
K×K×M with M kernels of size K×K. The convolution of
K×K kernel over dense feature map in the input is the same
as traditional convolution. The convolution of K ×K kernel
over a sparse feature map in the input can be categorized into
two cases.

First Case - Output feature map produced by convolutional
filter is dense (Xstride = 1, Ystride = 1): The convolution of
K×K kernel over sparse feature map in the input for different
positions is shown in figure 3 (a). First 3× 3 kernel position
in figure 3 (a) shows that row-2 of 3×3 kernel (red color) can
be skipped during convolution. Second 3×3 kernel position in
figure 3 (a) shows that row-1 and row-3 of 3× 3 kernel (red
color) can be skipped during convolution. Therefore in this
case, for the same 3×3 kernel, either row-2 or (row-1, row-3)
will be skipped depending on the position of the kernel during
convolution. The figure 3 (a) illustrates this case in more detail.

Second Case - Output feature map produced by convo-
lutional filter is sparse (Xstride = 1, Ystride = 2): The
convolution of K ×K kernel over sparse feature map in the
input for different positions is shown in figure 3 (b) and (c).

Figure 3 (b) shows that row-2 of 3 × 3 kernel (red color)
will always be skipped during convolution. Similarly, figure 3
(c) shows that row-1 and row-3 of 3 × 3 kernel (red color)
will always be skipped during convolution. There will be
exactly (M −MP)/2 feature maps with even zero rows and
(M−MP)/2 feature maps with odd zero rows in input feature
maps.

We are creating a structured sparsity in the output feature
maps to reduce the computation in the deep CNNs. In the
proposed approach, we are not introducing any sparsity in the
model parameters. Sparse convolution can be used in conjunc-
tion with the proposed approach to get further computational
reductions by introducing sparsity in the model parameters
during training.

A. Comparision with Strided Convolution

The strided convolution (stride > 1) is used to downsample
the feature maps. We have used strided convolution (Xstride =
1, Ystride = 2) and then zero row padding at missing rows
position to match spatial size of feature map D0 × D0 to
produce sparse feature maps, as shown in figure 2. This
way, instead of downsampling, we are introducing structured
sparsity (alternate zero rows) in the feature map. We are also
skipping some rows of kernels of a convolutional filter to take
benefit from a sparse feature map during convolution as shown
in figure 3, which makes it different from strided convolution.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

Let us assume input feature maps of size Di × Di ×M ,
where Di is the spatial width and height of the input feature
map, and M is the input depth (number of channels in input
feature maps). An output feature map can be obtained by
applying N convolutional filters of size K ×K ×M , where
K is the kernel size. Therefore, output feature maps are of
the size Do × Do × N , where Do is the spatial width and
height of output feature map, and N is the output depth
(number of channels in output feature maps). Therefore, the
total computational cost (FLOPS) at this layer can be given
as:

OF = DoDoKKMN (1)

It is clear from equation-1 that the computational cost
depends on the kernel size (K), feature map size, input
channels M , and output channels N . This computational cost
is quite high and can be reduced by carefully designing the
skip convolution operation.

Let us define P (P ∈ [0, 1]), which is a parameter to
control the number of dense feature maps. Out of total N
convolutional filters, NP convolutional filters will produce
NP dense feature maps in output as shown in figure 2. There
are MP dense feature maps and (M −MP) sparse feature
maps in the input. Note that the sparsity pattern in the sparse
feature map is alternative zero rows. The computational cost
for NP dense convolutional filters over MP dense input
feature-maps is:

DoDoKK(MP)(NP)

and the computational cost over (M − MP) sparse input
feature maps is:

DoDoKK((M −MP)/2)(NP)

Note that it is divided by two because (M−MP) input feature
maps are 50% sparse (alternative zero rows). Therefore, half
rows of kernels of convolutional filters are skipped during
convolution (figure 3 (a)).

The total computational cost to produce NP dense output
feature maps can be given as:

DF =[(DoDoKK(MP))

+ (DoDoKK((M −MP)/2))](NP)

=
1

2
[DoDoKKM(1 + P)(NP)]

(2)

The remaining (N−NP) convolutional filters will produce
(N −NP) sparse feature maps in the output. The sparse fea-
ture map can be produced by using Xstride = 1, Ystride = 2
(skipping rows during convolution) and then zero padding at
missing rows position to match spatial size of Do ×Do.

Therefore, total computational cost to produce (N − NP)
sparse output feature maps can be given as:

SF =
1

2
[(DoDoKK(MP))

+ (DoDoKK((M −MP)/2))](N −NP)

=
1

4
[DoDoKKM(1 + P)(N −NP)]

(3)

Now the total computational cost to produce output feature
maps is given as:

TF =DF + SF

=
1

2
[DoDoKKM(1 + P)(NP)]

+
1

4
[DoDoKKM(1 + P)(N −NP)]

=DoDoKKMN

(
2P + 1 + PP

4

) (4)

The total reduction in FLOPS (computation) can be given as:

Rf =1− DF + SF

OF

=1−
(
2P + 1 + PP

4

) (5)

The reduction in FLOPS is Rf = 44% for P=1/2 and the
reduction in FLOPS is Rf = 75% for P=0. Note that this
reduction in FLOPS is independent of the model architecture.
The propose SkipConv can be applied to any complex deep
architecture [20], [21] as well as any efficient architecture [33],
[39] (already compact model) to achieve further reduction in
computation.

Speedup over standard convolution can be given as:

Speedup =

(
4

2P + 1 + PP

)
(6)

As shown in Figure 4, speedup increases as P value
decreases. We can use a P value for the trade-off between the

Fig. 4. Speedup over standard convolution for different values of P for the
SkipConv convolution.

accuracy and speedup. If we increase the P value, the resulting
convolution will be closer to the standard dense convolution.
For P = 1, it will become standard dense convolution. Value
of P is user define, and the user can choose P value depending
on the desired speedup before training starts.

V. EXPERIMENTS AND RESULTS

To show the effectiveness of the proposed approach, we
perform extensive experiments over large as well as small
scale datasets. We test the proposed approach on a simple
architecture (VGG-16) [40], a very deep architecture (ResNet-
164) [20], and a compact architecture (MobileNet) [41]. We
conduct experiments over the most popular datasets such as
CIFAR-10, CIFAR-100 [42], and ImageNet [43]. To show the
generalization ability of our approach beyond classification,
we experiment with a faster-RCNN object detector [19] over
the large scale MS-COCO [44] dataset. We present extensive
ablation analysis to show the efficacy of the proposed ap-
proach. In the ablation study, we explore different types of
skip patterns.

A. VGG-16 on CIFAR-10 and CIFAR-100 datasets

CIFAR [42] dataset consists of 50,000 training and 10,000
test images, where all images are RGB images with a dimen-
sion of 32 × 32. We perform a standard data augmentation
technique of random cropping to a size of 32×32 (zero-padded
on each side with four pixels before taking a random crop)
and random horizontal flipping. For optimization, stochastic
gradient descent (SGD) is used with momentum 0.9 and a
minibatch size of 128. Initially, the learning rate is set to 0.1
and is decreased by a factor of 5 after every 50 epoch. We
set weight decay to 0.0001, and all models are trained from
scratch for around 250 epochs in the PyTorch framework. For
evaluation, the test images are used.

We take the original VGG-16 model as the baseline. We
plug the proposed skip convolution with P = 1/2 in the VGG-
16 architecture to achieve computation reduction. Experimen-
tal results show that we can reduce model computation using

TABLE I
THE TABLE SHOWS THE RESULTS FOR VGG-16, AND MOBILENETV2
OVER CIFAR-10 AND CIFAR-100 DATASETS (ACC: ACCURACY, FR:

FLOPS REDUCED, AND PM: PRETRAINED MODEL).

Model Dataset PM used VGG-16 MobileNetV2
Acc (%) FR (%) Acc (%) FR (%)

Baseline CIFAR-10 No 93.5 – 94.5 –
P=1/2 CIFAR-10 No 93.5 44% 94.3 44%
P=1/2 CIFAR-10 Yes 93.5 44% 94.4 44%
Baseline CIFAR-100 No 73.0 – 75.8 –
P=1/2 CIFAR-100 No 72.9 44% 75.4 44%
P=1/2 CIFAR-100 Yes 73.0 44% 75.6 44%

TABLE II
THE TABLE SHOWS THE RESULTS FOR RESNET-56, AND RESNET-164
OVER CIFAR-10 AND CIFAR-100 DATASETS (ACC: ACCURACY, FR:

FLOPS REDUCED, AND PM: PRETRAINED MODEL).

Model Dataset PM used ResNet-56 ResNet-164
Acc (%) FR (%) Acc (%) FR (%)

Baseline CIFAR-10 No 93.6 – 94.2 –
P=1/2 CIFAR-10 No 93.6 44% 94.2 44%
P=1/2 CIFAR-10 Yes 93.6 44% 94.2 44%
Baseline CIFAR-100 No 71.5 – 75.0 –
P=1/2 CIFAR-100 No 71.3 44% 74.8 44%
P=1/2 CIFAR-100 Yes 71.4 44% 74.9 44%

proposed SkipConv without sacrificing accuracy. The results
are shown in the table I.

B. MobileNet on CIFAR-10 and CIFAR-100 datasets

For CIFAR experiments, we use the same hyper-parameters
and settings as described earlier. We train MobileNetV2 [41]
on the CIFAR-10 dataset and achieve only 91% accuracy
because of three downsample layers, leading to only 4×4 fea-
ture maps before the last avg pooling. Therefore, we changed
the number of downsampling layers from three to two and
achieved 94.5% accuracy. We use the publicly available code1

for these experiments, which uses only two downsampled
layers.

MobileNet [33], [41] is a highly compact model. Therefore,
reducing computation in an already compact model is a
challenging task. We take the original MobileNetV2 model
as the baseline. We plug the proposed skip convolution with
P = 1/2 in the MobileNetV2 architecture to achieve compu-
tation reduction. Experimental results show that we can further
reduce the computational requirements of MobileNetV2 using
the proposed SkipConv. The results are shown in the table I.

C. ResNet-50/56/164 on CIFAR-10, CIFAR-100, and Ima-
geNet datasets

For CIFAR experiments, we use the same hyper-parameters
and settings, as described in the above section. ResNet-56/164
is a deeper architecture as compare to VGG-16. We take the
original ResNet-56/164 model as the baseline. We plug the
proposed skip convolution with P = 1/2 in the ResNet-56/164
architecture to achieve computation reduction. Experimental

1https://github.com/tinyalpha/mobileNet-v2 cifar10

TABLE III
THE TABLE SHOWS THE RESULTS FOR RESNET-50 OVER THE IMAGENET

DATASET. BOLD VALUES INDICATE THE BEST RESULTS OBTAINED BY OUR
METHOD IN THE COMPARISON.

Model Accuracy (%) FLOPS Reduced (%)
ResNet-50 (Baseline) 92.2 –
SSS-32 [10] 91.9 31.1%
SPP [11] 90.4 33.3%
CP [36] 90.8 33.3%
ThiNet-70 [9] 92.1 36.8%
VCNNP [7] 92.1 40.0%
SFP [12] 92.0 41.8%
GDP-0.7 [13] 91.1 42.0%
SSS-26 [10] 90.8 43.0%
GAL-0.5 [6] 90.9 43.0%
DBSR [8] 91.8 43.1%
WAE [14] 90.4 46.8%
ResNet-50 P=1/2 92.1 44.0%

results show that we can reduce model computation using
proposed SkipConv without sacrificing accuracy. The results
are shown in the table II.

We conduct large scale ImageNet experiments on ResNet-50
architecture to validate the efficacy of the proposed approach.
For ImageNet experiments, we perform standard data augmen-
tation methods of random cropping to a size of 224 × 224
and random horizontal flipping. For optimization, stochastic
gradient descent (SGD) is used with momentum 0.9 and
a minibatch size of 256. Initially, the learning rate is set
to 0.1 and is decreased by a factor of 10 after every 30
epoch. The models are trained from scratch for around 90
epochs. For evaluation, the validation images are subjected
to center cropping of size 224 × 224, and accuracy (Top-5)
on the validation set is reported. SkipConv with P = 1/2
shows similar results as baseline2 with significant FLOPS
compression (44%) as shown in table III.

We have also compared the proposed approach with other
model compression methods [6]–[14], [36]. Most of the model
compression methods require a pretrained model and perform
time-consuming iterative pruning and finetuning steps to get
a reduction in computation, while the proposed approach
further reduces the computational requirements at training
time. Therefore, it is not fair to directly compare our ap-
proach with model compression methods, but for the sake
of completeness, we include this. As shown in table III,
computationally efficient models produced by our approach
are always better than compressed models produced by other
methods [6]–[14], [36].

VI. ABLATION STUDY

We conduct a wide range of experiments to validate the
proposed approach. First, we perform ablation on skip density
(by varying P values) to create the trade-off between model
accuracy and model computation. Next, we compare our
approach with additional baseline “Prune-Scratch”. Last, we
analyze the effect of the skip pattern on model performance.

2https://github.com/KaimingHe/deep-residual-networks

TABLE IV
THE TABLE SHOWS THE ERROR (%), FLOPS REDUCED (%), AND

COMPARISON WITH OTHER COMPUTATION REDUCTION APPROACHES FOR
VARIOUS P VALUES OVER THE CIFAR-10 DATASET. BOLD VALUES
INDICATE THE BEST RESULTS OBTAINED BY OUR METHOD IN THE

COMPARISON.

Model Error (%) FLOPS Reduced (%)
ResNet-56 P=1 6.4 –
VCNNP [7] 7.7 20.3%
Li-B [35] 6.9 28%
GAL-0.6 [6] 6.6 37.6%
NISP [15] 7.0 44%
ResNet-56 P=1/2 6.4 44%
CP [36] 8.2 50%
AMC [16] 8.1 50%
ENC [5] 7.0 50%
CaP [4] 6.8 50.2%
SFP [12] 6.7 53%
GAL-0.8 [6] 8.4 60.2%
AFP-G [17] 7.1 61%
ResNet-56 P=1/4 6.6 61%
ResNet-56 P=1/8 6.9 68.4%
ResNet-56 P=0 7.1 75%

A. Ablation on Skip Density

In the proposed approach, FLOPS reduction depends on
the P values as shown in table IV, where P ∈ [0, 1]. If we
decrease P values, then the density of skip convolutions will
increase (low P value results in a high reduction in compu-
tation). We evaluate the model’s performance over different
P value and observe that with a negligible drop in accuracy,
we can obtain highly computationally efficient models. For
P = 1/8, only (100/8) % of the feature maps will be dense.
As shown in table IV, we have 68.4% FLOPS reduction with
only 0.5% accuracy drop from the baseline. As shown in
table IV, computationally efficient models produced by our
approach show higher accuracy than other methods [4]–[7],
[12], [15]–[17], [35], [36].

B. Comparision with Prune-Scratch

We create another baseline to validate the proposed ap-
proach. To create the “Prune-Scratch” baseline, we first prune
some α% of convolutional filters from every layer to reduce
FLOPS close to 44% and then pruned model is trained from
scratch using same hyper-parameters settings and training
schedule.

We observe that the model produced by the proposed
approach exhibits far better performance as compare to the
Prune-Scratch model over the CIFAR-10 dataset, as shown in
table V. The same trend is also observed over the CIFAR-100
dataset.

C. Ablation on Skip Pattern

In the proposed approach, we use an alternative zero row
pattern in sparse feature maps. We also test contiguous half
zero rows pattern (upper-half or lower-half part is zero in
sparse feature map), but the results are not satisfactory as
shown in table VI because of information loss in the sparse
feature map. This again validates the proposed approach

TABLE V
COMPARISON BETWEEN THE MODELS PRODUCED BY THE PROPOSED

APPROACH AND PRUNE-SCRATCH MODELS HAVING THE SAME FLOPS.
BOLD VALUES INDICATE THE BEST RESULTS OBTAINED BY OUR METHOD

IN THE COMPARISON (FR: FLOPS REDUCED).

Model Dataset Accuracy (%) FR (%)
ResNet-56 Prune-Scratch CIFAR-10 92.9 44%
ResNet-56 P=1/2 CIFAR-10 93.6 44%
ResNet-56 Prune-Scratch CIFAR-100 70.2 44%
ResNet-56 P=1/2 CIFAR-100 71.3 44%

TABLE VI
THE TABLE SHOWS THE RESULTS FOR VARIOUS SKIP PATTERNS OVER THE

CIFAR-100 DATASET (FR: FLOPS REDUCED).

Model Skip Pattern Accuracy (%) FR (%)
ResNet-56 None 71.5 0%
ResNet-56 P=1/2 Alternative Rows 71.3 44%
ResNet-56 P=1/2 Contiguous Half Rows 70.1 44%

for model computation reduction. Contiguous half zero rows
pattern in a sparse feature map can be produced by skipping
contiguous half rows during convolution.

D. Reduction in Computation for Pretrained Models

Our approach does not require a pretrained model and does
train from scratch. But if the pretrained model is available, then
the proposed convolution (SkipConv) can be directly applied
on the pretrained model to get computation reduction. In our
approach, we are skipping convolutions to reduce redundant
computation. Therefore after loading model weights from the
pretrained model, we finetune the model for the proposed
SkipConv convolutions. As shown in table I, II, computation-
ally efficient models using pretrained models show similar or
slightly better accuracy performance than models trained from
scratch.

VII. GENERALIZATION ABILITY

To show the generalization ability of the model produced
by our proposed approach, we experiment on the F-RCNN
[19] object detector over MS-COCO [44] dataset. MS-COCO
detection dataset contains 80 object categories [44]. Here all
80k train images and 35k val images are used for training
(trainval35K) [45].

We are reporting the detection accuracies over the 5k unused
val images (minival). To create a baseline, we trained Faster-
RCNN with the ImageNet pretrained ResNet-50 base model.
The results are shown in table VII. In the second experiment,
we use ResNet-50 P=1/2 model (table III) as a base network
in Faster-RCNN P=1/2. We use a publicly available code3

for Faster R-CNN with ResNet-50 as a base network. In
the Faster-RCNN implementation, we use ROI Align and use
stride=1 for the last block of the convolutional layer (layer4)
in the base network.

3https://github.com/jwyang/faster-rcnn.pytorch

TABLE VII
GENERALIZATION RESULTS OVER MS-COCO DATASET. RESNET-50

P=1/2 USED AS A BASE MODEL FOR FASTER-RCNN OBJECT DETECTOR.

Model data Avg. Precision, IoU:
0.5:0.95 0.5

F-RCNN (Baseline) trainval35K 30.3 51.3
F-RCNN P=1/2 trainval35K 30.3 51.2

From our results, we show that the Faster-RCNN based on
ResNet-50 gives similar results (table VII) with our ResNet-50
P=1/2 model. Therefore, our ResNet-50 P=1/2 model retains
its feature representation capacity even after computation
reduction.

VIII. IMPLEMENTATION DETAILS

None of the existing frameworks support the proposed
SkipConv convolution. We, therefore, implemented this in
PyTorch. Practical speedup highly depends on the frameworks,
hardware, and efficient implementation. We have implemented
an initial implementation of the proposed convolution our-
selves. This is not highly optimized, and therefore we believe
it cannot be directly compared with existing highly efficiently
implemented convolutions in terms of absolute numbers. We,
therefore, presented an analysis of computational complexity
(FLOPS) for the proposed work because it is independent of
implementation.

We implement SkipConv convolution by dividing existing
convolution into multiple parts. Similarly, we divided input
feature maps corresponding to each part of the convolution
and performed the convolution operation. After that, we com-
bine (add) the results from all sub-convolutions after using
appropriate zero row paddings.

IX. CONCLUSION

In this work, we have proposed a novel SkipConv for reduc-
ing computation in the deep CNNs. Our proposed SkipConv
can be plugged into any deep architecture for computational
reduction. We empirically show the usability of SkipConv
in object classification and detection tasks. Our extensive
experimental results validate the strength of the proposed
approach. We experimentally show the usability of SkipConv
for already compact architectures (MobileNet). Using the
proposed SkipConv, we can reduce computation at training as
well as at test time. Proposed SkipConv is complementary to
all other model compression approaches and hence can be used
in conjunction with other model compression (quantization,
pruning, and sparsity in model parameters) approaches to get
a further reduction in computation. We present an extensive
ablation study to validate the SkipConv (skip density, prune-
scratch, and skip pattern) approach.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, pp. 91–110, 2004.

[2] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in international Conference on computer vision & Pattern
Recognition (CVPR’05), vol. 1, 2005, pp. 886–893.

[3] T. Brox and J. Malik, “Large displacement optical flow: descriptor
matching in variational motion estimation,” IEEE transactions on pattern
analysis and machine intelligence, pp. 500–513, 2011.

[4] B. Minnehan and A. Savakis, “Cascaded projection: End-to-end network
compression and acceleration,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 10 715–10 724.

[5] H. Kim, M. U. K. Khan, and C.-M. Kyung, “Efficient neural network
compression,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 12 569–12 577.

[6] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and
D. Doermann, “Towards optimal structured cnn pruning via generative
adversarial learning,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019, pp. 2790–2799.

[7] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian, “Variational
convolutional neural network pruning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
2780–2789.

[8] D. teja Vooturi, G. Varma, and K. Kothapalli, “Dynamic block sparse
reparameterization of convolutional neural networks,” in The IEEE
International Conference on Computer Vision (ICCV) Workshops, Oct
2019.

[9] J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, and W. Lin, “Thinet:
pruning cnn filters for a thinner net,” in IEEE transactions on pattern
analysis and machine intelligence. IEEE, 2018.

[10] Z. Huang and N. Wang, “Data-driven sparse structure selection for
deep neural networks,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 304–320.

[11] H. Wang, Q. Zhang, Y. Wang, and H. Hu, “Structured probabilistic
pruning for convolutional neural network acceleration,” in The British
Machine Vision Conference (BMVC), 2018.

[12] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for
accelerating deep convolutional neural networks,” in Proceedings of the
27th International Joint Conference on Artificial Intelligence. AAAI
Press, 2018, pp. 2234–2240.

[13] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang, “Accelerating
convolutional networks via global & dynamic filter pruning.” in IJCAI,
2018, pp. 2425–2432.

[14] T. Chen, L. Lin, W. Zuo, X. Luo, and L. Zhang, “Learning a wavelet-
like auto-encoder to accelerate deep neural networks,” in Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[15] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance
score propagation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

[16] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl
for model compression and acceleration on mobile devices,” in The
European Conference on Computer Vision (ECCV), September 2018.

[17] X. Ding, G. Ding, J. Han, and S. Tang, “Auto-balanced filter pruning
for efficient convolutional neural networks,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[21] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks.” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2016.

[22] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, “Hetconv:
Heterogeneous kernel-based convolutions for deep cnns,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 4835–4844.

[23] P. Singh, V. S. R. Kadi, N. Verma, and V. P. Namboodiri, “Stability
based filter pruning for accelerating deep cnns,” in 2019 IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE, 2019,
pp. 1166–1174.

[24] P. Singh, V. K. Verma, P. Rai, and V. Namboodiri, “Leveraging filter cor-
relations for deep model compression,” in The IEEE Winter Conference
on Applications of Computer Vision, 2020, pp. 835–844.

[25] P. Singh, R. Manikandan, N. Matiyali, and V. Namboodiri, “Multi-
layer pruning framework for compressing single shot multibox detector,”
in 2019 IEEE Winter Conference on Applications of Computer Vision
(WACV). IEEE, 2019, pp. 1318–1327.

[26] V. K. Verma, P. Singh, V. Namboodri, and P. Rai, “A ”network pruning
network” approach to deep model compression,” in The IEEE Winter
Conference on Applications of Computer Vision (WACV), March 2020.

[27] P. Singh, P. Mazumder, and V. Namboodiri, “Accuracy booster: Perfor-
mance boosting using feature map re-calibration,” in The IEEE Winter
Conference on Applications of Computer Vision, 2020, pp. 884–893.

[28] P. Singh, V. S. R. Kadi, and V. P. Namboodiri, “Falf convnets: Fatuous
auxiliary loss based filter-pruning for efficient deep cnns,” Image and
Vision Computing, p. 103857, 2019.

[29] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, “Hetconv: Beyond
homogeneous convolution kernels for deep cnns,” International Journal
of Computer Vision, pp. 1–21, 2019.

[30] P. Mazumder, P. Singh, and V. Namboodiri, “Cpwc: Contextual point
wise convolution for object recognition,” in ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 4152–4156.

[31] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, “Play and prune:
Adaptive filter pruning for deep model compression,” International Joint
Conference on Artificial Intelligence (IJCAI), 2019.

[32] P. Singh, M. Varshney, and V. Namboodiri, “Cooperative initialization
based deep neural network training,” in The IEEE Winter Conference
on Applications of Computer Vision (WACV), March 2020.

[33] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[34] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in International Conference on Learning Representations, 2016.

[35] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” in International Conference on Learning
Representations, 2017.

[36] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 1389–1397.

[37] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
5058–5066.

[38] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
The European Conference on Computer Vision (ECCV). Springer, 2016,
pp. 525–542.

[39] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848–6856.

[40] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.

[41] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

[42] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[43] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” in International Journal of Computer
Vision (IJCV), 2015, pp. 211–252.

[44] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in The European Conference on Computer Vision (ECCV).
Springer, 2014, pp. 740–755.

[45] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Be-
longie, “Feature pyramid networks for object detection.” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, p. 4.

