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Abstract—Randomized methods of neural network learning
suffer from a problem with the generation of random parameters
as they are difficult to set optimally to obtain a good projection
space. The standard method draws the parameters from a
fixed interval which is independent of the data scope and
activation function type. This does not lead to good results in the
approximation of the strongly nonlinear functions. In this work,
a method which adjusts the random parameters, representing
the slopes and positions of the sigmoids, to the target function
features is proposed. The method randomly selects the input
space regions, places the sigmoids in these regions and then
adjusts the sigmoid slopes to the local fluctuations of the target
function. A bias-variance tradeoff is controlled by the region size.
This brings very good results in the approximation of the complex
target functions when compared to the standard fixed interval
method and other methods recently proposed in the literature.

Index Terms—data-driven randomized learning, feedforward
neural networks, neural networks with random hidden nodes,
randomized learning algorithms

I. INTRODUCTION

The learning of feedforward neural networks (FNNs) is
an optimization process where the error function is highly
nonconvex. Flat regions of the error function as well as many
local minima and saddle points hinder and slow down the
learning. This is because the gradient algorithms commonly
used for FNN learning are very sensitive to the surface of the
objective function and fall into the traps of the local minima.
Moreover, the gradient calculations are time consuming, es-
pecially for a complex target function (TF), a big training
data set or for a network with many hidden neurons and
many layers. In randomized learning the gradient descend
methods do not have to be used. The learning process is
split into two stages. In the first stage, the parameters of the
hidden neurons (single-hidden-layer FNN is considered), i.e.
the weights and biases, are randomly selected. They are not
trained at all and stay fixed. In the second stage, the output
weights, connecting the hidden layer with the output layer, are
trained. The optimization problem becomes convex and can be
solved using a standard linear least-squares [1], which is the
simplest, most studied and scalable learning procedure to date.

The standard method of generating the parameters of the
hidden neurons, i.e. the weights and biases, is to select them

Supported by Grant 2017/27/B/ST6/01804 from the National Science
Centre, Poland.

randomly with a fixed interval. It was theoretically proven that
when the random parameters are selected from a symmetric
interval according to any continuous sampling distribution,
the FNN is a universal approximator [2]. The problem with
selection of the appropriate interval for the parameters has
not yet been solved, and is considered to be one of the most
important research gaps in the field of randomized algorithms
for NN training [3], [4]. In many practical applications of FNN
with random parameters this interval is set as [−1, 1] without
any justification, regardless of the problem type (classification
or regression), data, and activation function type. Some works
have shown that such an interval is misleading because the
network is unable to model nonlinear maps, no matter how
many training samples are provided or what size networks are
used [5]. So, the optimization of this interval is recommended
for a specified task [6], [2]. Such a way of improving the
performance of the FNN with random parameters has been
used in many works, e.g. [7].

Some researchers use unsupervised pre-training to generate
hidden node parameters. This approach is popular in deep
learning where it helps the optimization, by initializing weights
in a region near a good local minimum, giving rise to internal
distributed representations that are high-level abstractions of
the input, bringing better generalization [8], [9]. In [10] an
unsupervised pre-training using autoencoders was applied for
a shallow FNN (random vector functional link network, RVFL)
to fix hidden neuron parameters, while in [11] it was used for a
deep RVFL. The former work uses a sparse autoencoder with
`1-norm regularization to generate more sparse and meaningful
network parameters. The latter work uses randomization based
stacked autoencoders with a denoising criterion to extract
better higher-level representations. Each randomization based
autoencoder acts as an independent feature extractor and a
deep network is obtained by stacking several such autoen-
coders. The network is built hierarchically with high level
feature extraction followed by a final classification layer,
which is RVFL with direct links.

In [12] it was noted that the weights and biases have
different meanings, i.e. weights represent the sigmoid slope
and biases represent its shift, and therefore they should not
be generated from the same interval. The method proposed in
[12] generates the parameters of the hidden nodes in such
a way that nonlinear fragments of the activation functions
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are located in the input space regions with data and can be
used to construct a surface approximating a nonlinear TF. The
weights and biases are dependent on the input data range and
activation function type. This leads to an improvement in the
approximation performance of the network. Another approach
for generating the random parameters was proposed in [13].
This method, firstly, selects at random the slope angles of the
sigmoids from the interval adjusted to the TF fluctuations, then
rotates the sigmoids randomly and finally shifts them into the
input space according to the data distribution. This gives much
better results than the standard approach with fixed intervals.

In this work we do not select the hidden neurons parameters
from specified intervals. Instead, we propose to adjust them to
the local features of the TF. The proposed method selects the
input space region by randomly choosing one of the training
points, then places the sigmoid in this region and adjusts
the sigmoid slope to the TF slope in the neighborhood of
the chosen point. Combining linearly the randomly placed
sigmoids in the input space, we obtain a fitted surface which
reflects the TF features in different regions.

II. RANDOMIZED LEARNING OF FNNS

A single-hidden-layer FNN for a single output case and
an input x = [x1, x2, ..., xn]T ⊂ Rn is defined by linearly
combining m nonlinear transformations of the input hi(x):

ϕ(x) =

m∑
i=1

βihi(x) = h(x)β (1)

where βi is the weight between the i-th hidden neuron and
the output neuron, and hi(x) is represented by an activation
function of the i-th hidden neuron, e.g. a sigmoid:

hi(x) =
1

1 + exp
(
−
(
aTi x + bi

)) (2)

In randomized FNNs, the weights ai = [ai,1, ai,2, ..., ai,n]T

and bias bi are generated randomly for each neuron accord-
ing to any continuous sampling distribution. Usually ai,j ∼
U(amin, amax) and bi ∼ U(bmin, bmax).

Note that the activation function (2) applies some nonlinear-
ity on a random linear combination of the input vector. As a
result, the activation function is randomly located in the space,
has random slope and rotation.

The hidden layer output matrix for N training samples is:

H =

 h(x1)
...

h(xN )

 =

 h1(x1) . . . hm(x1)
...

. . .
...

h1(xN ) . . . hm(xN )

 (3)

where the i-th column of H is the i-th hidden node output
vector with respect to inputs x1,x2, . . . ,xN , and h(x) =
[h1(x), h2(x), . . . , hm(x)] is a nonlinear mapping from n-
dimensional input space to m-dimensional feature space,
wherein, typically m� n.

The parameters of the hidden neurons, ai,j and bi are
fixed, so, the matrix H is calculated only once and remains
unchanged.

The output weights βi are determined by solving the fol-
lowing linear problem:

Hβ = Y (4)

where β = [β1, β2, . . . , βm]T is a vector of output weights
and Y = [y1, y2, . . . , yN ]T is a vector of target outputs.

A least mean squares solution of (4) can be achieved
within a single learning step by using the Moore–Penrose
pseudoinverse H+ of matrix H:

β = H+Y (5)

In the above described randomized learning there are five
hyperparameters which influence strongly on the approxi-
mation abilities of the network. They are: the number of
hidden nodes m and the bounds of the scopes for weights
and biases, i.e. amin, amax, bmin and bmax. In most of the
works on randomized algorithms for FNNs, the bounds of
parameters are selected as fixed, regardless of the data and
activation function types. Typically amin = bmin = −1 and
amax = bmax = 1. The hidden neuron sigmoids, whose linear
combination (2) builds the function fitting data, should deliver
the nonlinear fragments, avoiding their saturated fragments,
and so achieve the required accuracy of approximation. As
demonstrated in [12] when using typical interval for random
parameters, [−1, 1], the sigmoids are not distributed properly
in the input space and their steepness does not correspond
to the TF steepness. In some works, the authors optimize the
interval for the random parameters by searching for its bounds
[−u, u].

To improve the randomized learning performance, the
method proposed in [12] randomly generates the weights and
biases of the hidden nodes, depending on the input data range
and activation function type, in such a way so as to introduce
the nonlinear fragments of the activation functions in the input
space region containing the data points. Additionally the slopes
of the activation functions are adjusted to the TF complexity.
According to the proposed method the weights of the i-th
hidden node are calculated as follows:

ai,j = ζj
Σi
n∑

l=1

ζl

, j = 1, 2, ..., n (6)

where ζ1, ζ2, . . . , ζn ∼ U(−1, 1) are i.i.d. numbers and Σi is
the sum of weights of the i-th node, which is randomly chosen
from the interval:

|Σi| ∈
[
ln

(
1− r
r

)
, s · ln

(
1− r
r

)]
(7)

There are two parameters which decide on the activation
function slope: r ∈ (0, 0.5) and s > 1. Specifically, they



determine two boundary sigmoids between which the activa-
tion functions are randomly generated. These parameters are
adjusted to the data in cross-validation.

The biases of the hidden nodes are determined setting the
inflection points of the sigmoids at some points x∗ randomly
selected from the input space or, alternatively, randomly cho-
sen from the training set. The bias of the i-th node is calculated
as follows:

bi = −aTi x∗ (8)

From the above equations we can conclude that the new
approach to selection of the random parameters is a radical
departure from the standard approach. Instead of generating
both weights and biases from the fixed interval, in the new
approach, we first generate the sum of the all node weights
from the interval (7), and then randomly generate individual
weights from (6). In the next step, the bias is generated from
(8) on the basis of randomly chosen point x∗ and weight vector
ai. The derivations of the above equations and more detailed
discussion on this topic, including other activation function
types, can be found in [12].

Another method for improving the performance of FNN
randomized learning was proposed in [13]. Firstly, it randomly
choses the slope angles of the hidden neurons activation
functions from an interval adjusted to the complexity of the
TF. Then, the activation functions are randomly rotated around
the y-axis and finally, they are distributed across the input
space according to data distribution. For complex TFs, with
strong fluctuations, the proposed method gives incomparably
better results than the standard approach with the fixed interval
for the random parameters. This is because it adjusts the
slopes of the activation functions to the data and introduces
their steepest fragments into the input space, avoiding their
saturation fragments.

In this approach, the weights of the i-th hidden node are
calculated from:

ai,j = −4
a′i,j
a′i,0

, j = 1, 2, ..., n (9)

where a′i,j are components of the normal vector n to the
hyperplane, which is tangent to the sigmoid at their inflection
points.

The angle between the normal vector n and the unit vector
in the direction of the y-axis, α, is randomly selected from
the interval (αmin, αmax). The bounds of this interval are
adjusted to the TF in cross-validation. These bounds control
the slopes of the sigmoids and thus the flexibility of the model.
The rotation of the individual sigmoid is random, determined
by choosing randomly the components of the normal vector
a′1, . . . , a

′
n ∼ U(−1, 1) and calculating component a′0 from:

a′0 = (−1)c
√

(a′1)2 + ...+ (a′n)2

tanα
(10)

where c ∼ U{0, 1}.

To distribute the sigmoids across the input space their biases
are calculated from (8), where x∗ are the randomly chosen
training points. Details of this method can be found in [13].

The methods proposed in [12] and [13] allow us to control
the slope of the sigmoids forming the fitted function, and hence
the degree of generalization of the network and bias-variance
tradeoff of the model. In Fig. 1, the approximation of the
highly nonlinear function is shown for the standard method of
generating random parameters from the fixed intervals [−1, 1]
and in Fig. 2, for the method proposed in [13] (let us denote
this method with the acronym RARSM, i.e. random sigmoid
slope angle, rotation and shift method). The TF is in the form:

g(x) = sin (20 · exp(x)) · x2 (11)

The FNNs learns from a training set containing 5000 points
(xl, yl), where xl are uniformly randomly distributed on [0, 1]
and yl are calculated from (11) and then distorted by adding
the uniform noise distributed in [−0.2, 0.2]. The test set of
the same size expresses the true TF (11). The outputs are
normalized in the range [0, 1].

In both cases 35 hidden neurons were used. In RARSM
αmin = 30◦ and αmax = 90◦. The sigmoids distributed in the
input interval, which is shown as a gray field, are shown in the
middle panels of Figs. 1 and 2. After weighing them by the
output weights βi we obtain the curves shown in the bottom
panels. The sum of these curves gives the fitted functions,
which are drawn with solid lines in the upper panels. Note
that the sigmoids generated from the fixed internal [−1, 1] are
too flat and their steepest fragments, around their inflection
points, do not correspond to the steep fragments of the TF. As
a result, they cannot be combined to obtain the TF, even when
we increase the number of neurons to several hundreds or even
thousands. In a completely different manner the sigmoids are
generated by the RARSM. As we can see from the middle right
panel of Fig. 2, the sigmoids have their steepest fragments
inside the input interval. Their slopes are also fitted to the TF.
This results in a reduction the error from RMSE = 0.1454
for the fixed interval to RMSE = 0.0043.

III. DATA-DRIVEN GENERATION OF HIDDEN NODES
PARAMETERS

In the above described methods of FNN randomized learn-
ing, we can observe an evolution. The first step of this
evolution is the completely random generation of the hidden
node weights and biases, both from a fixed interval, typically
[−1, 1], according to any continuous sampling distribution,
usually a uniform one. In the second step, we try to find
the best interval for the weights so as to match the slopes
of sigmoids to the TF complexity. After adjusting slopes,
we calculate the biases in order to distribute the sigmoids
randomly across the input space. The interval for the weights
is dependent on the two hyperparameters, r and s, which
are searched in the cross-validation. In the third step of
the evolution, we introduce hyperparameters describing the
sigmoid shape which are more intuitive than r and s, i.e
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Fig. 1. Fitted curves (upper panel), hidden node sigmoids (middle panel) and
weighted sigmoids (bottom panel) for the standard method.
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Fig. 2. Fitted curves (upper panel), hidden node sigmoids (middle panel) and
weighted sigmoids (bottom panel) for the RARSM method.

the limit slope angles of the sigmoids. These hyperparameters
can be adjusted to the TF complexity or their default values
can be applied, αmin = 0◦ and αmax = 90◦. The forth
step of the evolution, proposed in this work, is adjusting the
sigmoids individually to the local complexity of the TF. The
weights and biases of the sigmoids are no longer random,
but they are adjusted to data in randomly chosen regions of
the input space. So, each sigmoid models locally the TF in the
neighborhood of a randomly selected training point. The fitted
function is constructed typically as a linear combination of the

sigmoids (1). The weights in this combination are calculated
according to (8) using the Moore–Penrose pseudoinverse. The
idea behind the proposed method is shown on the single-
variable TF example in subsection 3.1, and its multivariable
extension is presented in subsection 3.2.

A. The Idea behind the Method

The idea behind the proposed method can be exemplified
by the approximation of the single-variable TF (11). Sigmoids
are used as hidden nodes activation functions:

h(x) =
1

1 + exp(−(ax+ b))
(12)

where a is a weight controlling a slope of the sigmoid and b
is a bias shifting the sigmoid along the x-axis.

It would be convenient to place the sigmoids in the input
space and adjust their slopes in such a way that they corre-
spond to the TF fluctuations. To do so, let us select randomly
training point x∗ and find its k nearest neighbors. These k+1
points form the neighborhood of x∗, Ψ(x∗), and express the
local features of the TF around x∗. Now, let us fit to these
points straight line T :

y = a′x+ b′ (13)

Note that coefficient a′ expresses the slope of the line which
corresponds to the slope of the TF in Ψ(x∗).

Let set some sigmoid S in the input space in such a way that
its inflection point P is in x∗. Remembering that the sigmoid
value for the inflection point is 0.5, we get:

h(x∗) =
1

1 + exp(−(ax∗ + b))
= 0.5 (14)

Let us assume that the slope of S at P is the same as the slope
of the line T . This means that the derivative of S at P = x∗

is equal to the derivative of the line T , thus:

ah(x∗)(1− h(x∗)) = a′ (15)

Substituting h(x∗) = 0.5 from (14) into (15) we obtain:

a · 0.5 · (1− 0.5) = a′ (16)

and finally weight a of sigmoid S is:

a = 4a′ (17)

From (14) we also obtain:

b = −ax∗ (18)

So, the sigmoid which models locally the TF in the neigh-
borhood of x∗ has weight a dependent on slope parameter a′

of the line fitted to Ψ(x∗). Additionally bias b is dependent
on slope parameter a′ as well as on point x∗.

Fig. 3 shows an example sigmoids set according to the
three randomly selected points x∗ and their neighborhoods
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Fig. 3. Examples of setting the sigmoids to the neighborhoods (larger colored
points) of the three randomly selected training points.
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Fig. 4. Fitted curve (upper panel), hidden node sigmoids (middle panel) and
weighted sigmoids (bottom panel) for the proposed method.

composed of x∗ and their ten closest points. Note that the
sigmoids reflect the slopes of the TF around points x∗.

Fig. 4 shows function (12) approximation when using the
proposed method with 25 hidden neurons and 100 nearest
neighbors. Compare Fig. 4 with Fig. 1 and note the similar
errors for the proposed method and RARSM. Note also the
different distribution of the the sigmoids which have different
slopes in these both cases. In the proposed method the steeper
sigmoids are generated at the right border of the input interval,
where the fluctuations of the TF are stronger. At the left border,
where the TF is flat, the sigmoids are less steep. While in the
RARSM the steepness of the sigmoids does not depend on
the local TF features and is similar in each region of the input
space.

It is worth mentioning that the proposed method needs
only 25 hidden neurons to obtain the same error level as the
RARSM with 35 neurons. The RMSE for the RARSM with
25 neurons was 0.031, which is almost seven times larger than
for the proposed method. The smaller number of neurons in
the proposed approach is due to the fact that the sigmoids are
better fitted to TF fluctuations.

B. Multivariable Function Fitting

In this subsection, the proposed method is extended to the
general case of multivariable function fitting. In this case
the TF is a function of n input variables included in the
vector x = [x1, x2, ..., xn]T ⊂ Rn. Similarly to the single-
variable case, we place the sigmoids in the input space and
adjust their slopes in such a way that they correspond to
the TF fluctuations. The slopes of the TF in some point x∗

are approximated by hyperplane T fitted to the neighborhood
Ψ(x∗) which includes this point and its k nearest neighbors
among the training points. This hyperplane is of the form:

y = a′1x1 + a′2x2 + ...+ a′nxn + b′ (19)

where coefficient a′j expresses a slope of hyperplane T in the
j-th direction.

Let us consider a sigmoid S which has one of its inflection
points, P , in the randomly selected training point x∗:

h(x∗) =
1

1 + exp (− (aTx∗ + b))
= 0.5 (20)

where a = [a1, a2, ..., an]T ⊂ Rn.
The slope of this sigmoid S at point x∗ in the j-th direction

is expressed by a partial derivative:

∂h(x∗)

∂xj
= ajh(x∗)(1− h(x∗)) (21)

We want the slope of sigmoid S at x∗ in the j-th direction
to be the same as the slope of the TF in this point, which is
approximated by the hyperplane T slope a′j . Thus:

ajh(x∗)(1− h(x∗)) = a′j (22)

After substituting h(x∗) = 0.5 from (20) into (22) we
obtain:

aj = 4a′j , j = 1, 2, ..., n (23)

Directly from (20) we also obtain:

b = −aTx∗ (24)

Note that the weights of the hidden neuron, aj , expressing
the slopes of the sigmoid in all n directions, are propor-
tional to the hyperplane T coefficients corresponding to these
directions. These coefficients approximate the TF slopes at
the randomly selected point x∗. The bias of sigmoid S is a
linear combination of point x∗ and sigmoid weights a. The
sigmoid S reflects the local features of the TF around point
x∗. Selecting randomly a set of points x∗ we generate a set of
sigmoids reflecting the local features of the TF in different
regions. These sigmoids are the basis functions which are
linearly combined to get the fitted function approximating the
TF. The weights in this combination are calculated using the
Moore–Penrose pseudoinverse (8).

The proposed method places the sigmoids in the input space
setting their inflection points on the randomly selected training



points x∗ and adjusting the sigmoid slopes to the slopes of
the TF around these points. The TF slope is approximated
by hyperplane T fitted to the neighborhood of x∗, i.e. x∗

and its k nearest neighbors. The TF is defined in (n + 1)-
dimensional space. To define hyperplane T in such a space
at least n + 1 points are needed. So, the number of nearest
neighbors k should not be less than n.

The number of nearest neighbors controls the bias-variance
tradeoff of the model. The optimal value of k depends on
the random error observed in the data and the TF complexity.
When the training points represent a TF with low error, the
number of nearest neighbors k should be lower. For higher
errors a low value of k leads to overfitting. On the other hand,
a too large k causes underfitting. This hyperparameter should
be tuned in the cross-validation to the given data as well as
the second hyperparameter, the number of hidden nodes m.
In the experimental part of the work, the impact of the noise
level in the data on the hyperparameters is investigated.

Algorithm 1 summarizes the proposed method.

Algorithm 1 Data-Driven Generating the Parameters of FNN
Hidden Nodes

Input:

Number of hidden nodes m
Number of nearest neighbors k ≥ n
Training set Φ = {(xl, yl)|xl ∈ Rn, yl ∈ R, l = 1, 2, ..., N}

Output:

Weights A =

 a1,1 . . . am,1

...
. . .

...
a1,n . . . am,n


Biases b = [b1, . . . , bm]

Procedure:

for i = 1 to m do
Choose randomly x∗ = xl ∈ Φ,

where l ∼ U{1, 2, . . . , N}
Create the set Ψ(x∗) containing x∗ and its k nearest

neighbors in Φ
Fit the hyperplane to Ψ(x∗):

y = a′1x1 + a′2x2 + ...+ a′nxn + b′

Calculate the weights for the i-th node:

ai,j = 4a′j , j = 1, 2, ..., n

Calculate the bias for the i-th node:

bi = −
n∑

j=1

ai,jx
∗
j

end for

IV. SIMULATION STUDY

This section reports some experimental results of the pro-
posed method, including the impact of the noise level in data
on the hyperparameters and performance evaluation. In the first
experiment we analyze how the noise disturbing data affects
the hyperparameters of the proposed methods. Simulations
were carried out on a two-variable TF of the form:

g(x) = sin (20 · exp (x1)) · x21 + sin (20 · exp (x2)) · x22 (25)

On the basis of this function, training set Φ was created
containing 5000 points (xl, yl), where the components of xl

are independently uniformly randomly distributed on [0, 1] and
yl are generated from (25), then normalized to the range [0, 1]
and finally distorted by adding the uniform noise distributed
in [–c, c]. The testing set represents the TF without noise
normalized into [0, 1]. It contains 10,000 points distributed
regularly on a grid in the input space.

To introduce the noise of different level to data we changed
the noise boundary c from 0 to 1 with steps of 0.1. This
translates into a noise level from 0 to 100%, defined as the ratio
of the noise range to the TF range. The TF and the data points
for two noise levels, c = 0.2 and c = 1, are shown in Fig.
5. For each noise level we changed the neighborhood Ψ(x∗)
size, k′ = 3, 5, 7, 10, 20, ..., 100, where k′ = k + 1, keeping
the fixed number of hidden nodes m = 300. For each setting,
100 independent trials of FNN training were performed.

The left panel of Fig. 6 shows the test root-mean-square
error (RMSE) for a different noise levels and neighborhood
size. On the right panel, the boxplots are shown for three noise
levels: c = 0.1, c = 0.5 and c = 1. The optimal neighborhood
size k′ was 20 for the lower noise levels (c 6 0.5) and 30 for
the higher noise levels (c > 0.5). The model tends to overfit
for the lower than the optimal values of k′, and for higher
values it tends to underfit.

In the next step, for each noise level we changed the number
of hidden nodes m = 50, 100, ..., 500 keeping a fixed size of
the neighborhood k′ = 20. Fig. 7 shows the test RMSE surface
and the boxplots for this case. The optimal node numbers
were: m = 250 in the broad range of noise level from 0.1
to 0.7, m = 200 for c = 0.8 and c = 0.9, and m = 50 for
c = 1. We can observe from Figs. 6 and 7 that when the noise
level is small, the underestimation of both hyperparameters,
k′ and m, is more disadvantageous in terms of the error than
overestimation.

In the next experiments, we compare the results of the
proposed method with the methods described in Section 2:
• FIM - fixed interval method, standard method with fixed

interval for the random parameters [−1, 1],
• OIM - optimized interval method, the method with the

optimized interval for the random parameters [−u, u],
where u in our simulations was selected from a given set
{0.1, 0.5, 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 100, 200, 300,
400, 500},

• rsM - the method proposed in [12] with two param-
eters, r and s, which were selected from the sets:
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r ∈ {0.0001, 0.001, 0.01, 0.015, 0.02, 0.3, 0.4, 0.5} and
s ∈ {2, 4, 6, 8, 10, 20, 30},

• RARSM - random slope angle, rotation and shift method,
proposed in [13] with two parameters selected from the
sets: αmin ∈ {0◦, 5◦, ..., 85◦} and αmax ∈ {αmin +
5◦, αmin + 10◦, ..., 90◦},

• D-DM - data-driven method proposed in this work
with parameter k′ which was selected from the set
{5, 10, ..., 50}.

For each method of random parameter generation, the
number of hidden nodes was selected from the set
{50, 100, ..., 1000}. The selection of the optimal hyperparam-
eter values was carried out in the grid search procedure using
10-fold cross-validation. For the optimal values of the hyper-
parameters 100 independent trials of training were performed
and test errors were calculated.

First, we use function (25) with error level c = 0.2 as
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Fig. 7. RMSE for different number of nodes m (left panel) and noise level
c at k′ = 20 (right panel).
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Fig. 8. RMSE for different number of nodes m (left panel) and distribution
of the test RMSE for the tested methods (right panel).

the test function. The left panel of Fig. 8 shows the cross-
validation errors for different numbers of nodes at optimal
values of other hyperparameters. As you can see in this figure,
both FIM and OIM failed completely. Optimization of the
interval bounds [−u, u] in OIM brought only a slight improve-
ment in accuracy when compared to FIM. More sophisticated
methods, rsM, RARSM and D-DM, are incomparably more
accurate. Note that the proposed D-DM needs the smallest
number of neurons to get the best performance when compared
to other methods.

The right panel of Fig. 8 shows the boxplots of the test
RMSE for 100 trials of the learning sessions carried out
at the optimal values of hyperparameters. These simulations
are summarized in Table 1. Clearly, from this table, D-DM
outperforms the other methods in terms of accuracy.

In the next experiments we use two multivariable datasets:
• Stock – daily stock prices from January 1988 through

October 1991, for ten aerospace companies. The task
is to aproximate the price of the 10-th company given
the prices of the others (950 samples, 9 input variables,
source: http://www.keel.es/).

• Kin8nm – a realistic simulation of the forward dy-
namics of an 8 link all-revolute robot arm. The task
is to predict the distance of the end-effector from a
target. The inputs are things like joint postions, twist
angles, etc. (8192 samples, 8 input variables, source:
www.cs.toronto.edu/ delve/data/kin /desc).

The data sets were divided into training sets containing
75% samples selected randomly, and the test sets containing
the remaining samples. The test RMSE for both datasets
at the optimal values of hyperparameters are visualized by
the boxplots in Fig. 9. Table 1 shows the mean RMSE and
the optimal hyperparameters of the methods. Note that D-
DM demonstrates the best performance compared to other
methods. Especially for Kin8nm the significant improvement
in accuracy is observed for D-DM. This may be due to
the fact that in this case the target function has variable
fluctuations. The D-DM, which is designed to deal with such
cases, performs best.

V. CONCLUSIONS

The way in which the hidden node parameters are generated
is a key issue in the randomized learning of FNN. When
these parameters are selected in a standard way from the
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TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED AND COMPARATIVE

METHODS.

Method Test RMSE #nodes Parameters
Function (25)

FIM 0.1277± 0.00029 800 -
OIM 0.1157± 0.00088 1000 u = 3
rsM 0.0503± 0.00527 450 r = 0.4, s = 30

RARSM 0.0477± 0.00254 350 αmin = 55◦,
αmax = 70◦

D-DM 0.0370± 0.00230 300 k′ = 35
Stock
FIM 0.0296± 0.00141 200 -
OIM 0.0296± 0.00141 200 u = 1
rsM 0.0289± 0.00138 200 r = 0.001, s = 2

RARSM 0.0285± 0.00156 200 αmin = 45◦,
αmax = 70◦

D-DM 0.0277± 0.00150 250 k′ = 30
Kin8nm

FIM 0.0655± 0.00153 1300 -
OIM 0.0655± 0.00153 1300 u = 1
rsM 0.0643± 0.00157 1300 r = 0.4, s = 8

RARSM 0.0618± 0.00157 1300 αmin = 35◦,
αmax = 55◦

D-DM 0.0523± 0.00081 900 k′ = 60

fixed interval the performance of the network can be weak,
especially for complex function fitting.

This work proposes a new approach to generating the
parameters of a FNN in randomized learning. The proposed
method adjusts the hidden neurons weights and biases, repre-
senting the slopes and positions of the sigmoids, to the target
function features. The method first randomly selects the input
space regions by drawing the points from the training set.
Then, the hyperplanes are fitted to the neighborhoods of the
selected points and their coefficients are transformed into the
sigmoid weights and biases. This results in the placement of
the sigmoids in the selected regions of the input space and the
adjustment of their slopes to the local fluctuations of the target
function. A bias-variance tradeoff of the model is controlled by
the neighborhood size. As simulation research has shown, such
a method of generating random parameters brings very good
results in the approximation of the complex target functions
when compared to the standard fixed interval method and other
methods proposed recently in the literature.

Future work will focus on further analysis and improvement
of the proposed method as well as rsM and RARSM, and their
adaptation to classification problems.
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