
Arbitrary Chinese Font Generation from a Single
Reference

Zhichen Lai
College of Computer Science

Sichuan University
Chengdu, China

ryanlai.cs@gmail.com

Chenwei Tang
College of Computer Science

Sichuan University
Chengdu, China

tangchenwei826@gmail.com

Jiancheng Lv*
College of Computer Science

Sichuan University
Chengdu, China

lvjiancheng@scu.edu.cn

Abstract—Generating a new Chinese font from a multitude of
references is an easy task, while it is quite difficult to generate
it from a few references. In this paper, we investigate the
problem of arbitrary Chinese font generation from a single
reference and propose a deep learning based model, named
One-reference Chinese Font Generation Network (OCFGNet), to
automatically generate any arbitrary Chinese font from a single
reference. Based on the disentangled representation learning,
we separate the representations of stylized Chinese characters
into style and content representations. Then we design a neural
network consisting of the style encoder, the content encoder and
the joint decoder for the proposed model. The style encoder
extracts the style features of style references and maps them onto
a continuous Variational Auto-Encoder (VAE) latent variable
space while the content encoder extracts the content features of
content references and maps them to the content representations.
Finally, the joint decoder concatenates both representations in
layer-wise to generate the character which has the style of style
reference and the content of content reference. In addition, based
on Generative Adversarial Network (GAN) structure, we adopt
a patch-level discriminator to distinguish whether the received
character is real or fake. Besides the adversarial loss, we not only
adopt L1-regularized per-pix loss, but also combine a novel loss
term Structural SIMilarity (SSIM) together to further drive our
model to generate clear and satisfactory results. The experimental
results demonstrate that the proposed model can not only extract
style and content features well, but also have good performance
in the generation of Chinese fonts from a single reference.

Index Terms—Chinese font generation, variational auto-
encoder, generative adversarial network

I. INTRODUCTION

Chinese fonts have been extensively used in various aspects

of art and design. However, designing a new Chinese font

is a vapid and time-consuming task. Different from English

or Latin which consists of a small alphabet, Chinese consists

of more than 90,000 characters, among which about 3,700

characters are frequently used. Furthermore, the complicated

structures and diverse shapes of Chinese characters increase

its difficulty. Building a new Chinese font bank involves

considerable manpower, calligraphers have to design a large

amount of Chinese characters manually and make sure all

the characters share the same style. In order to simplify the

procedures of building a Chinese font bank, we investigate the

problem of Chinese font generation from a single reference.
Recently, Chinese font generation gains widespread interest

in the research community. The most typical method is based

Font Generation

Style reference

Target font bank

…

Standard font bank

…

Content reference

Fig. 1. Schematic diagram of the arbitrary Chinese font generation from a
single reference. With a single style reference and the standard font bank for
providing content references, the model generates the target font bank.

on stroke extraction [1], which divides the generation into two

stages: stroke extraction and stroke recombination. However,

due to the complexity and variety of Chinese characters, the

algorithms of stroke extraction can not yield reliable results,

which leads to the failure of this kind of methods.

Inspired by the recent progress of neural style transfer [2],

[4], [6], [16], [22], many attempts have been made to take

Chinese font generation as an image-to-image translation

problem [3], [17], [26]. However, unlike other neural style

transfer tasks, Chinese font generation is not a fault-tolerant

task, since any misplacement of strokes may result in the fail-

ure of generation [3]. Some approaches adopt Convolutional

Neural Networks (CNNs) with a bottle-neck structure based on

GAN [3], [11], [14], [19], [20], which show better performance

than previous methods.

Although some acceptable results have been generated by

some models, most existing methods require a large amount of

initial reference set to train their models, which is about 3,000

characters for training supervision [3], [14], [19], [20]. Some

researchers [11], [17], [26] attempt to generate font banks

with a small initial reference set. However, they depend on

extra labels or pretrained models, which still need considerable

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

manpower. In addition, most existing methods aim to explicitly

model the translation between the standard font and the target

font [19], thus these models are not generalizable to new fonts.

In this paper, we propose a deep learning based model

OCFGNet to enlarge a Chinese font bank from one single ref-

erence. We design a dual-encoder generator to extract style and

content features of style and content references and synthesize

the target character with these features. It is worth mentioning

that the style encoder extracts style features and maps the

style reference onto a continuous VAE latent variable space

and the content encoder extracts content features and maps

them to the content representations. Then, the joint decoder

connects the two representations in layer-wise to generate

the target character. In addition, to generate more realistic

results, we adopt a patch-level discriminator. In general, the

training of OCFGNet includes these four steps: 1) inputting

style and content references into style and content encoders

to extract their representations, respectively, 2) connecting

the two representations in layer-wise by the joint decoder to

synthesize the target character, 3) cloning the previous two

steps to contribute to the cycle consistency loss, 4) inputting

the generated character and the ground-truth (GT) into the

patch-level discriminator to distinguish whether the received

character is real or fake.

The main contributions of our work can be summarized as

follows:

• We propose a Chinese font generation model OCFGNet,

which can generate any unseen Chinese font given one

reference.

• We collect a Chinese font dataset based on different style

categories. A total of 500 fonts were collected.

• To synthesize more realistic characters, we introduce the

Structural SIMilarity (SSIM) as a loss term to optimize

this model, which are effective in mitigating the blur of

font generation.

II. RELATED WORK

A. Image Generation

Image generation is one of the most fundamental prob-

lems in computer vision, which has been widely researched

for decades. By the great capability of extracting features,

CNNs [13] have achieved great success in the improvement of

image generation. Moreover, recent advances on representation

learning with deep neural networks nourish a battery of deep

generative models that enjoy joint generative modeling and

representation learning through Bayesian inference or adver-

sarial training.

Yan et al. proposed a conditional image generation model

Attribute2Image, which models an image as a composite of

foreground and background and extends the VAE with disen-

tangled latent variables [25]. The proposal of Deep Recurrent

Attentive Writer (DRAW) introduced the attention mechanism

to VAE [8]. Since GAN was proposed by Goodfellow et al. [7],

researchers have studied it vigorously. Pix2Pix, a conditional

GAN, was proposed for image translation problems [9], which

has been extended for generating high-resolution images [23].

The trainable loss function of discriminator makes GAN

automatically adapt to the differences between the generated

images and the real images. Afterwards, most image genera-

tion approaches are based on variant GANs.

B. Chinese Font Generation

Many efforts have been put into the research of Chinese font

generation. In [1], Cao et al. proposed to extract the strokes

first, then cluster the strokes into different groups, finally gen-

erate the new font characters by stroke replacement. Rewrite

adopted a CNN-based structure to transfer one Chinese font

to another [19]. Lyu et al. proposed the Auto-Encoder Guided

GAN Network (AEGN), which is able to synthesize target font

characters from standard font [14]. By introducing conditional

GAN and assigning each style an one-hot categorical label,

Zi-to-zi model gains much improvement [20]. Zhang et al.

explored learning with less paired character samples, which

still requires tens of the style references [26]. Jiang et al.

proposed an one-shot Chinese character generation model, but

the experimental results show that this model only learns the

thickness between different fonts [10].

III. MODEL

Figure 2 shows the overall architectures of OCFGNet.

Here, we introduce some notations and the problem definition.

Generally, X denotes the Chinese font dataset consisting of

J different characters with I different fonts. Specifically,

Xi
j denotes a specific character in X . The superscript i ∈

[0,1,2,...,I] represents the i-th font in the experimental font

pool, and the subscript j ∈ [1,2,...,J] denotes the j-th character

in the experimental alphabet. Before training, we designate the

specific font X0 as the standard font for providing content

references, which is then trained on the content auto-encoder

(ES and EC) to learn the content representations of the

standard font characters. During the training phase, in every

training step we randomly pick the content character X0
j from

the standard font X0, named as the content reference C, and

we also randomly designate a specific character Xi
k from the

style reference font Xi as the style reference S (j �= k and

i �= 0). Thus Xi
j denotes the target character T which has the

style of S and the content of C. Let ES and EC denote the

style encoder and the content encoder, respectively, and DT

denotes the joint decoder of OCFGNet. The formulation of

the generation is:

T =Xi
j=DT (ES(S),EC(C))=DT (ES(X

i
k),EC(X

0
j)). (1)

A. Features Extraction Networks

As is clear from Figure 2, we adopt two separate encoders

ES and EC to extract style and content features, respectively.

The style encoder ES extracts the style features of the style

reference S and outputs the standard deviation σ and the aver-

age μ of the style representation zS . By the reparameterization

trick, we obtain the style representation zS . Meanwhile, the

+

S

C() ()
(

(

(̂)
Encoder Decoder

Decoder

Discriminator

Encoder Decoder

Encoder

Encoder

LOSS
CALCULATION

*

Style reference, S ()
Content reference, ()
Target character, T ()
Font style label, (i)
Cycle content reference, ()

Reparameterization

Skip connections

Fig. 2. The framework of the proposed OCFGNet.

content encoder EC extracts the content features of the content

reference C and directly encoders it as zC by down-sampling.

Besides, we adopt an auxiliary style decoder DS to classify

zS into its font style label ls, which is able to aggregate zS
with the same style. We also implement an auxiliary content

decoder DC to reconstruct the content reference C for learning

the content information of the standard font and determine the

content representations zC of the standard font characters. It is

noteworthy that the training of the auto-encoder module (EC

and DC) is completed and the parameters of the auto-encoder

module are fixed before the training of other modules.

B. Features Synthesis Network

After extracting both the style representation zS and the

content representation zC , we reshape the style representation

zS into the same shape of the content representation zC . Then,

the joint decoder DT concatenates both representations in

layer-wise to generate the generated target character T̂ . It is

worth noting that the structure of U-Net with skip connections

is introduced for shuttling the information directly from the

content encoder EC to the joint decoder DT [15]. Each skip

connection simply concatenates all channels at layer i in EC

with those at layer n-i in DT .

C. Patch-level Discriminator Network

The patch-level discriminator D concatenates the style and

content reference characters with the real target character T
or the generated character T̂ as inputs, and tries to distinguish

them. D outputs the probabilities that inputs are real or

fake in the corresponding patch. In addition, to improve the

discernibility of the discriminator D, it is designated by adding

a fully-connected layer to implement the auxiliary classifier in

the discriminator D, which could classify the character into

its style label i-th.

D. Optimization Strategies and Losses

For the style encoder ES , to aggregate the style represen-

tation zS from the same style, we adopt the auxiliary style

decoder DS to classify zS into its font style label i-th. Thus,

we introduce the style representation categorical loss LS
cate:

LS
cate = logDS(i|zS) = logDS(i|ES(X

i
k)). (2)

In addition to minimizing the categorical loss LS
cate of the

style encoder, the VAE regularizes the encoder by imposing

a prior over the latent distribution p(z), where z ∼ N (0, 1).
Thus, we introduce the KL-regularized loss LS

KL:

LS
KL=KL(q(zS |S)‖N(0,1))= 1

2
(1+log (σ2)−μ2−σ2), (3)

where σ and μ denote the standard deviation and the average

of zS , respectively.

For the content encoder EC , to extract the content features

of the content references, we introduce the auxiliary content

decoder DC , which constitutes an auto-encoder module with

EC . Unlike traditional auto-encoders, we adopt both L1-

regularized per-pix loss and Structural SIMilarity (SSIM) loss

to reconstruct content references, since L1-regularized per-pix

loss and SSIM loss can evaluate the similarity between two

images at the pixel and structure levels, respectively. Thus, the

loss term of the content auto-encoder LC
AE is:

LC
AE =

∥∥∥C − Ĉ
∥∥∥
1
+ αSSIM(C, Ĉ)

=
∥∥∥X0

j − X̂0
j

∥∥∥
1
+ αSSIM(X0

j , X̂
0
j),

(4)

where α denotes the weight of SSIM loss, and SSIM(·)
denotes the SSIM function which is referred in Eq. 11 .

For the joint decoder DT , we adopt the same reconstruction

loss term LDT
as the content decoder DC :

LDT
=

∥∥∥T − T̂
∥∥∥
1
+ βSSIM(T, T̂)

=
∥∥∥Xi

j − X̂i
j

∥∥∥
1
+ βSSIM(Xi

j , X̂
i
j),

(5)

where β denotes the weight of SSIM loss, and SSIM(·)
denotes the SSIM function.

It is worth nothing that we introduce a patch-level discrim-

inator D. During the training phase, the style encoder ES and

the joint decoder DT are optimized by minimizing LG
adv , while

the discriminator D is optimized by minimizing LD
adv:

LG
adv = E[D(S,C,DT (ES(S), EC(C)))]

= E[D(Xi
k, X

0
j , DT (ES(X

i
k), EC(X

0
j)))],

(6)

LD
adv=E[D(S,C, T)]− E[D(S,C,DT (ES(S), EC(C)))]

=E[D(Xi
k,X

0
j ,X

i
j)]−E[D(Xi

k,X
0
j,DT(ES(X

i
k),EC(X

0
j)))].

(7)

In addition, to improve the discernibility of the discriminator

D, we also adopt the auxiliary classifier Dcate implemented in

the discriminator D to contribute to the categorical loss LD
cate

for the discriminator D:

LD
cate=logDcate(i|T) + logDcate(i|DT (ES(S), EC(C)))

=logDcate(i|Xi
j)+logDcate(i|DT (ES(X

i
k),EC(X

0
j))).
(8)

Finally, to maintain the cycle consistency, we add a cycle

consistency loss to guarantee that the synthesized character T

can be used as the style reference to translate the standard font

character to the character in the corresponding style. Formally,

we define the cycle consistency loss Lcyc
DT

as:

Lcyc
DT

=
∥∥∥S − Ŝ

∥∥∥
1
+ γSSIM(S, Ŝ)

=
∥∥∥Xi

k − X̂i
k

∥∥∥
1
+ γSSIM(Xi

K , X̂i
k),

(9)

where γ denotes the weight of SSIM loss, and SSIM(·)
denotes the SSIM function.

Algorithm 1 shows the details of training procedure of

OCFGNet.

Algorithm 1 Training procedure of OCFGNet

Input:
The style reference, S/Xi

k;

The content reference, C/X0
j ;

The target character, T/Xi
j ;

The style label, ls/i;
The cycle content reference, Ccyc/X0

k ;

The weights of losses, α, β and γ.

Output:
The generated target character, T̂ /X̂i

j .

1: zC ← EC(C);
2: Ĉ ← DC(zC);
3: Compute LC

AE by Eq. 4;

4: Update DC and EC by descending the gradient of LC
AE ;

5: Repeat step 1-4 for 100 epochs;

6: zS ← ES(S), zC ← EC(C);
7: zC ← EC(C);
8: l̂s ← DS(zS);
9: T̂ ← DT (zS , zC);

10: zcycS ← ES(T̂), z
cyc
C ← EC(C

cyc);
11: zcycC ← EC(C

cyc);
12: Ŝ ← DT (z

cyc
S , zcycC);

13: ComputeLS
cate, LS

KL, LDT
, Lcyc

DT
, LG

adv , LD
adv and LD

cate

by Eq. 2, Eq. 3, Eq. 5, Eq. 9, Eq. 6, Eq. 7 and Eq . 8;

14: Update ES and DS by descending gradients of LS
cate and

LS
KL;

15: Update ES and DT by descending gradients of LDT
, Lcyc

DT

and LG
adv;

16: Update D by descending the gradient of LD
adv and LD

cate;

17: Randomly choose new style and content references;

18: Repeat step 6-17 for 600 epochs.

E. Implementation Details

For the style encoder ES , it contains five convolution layers

followed by two fully-connected layers(The convolution layers

have 8, 16, 32, 64 and 128 channels with filter size of 5×5, 3×
3, 3×3, 3×3 and 3×3, and stride 2; the fully-connected layers

both have 256 neurons). The output of the style encoder ES

is the the standard deviation σ and the average μ of the style

representation zS . With the reparameterization trick, we obtain

the style representation zS which is one-dimensional. For the

style decoder DS , it contains three fully-connected layers (The

fully-connected layers have 256, 512 and 400 neurons).

For the content encoder EC , it contains five convolution

layers (The convolution layers have 8, 16, 32, 64 and 128

channels with filter size of 5×5, 3×3, 3×3, 3×3 and 3×3,

and stride 2). The output of the content encoder EC is the

representation of the content reference zC . The output size is

set as 2 × 2 × 128. For the content decoder DC , it contains

five de-convolutional layers (The de-convolutional layers have

64, 32, 16, 8 and 1 channel(s) with filter size of 3× 3, 3× 3,

3× 3, 3× 3 and 5× 5, and stride 2).

For the joint decoder DT , we first resize the style represen-

tation zS as 2 × 2 × 64. Then, zS and zC are concatenated

at the first layer of the joint decoder DT followed by five

convolution layers(The de-convolutional layers have 64, 32,

16, 8 and 1 channel(s) with filter size of 3× 3, 3× 3, 3× 3,

3× 3 and 5× 5, and stride 2).

For the patch-level discriminator D, it contains five con-

volution layers (with 64, 128, 256, 512, 1 channel(s) with

filter size of 4 × 4 and stride 2, 2, 2, 1). In addition, we

design one fully-connected layer with 500 neurons following

the last second convolution layer of D, which constitutes the

auxiliary classifier Dcate to contribute to the categorical loss

of the discriminator D.

For the training phase of the generator G of the OCFGNet,

there are two steps. First, we pretrain the auto-encoder of the

content reference which consists of the encoder EC and the

decoder DC . After that, we determine and the content repre-

sentations of all standard font characters. Then, we train the

style encoder ES , the style decoder DS and the joint decoder

DT together. Specially, since we have already determined the

content representations zC by pretraining the encoder EC and

the decoder DC , the encoder EC and the decoder DC are

fixed in the following training phase.

For the training phase of the discriminator D of the

OCFGNet, the style reference S and the content reference C
are concatenated with the generated target character T̂ and

the ground-truth target character T by channel axis to form

the negative sample and positive sample, respectively.

For the whole training phase, we pretrain the auto-encoder

of content references (the encoder EC and the decoder DC) for

100 epochs. Then, we train the OCFGNet generator (the style

encoder ES , the style decoder DS and the joint decoder DT)

and the discriminator D alternately for another 600 epochs.

All networks are trained with ADAM optimizers [12] with a

batch size of 64 and a learning rate of 0.0005. For the setting

of the hyper parameters, we set α = β = γ = 0.01.

For the testing phase, we input the style reference S and

the content reference C into the encoder ES and EC to obtain

zS and zC , respectively. Then, the joint decoder DT generates

the generated target character T̂ from the latent variable zS
and zC .

IV. EXPERIMENTS

To demonstrate the effectiveness and superiority of our

model, we conduct extensive experiments. First, we present the

Fig. 3. Some character samples from our collected dataset.

experimental settings, mainly including the dataset and eval-

uation metrics. Then, we compare the proposed model with

some existing state-of-the-art methods. Finally, we analyze the

qualitative results of our model.

A. Experimental Settings

Dataset Since there is no benchmark dataset available for

Chinese font generation, we collect 500 Chinese fonts for the

experiments which are collected from several font libraries.

Table I shows the organization of our collected dataset. All

fonts in the dataset contain 3,755 level-1 simplified Chinese

characters. For the experimental settings, as illustrated in

Figure 3, each character image is made into a 64 × 64 gray

value image separately. To be specific, the backgrounds are

set as black pixels and the strokes are set as white pixels.

It is worth noting that characters with less than 4 strokes

were excluded, since those may not provide enough style

information. 1,000 characters from level-1 simplified Chinese

characters are collected randomly for both the training set and

testing set. We split the dataset into training and testing sets

by the proportion of 8 : 2.

TABLE I
THE ORGANIZATION OF OUR COLLECTED DATASET

Category Number of fonts
Regular script 100
Running script 100
Official script 100
Cursive script 50

Calligraphy script 50
Unspecified script 100

Total 500

Evaluation Metrics To measure the similarity between gener-

ated images and Ground Truth images (GT), we adopt Mean

Square Error (MSE) [5] and Structural SIMilarity (SSIM) [24]

as the evaluation metrics.

MSE measures the average squared difference of pixel

values between two images. It is always non-negative, and

values closer to zero are better. MSE between the generated

image X and the GT image Y of the same size is defined as:

MSE (X,Y) =
1

N

∑

i,j

(Xi,j − Yi,j)
2
, (10)

where N denotes the pixel number of the image.

SSIM evaluates the similarity of the structural information

between two images without being influenced by the light or

small variance. Its value ranges from 0 to 1. The higher the

SSIM, the better the image quality. SSIM between two images

X and Y is defined as:

SSIM(X,Y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
, (11)

where μx and μy denote the averages of pixel values, σx and

σy denote the standard deviations of pixel values, σxy denotes

the covariance of X and Y , c1 and c2 are two constants

to stabilize the division with weak denominator, which are

determined by the dynamic range of the images.

B. Comparison with State-of-The-Art Methods

We compare the performance of our model with several

state-of-the-art Chinese font generation models: Rewrite [19],

PEGAN [18] and Zi2zi [20]. One thing to be particularly noted

is that Rewrite, PEGAN and Zi2zi are modified for the few-

shot Chinese font generation task by the fine-tuning strategy.

During the fine-tuning phase, we provide Rewrite, PEGAN

and Zi2zi with 50 target style references, while in our model

we only provide one target style reference for the training

supervision. Table II shows the average SSIM and MSE values

of the results of these models. We can see that Rewrite has

the lowest SSIM and MSE values among these models on the

dataset. PEGAN and Zi2zi show significant improvement. Our

model shows the greatest performance among these models,

which indicates that our model has the state-of-the-art ability

to generate realistic Chinese font characters from only one

reference.

TABLE II
SSIM AND MSE VALUES OF TESTED MODELS

Model Reference Num SSIM MSE
Rewrite [19] 50 0.39 0.48
PEGAN [18] 50 0.42 0.23

Zi2zi [20] 50 0.47 0.25
Ours 1 0.62 0.20

As illustrated in Figure 4, we also compare some repre-

sentative samples of state-of-the-art models with our model.

Rewrite can only generate blurry results, and even the stroke

placements are incorrect. PEGAN shows clearer results than

Rewrite and the generated characters present richer stylized

details. Moreover, the thicknesses and style factors of the

generated characters are quite similar to GT. However, it can

be seen that the generated characters looks still unrealistic

and unclear. Zi2zi presents similar results with PEGAN. Our

model shows clearer results than other models. Our model

can not only replace strokes correctly, but also imitate the

corresponding style factors to present satisfactory and clear

results.

To verify the recognizability of the generated Chinese char-

acters, we adopt the Chinese Optical Character Recognition

(OCR) algorithm [21] to recognize the generated results.

Table III shows the recognition accuracies of the tested mod-

els. Our model shows great advantages in this test, which

indicates that our model is capable of generating realistic and

recognizable characters in the target font style.

Rewrite

PEGAN

Zi2zi

Ours

GT

Rewrite

PEGAN

Zi2zi

Ours

GT

Fig. 4. Comparison with several state-of-the-art methods.

TABLE III
OCR RECOGNITION ACCURACIES OF TESTED MODELS

Model Recognition Accuracy
Rewrite [19] 35.4%
PEGAN [18] 73.9%

Zi2zi [20] 75.1%
Ours 91.2%

Ground Truth 96.7%

C. Qualitative Results

Figure 5 shows several groups of examples by our model.

In each group, images in the top row are GT images from

the dataset, the images in the bottom row are the generated

results by our model. Compared with the GT, the style of the

generated results are consistent with the GT. All the results

demonstrate that our model is able to generate realistic Chinese

font characters with rich stylized details from only a single

reference.

Additionally, we give some failure examples by our model

in Figure 6. The failure examples show that some strokes are

unclear and blurry. It may be caused by the strokes being too

thick or too thin, which urges us to continue our research in

the future.

D. Conclusion

In this work, we propose OCFGNet model to automatically

generate stylized Chinese fonts with only one reference. We

adopt the ideas of disentangled representation learning in our

model. To generate target font characters, we present the

generator of the OCFGNet consisting of style encoder, content

encoder and joint decoder. In order to model richer style details

and mitigate the blur, we adopt a patch discriminator, the idea

of cycle consistency and the SSIM loss term. Experimental

results on the dataset support that our model is able to generate

more realistic results than other state-of-the-art methods with

Fig. 5. Several groups of examples by our model.

Fig. 6. Some failure examples by our model.

only one reference. In the future, we will further optimize

our model and explore the adaptability and the generalization

ability of our model in other scenes. The practical applications

are to be developed not only restricted in the Chinese font

domain, but also in other stylized image generation tasks.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program

of China under contract No. 2017YFB1002201, the National

Natural Science Fund for Distinguished Young Scholar (Grant

No. 61625204), and the Key Program of National Science

Foundation of China (Grant No. 61836006).

REFERENCES

[1] R. Cao and C. L. Tan, “A model of stroke extraction from chinese
character images,” in Proceedings 15th International Conference on
Pattern Recognition. ICPR-2000, vol. 4. IEEE, 2000, pp. 368–371.

[2] H. Chang, J. Lu, F. Yu, and A. Finkelstein, “Pairedcyclegan: Asymmetric
style transfer for applying and removing makeup,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 40–48.

[3] J. Chang, Y. Gu, Y. Zhang, Y.-F. Wang, and C. M. Innovation, “Chinese
handwriting imitation with hierarchical generative adversarial network.”
in BMVC, 2018, p. 290.

[4] Y. Chen, Y.-K. Lai, and Y.-J. Liu, “Cartoongan: Generative adversarial
networks for photo cartoonization,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2018, pp. 9465–9474.

[5] Y. Ephraim and D. Malah, “Speech enhancement using a minimum
mean-square error log-spectral amplitude estimator,” IEEE transactions
on acoustics, speech, and signal processing, vol. 33, no. 2, pp. 443–445,
1985.

[6] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 2414–2423.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[8] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra,
“Draw: A recurrent neural network for image generation,” arXiv preprint
arXiv:1502.04623, 2015.

[9] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1125–
1134.

[10] H. Jiang, G. Yang, K. Huang, and R. Zhang, “W-net: One-shot arbitrary-
style chinese character generation with deep neural networks,” in Inter-
national Conference on Neural Information Processing. Springer, 2018,
pp. 483–493.

[11] Y. Jiang, Z. Lian, Y. Tang, and J. Xiao, “Dcfont: an end-to-end deep
chinese font generation system,” in SIGGRAPH Asia 2017 Technical
Briefs. ACM, 2017, p. 22.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[13] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[14] P. Lyu, X. Bai, C. Yao, Z. Zhu, T. Huang, and W. Liu, “Auto-
encoder guided gan for chinese calligraphy synthesis,” in 2017 14th
IAPR International Conference on Document Analysis and Recognition
(ICDAR), vol. 1. IEEE, 2017, pp. 1095–1100.

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[16] A. Sanakoyeu, D. Kotovenko, S. Lang, and B. Ommer, “A style-aware
content loss for real-time hd style transfer,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 698–714.

[17] D. Sun, T. Ren, C. Li, H. Su, and J. Zhu, “Learning to write stylized
chinese characters by reading a handful of examples,” arXiv preprint
arXiv:1712.06424, 2017.

[18] D. Sun, Q. Zhang, and J. Yang, “Pyramid embedded generative adversar-
ial network for automated font generation,” in 2018 24th International
Conference on Pattern Recognition (ICPR). IEEE, 2018, pp. 976–981.

[19] Y. Tian, “Rewrite: Neural style transfer for chinese fonts,”
https://github.com/kaonashi-tyc/Rewrite, 2016.

[20] ——, “Zi2zi: Master chinese calligraphy with conditional adversarial
networks,” https://github.com/kaonashi-tyc/zi2zi, 2017.

[21] J. Wang, “Chinese ocr implemented using crnn,”
https://github.com/jinxiwang/ocrTDR, 2018.

[22] J. Wang and A. Cherian, “Learning discriminative video representations
using adversarial perturbations,” in Proceedings of the European Con-
ference on Computer Vision (ECCV), 2018, pp. 685–701.

[23] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with condi-
tional gans,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 8798–8807.

[24] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al., “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[25] X. Yan, J. Yang, K. Sohn, and H. Lee, “Attribute2image: Conditional
image generation from visual attributes,” in European Conference on
Computer Vision. Springer, 2016, pp. 776–791.

[26] Y. Zhang, Y. Zhang, and W. Cai, “Separating style and content for
generalized style transfer,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 8447–8455.

