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Abstract—This work presents a novel training technique for
deep neural networks that makes use of additional data from
a distribution that is different from that of the original input
data. This technique aims to reduce overfitting and improve
the generalization performance of the network. Our proposed
technique, namely Passive Batch Injection Training Technique
(PBITT), even reduces the level of overfitting in networks that
already use the standard techniques for reducing overfitting
such as L2 regularization and batch normalization, resulting
in significant accuracy improvements. Passive Batch Injection
Training Technique (PBITT) introduces a few passive mini-
batches into the training process that contain data from a
distribution that is different from the input data distribution.
This technique does not increase the number of parameters in
the final model and also does not increase the inference (test) time
but still improves the performance of deep CNNs. To the best of
our knowledge, this is the first work that makes use of different
data distribution to aid the training of convolutional neural
networks (CNNs). We thoroughly evaluate the proposed approach
on standard architectures: VGG, ResNet, and WideResNet, and
on several popular datasets: CIFAR-10, CIFAR-100, SVHN, and
ImageNet. We observe consistent accuracy improvement by using
the proposed technique. We also show experimentally that the
model trained by our technique generalizes well to other tasks
such as object detection on the MS-COCO dataset using Faster
R-CNN. We present extensive ablations to validate the proposed
approach. Our approach improves the accuracy of VGG-16 by
a significant margin of 2.1% over the CIFAR-100 dataset.

Index Terms—Convolutional neural network training, Object
recognition, Deep learning, Deep CNN training

I. INTRODUCTION

Deep neural networks have been immensely successful in
many tasks. However, training them still remains very tricky.
Several reasons ranging from vanishing/exploding gradients
[1], to feature statistic shifts [2], to the proliferation of saddle
points [3], to overfitting [4], [5], and others, are responsible
for this matter. Researchers have proposed several solutions to
deal with these issues, examples of which include parameter
initialization [6], residual connections [7], normalization of
internal activations [2], second-order optimization algorithms
[3], and regularization techniques [5], [8]–[10].

Various works [11]–[19] have been proposed for efficient
deep learning. The work in [8] improves the performance of
state-of-the-art models by using orthogonality regularization.
While many training techniques use augmented data or addi-
tional data from the same source or produced synthetically, to

improve the performance of networks, our proposed technique
makes use of controlled injection of data mini-batches from a
different data distribution. We refer to our proposed technique
as the Passive Batch Injection Training Technique (PBITT). In
this technique, during the training process, we introduce mini-
batches of data (passive mini-batches) that are from a different
distribution than the input data and also train on them. PBITT
trains the network on both the passive and original mini-
batches. This forces the model to search for a representation
that captures the information needed for both types of mini-
batches.

However, since the passive mini-batch has a different data
distribution, ideally, this setup should harm the performance
of the network. But by controlling the ratio of passive mini-
batches to original mini-batches, we are able to achieve a
higher reduction in overfitting while negating the adverse
effects of this setup and therefore achieve better performance.
The passive mini-batch injection is controlled in such a way
that the number of original mini-batches vastly outnumbers
them. In practice, we draw the passive mini-batches from a
dataset where the images do not match the general content or
pattern of the original images at a specific size. This ensures
that the distribution of passive mini-batches is different from
the original input data.

The works presented in [20]–[23] add multiple tasks to
a neural network with minimal loss in accuracy. However,
their objective is to perform equally well in all these tasks
using the same network. This, however, usually results in
lower accuracy when compared to the accuracy of separate
individual networks trained for one task each, if the tasks
are from different data distributions. Our technique focuses
on increasing the performance of the network on the original
data only. The performance on the passive mini-batches will
not be good since such mini-batches are an extreme minority
when compared to the original mini-batches.

The networks, we experiment on, already use batch nor-
malization [2] and weight decay (L2 regularization) to reduce
overfitting, and we observe that our approach reduces the level
of overfitting further, which results in accuracy improvement
(refer to experimental section V and section VI-A). Our
approach achieves these results without increasing the number
of parameters or the inference (test) time of the final model.
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As mentioned earlier, Passive Batch Injection Training
Technique (PBITT) involves introducing a few passive mini-
batches into the training process alongside the original mini-
batches. We thoroughly analyze the effects of changing the
number of original mini-batches for every passive mini-batch
in our detailed ablation studies. We also analyze the effect
of changing the datasets of our passive mini-batches in our
ablation studies and experimentally show that our approach
of Passive Batch Injection Training Technique (PBITT) does
not depend on the selection of the passive dataset. We show
experimentally that our approach improves over several recent
benchmark results in classification on ImageNet, SVHN, and
CIFAR datasets and generalizes well for object detection on
the MS-COCO dataset.

The following are our contributions:
• We propose a training technique: Passive Batch Injection

Training Technique (PBITT), which significantly im-
proves the performance of CNNs by using mini-batches
of data from a distribution that is different from the
original data distribution.

• Our approach improves the CNN performance without
increasing the number of parameters or inference (test)
time in the final model.

• Our approach reduces overfitting and improves the gener-
alization performance of networks, including those which
already use the standard techniques for reducing overfit-
ting.

• We show that our proposed approach works well for
various networks not only for classification but also for
detection.

II. RELATED WORKS

Training of deep neural networks suffers from several
tricky issues such as vanishing gradients, overfitting, unstable
gradient, co-variate shift and others. Multiple strategies and
techniques have been proposed to alleviate such issues such as
parameter initialization [6], residual connections [7], normal-
ization of internal activations [2], second-order optimization
algorithms [3], and regularization techniques [5], [8]–[10].

[1], [24] propose to enforce close to constant variances of
each layer’s output for initialization to reduce the problems of
unstable gradient and covariate shift. [2] proposes to enforce
identical distributions of each layer’s output to reduce the
internal covariate shift. [25] proposes to decouple the norm of
the weight vector from its direction to make the optimization
easier. Orthogonal weights have been extensively studied in
recurrent neural networks (RNNs) [26]–[31] to help avoid
gradient vanishing/explosion.

[8] improves CNN training and performance by using
orthogonality regularizations during training deep CNNs and
using tools like mutual coherence and restricted isometry
property (SRIP). These orthogonality regularizations have a
plug-and-play nature and can be easily incorporated into the
training process of CNNs.

Performance improvement through the architectural im-
provement of CNNs has remained a hot topic from some

time now [32], [33]. The focus has been on design changes
that improve the performance of networks on various tasks.
Architectures like Inception models [34] and VGGNet [35]
demonstrate how the quality of representation learned by
a network can be significantly improved by increasing the
depth of the network. While deeper architectures improved
the performance of CNNs, they also introduced problems like
vanishing gradients, longer training time, and higher space re-
quirements for training and deployment. ResNet [7] proposed
skip-connections based on identity mapping, which reduced
the optimization issues of deep networks. This allowed for
using deeper and more complex networks. WideResNet [36]
restricted the network depth and used wider layers to im-
prove the performance, thereby modifying this idea. ResNeXt
[37] proposed parallel aggregated transformations blocks and
showed that increasing the number of such parallel blocks led
to better performance.

Our proposed approach improves the performance of CNNs
by introducing mini-batches of data, that is different from the
input data distribution, into the training routine. Further, it can
be used along with any performance improvement techniques.

III. PROPOSED METHOD

Our proposed approach aims to improve network perfor-
mance on a dataset by injecting passive mini-batches of data
from a different data distribution, which we refer to as the
passive dataset. Since our focus is on performing better on
the original data, we propose a training process wherein the
training is done on very few passive mini-batches as compared
to the number of mini-batches of the original input data. The
network is split into a base sub-network and two dataset
specific sub-networks for the original and passive datasets
respectively.

Suppose, the original input dataset A = {xAu, yAu}NA
u=1,

where NA denotes the number of samples in the original
dataset and the passive dataset P = {xPv, yPv}NP

v=1, where
NP denotes the number of samples in the passive dataset.
The base sub-network is denoted as W . MA and MP are
used to denote the dataset specific sub-network for the original
and passive datasets respectively. W has parameters θW , MA

has parameters θMA
and MP has parameters θMP

. The full
network for the original data, which will also be the final
network, can be defined as

ŷAu = MA(W (xAu; θW ); θMA
) (1)

where, xAu is the uth input from the original data and ŷAu
is the predicted output for that input. The full model for the
passive dataset is the same, but it uses the passive dataset sub-
network MP instead of MA. The full model for the passive
dataset can be defined as

ŷPv = MP (W (xPv; θW ); θMP
) (2)

where xPv is the vth input from the passive dataset, and
ŷPv is the predicted output for that input.



Algorithm 1 Mini-batch stochastic gradient descent training
of network using the PBITT approach

1: for number of training iterations do
2: for number of batches of the original dataset do
3: Sample a mini-batch of NmA pairs (xAi, yAi) from

the original dataset
4: Update model parameters θ along its stochastic gradi-

ent for the original dataset mini-batch (Keeping θMP

fixed).

θt = θt−1 − α∇θ{
1

NmA
ΣNmA
i=1 L(yAi, ŷAi)}

5: if OriginalDataMiniBatchNo i is divisible by g then
6: Sample a mini-batch of NmP pairs (xPj , yPj)

from the passive dataset
7: Update model parameters θ along its stochastic

gradient for the passive dataset mini-batch (Keep-
ing θMA

fixed).

θt = θt−1 − α∇θ{
1

NmP
ΣNmP
j=1 L(yPj , ŷPj)}

8: end if
9: end for

10: end for

The joint model has the parameters θ = {θW , θMA
, θMP

}.
Our goal is to find the optimal θ∗ that maximizes the perfor-
mance on the original dataset such that,

θ∗ = argminθ{
ΣNA
u=1L(yAu, ŷAu)

NA
+

ΣNP
v=1L(yPv, ŷPv)

NP
} (3)

Where L denotes a loss function that finds the prediction
losses for the datasets. Generally, the deep learning models are
optimized using some variant of stochastic gradient descent,
where the training data is split into mini-batches, and the
network parameters are updated using gradients based on the
loss obtained for each mini-batch. Our procedure involves
training with mini-batches. Let mi

A denote the ith mini-batch
of NmA pairs (xAi, yAi) for the original dataset, and mj

P

denote the jth mini-batch of NmP pairs (xPj , yPj) for the
passive dataset.

As mentioned earlier, our only goal is to maximize the
model performance on the original dataset. Therefore, every
time the model has been trained on g >> 1 mini-batches of
the original dataset, we train the model on one passive dataset
mini-batch i.e.

θt = θt−1 − α∇{Σ
NmA
i=1 L(yAi,ŷAi)

NmA
+ I{i%g==0}

Σ
NmP
j=1 L(yPj ,ŷPj)

NmP
} (4)

θt is the value of the parameters after the model has trained
for time t, α is the learning rate, and the indicator function
I{i%g==0} denotes that the model will be trained on 1 passive
dataset mini-batch every time it trains on g original dataset
mini-batches (refer to Algorithm 1).

A. Intuition behind PBITT

When we train a model by using a passive dataset in
addition to the original dataset, then the model has to search
for a representation that captures the information needed for
both of the datasets, and therefore there is very less chance of
overfitting on the original dataset.

However, since the passive dataset has a different distri-
bution than the original dataset, the representation that the
network will learn might not be discriminative enough as
compared to the representations learned in the older training
technique. This will result in harming the performance of the
network. This is why we control the number of passive mini-
batches. By keeping the proportion of mini-batches very low,
we are still able to reduce the overfitting of the network on the
original dataset but without negatively affecting the network
performance. As a result, the model should perform better
on the original dataset even though its performance on the
passive dataset might not be optimal. Our approach is able to
reduce the overfitting of the network, which results in better
performance, and this has been experimentally shown in the
ablation studies (Section VI-A).

B. PBITT is not Multi-Task Learning

Our proposed training technique PBITT should not be
confused with Multi-Task Learning (MTL).

Multi-Task Learning involves using the same network to
learn multiple tasks on the same dataset. This allows the
network to learn better features from the input and as a
result, learns to perform better for all the tasks. By sharing
representations between related tasks, the aim is to make the
network to generalize better on all the tasks.

However, our proposed algorithm is a training technique that
makes use of mini-batches from a different data distribution,
which we refer to as the passive dataset, to reduce the
overfitting of the network and, as a result, increase the general-
ization performance of the network. We are not bothered about
whether the network performs well on the passive dataset.
Our only focus is to make the network perform better for
the original data. The performance on the passive mini-batches
will, anyways, be not good since they are an extreme minority
when compared to the original mini-batches.

C. PBITT is not Data Augmentation

Our proposed training technique PBITT should also not be
confused with data augmentation.

In data augmentation, existing data from the input source
is manipulated using geometric operations to create more
instances of input from the same distribution. In some cases,
generative models are also used to generate data from the
same data distribution. This is done to fulfill the high data
requirement for training deep networks.

However, in our proposed technique, we use mini-batches
from a different data distribution as part of the training. Since
these data points are from a different data distribution, they do
not increase/augment the original input data. As will be shown
later, the amount of such data used is so less as compared to



the original data, they also do not affect the batch statistics of
the batch norm layers.

IV. IMPLEMENTATION

We draw the passive mini-batches from a dataset where
the images do not match the general content or pattern
of the original images at a specific size. This ensures that
the distribution of passive mini-batches is different from the
original input data.

All the convolutional layers (W ) are shared by both the
original and passive datasets. A set of separate fully connected
layers (MP ) is added for the passive dataset, which takes input
from the last convolutional layer of the network.

After training the model on the original dataset for every
g mini-batches, we train the model on 1 mini-batch of the
passive dataset.

If we use g = 1, then we will be training on an equal
number of original and passive dataset mini-batches, and this
will double the training time, which is undesirable. Further,
this g = 1 may affect the performance on the original dataset
[20]–[23] since data distributions are different.

We use g = 100 for most of our experiments, and this
choice has been experimentally validated in the ablation
studies section. Therefore, for every 100 mini-batches of the
original dataset, we train on 1 passive dataset mini-batch.
We also experimentally validate in our ablation studies that
our approach of Passive Batch Injection Training Technique
(PBITT) does not depend on the selection of the passive
dataset.

During training, the dataset-specific layers for only the
corresponding dataset are enabled for a given mini-batch,
depending on which type of mini-batch the model is being
trained upon. For example, when performing training on the
original dataset, we only activate the original dataset-specific
layers. The shared sub-network is always activated. After the
training is done, we can simply remove the dataset-specific
fully connected layers for the passive dataset and use the rest
of the model for the original dataset.

A. Additional Parameters

Our implementation ensures that only a few additional
parameters are added to the original model, that too, only
during training. More specifically, the only additional param-
eters introduced are the weights and biases of the set of fully
connected dataset-specific layers for the passive dataset. There
are no additional parameters in the final model since we
remove the set of dataset-specific fully connected layers for
the passive dataset after training.

B. Additional Training Time

Since we use a high value of g, the additional training
time needed to train on the passive dataset is very low. When
g = 100, we use 1 passive dataset mini-batch for every 100
original dataset mini-batches. Therefore, the overall increase
in time per original dataset epoch is about 1 percent, which
is negligible. There is no additional time needed for testing

since we remove the set of dataset-specific fully connected
layers for the passive dataset after training.

V. EXPERIMENTS

This section explores the experimental results of training
networks with our proposed approach (PBITT: Passive Batch
Injection Training Technique) on various datasets. We perform
experiments on image classification and object detection. For
the image classification, we use VGG, ResNet, and WideRes-
Net networks over the ImageNet and CIFAR datasets. We use
the Faster R-CNN network for object detection over the MS-
COCO dataset.

A. Image Classification
We conduct experiments on ImageNet [38], CIFAR-10,

and CIFAR-100 [39] datasets. For the ImageNet dataset, we
experiments on ResNet-50 [7] and WideResNet-18 (widen=2)
[36]. We use the CIFAR-100 dataset as the passive dataset
(for ImageNet classification) after resizing the images to
224 × 224. For each network, the baseline is the original
model. We compare our approach to a recent performance
boosting method, Spectral Restricted Isometry Property (SRIP)
regularization [8], which improves the performance of state-
of-the-art models by using orthogonality regularization.

The training set of ImageNet (ILSVRC-2012) contains 1.2
million images and 1000 object categories. The validation set
contains 50,000 images. For ImageNet experiments, we per-
form standard data augmentation methods of random cropping
to a size of 224 × 224 and random horizontal flipping. For
optimization, stochastic gradient descent (SGD) is used with
momentum 0.9 and a mini-batch size of 256. Initially, the
learning rate is set to 0.1 and is decreased by a factor of 10
for every 30 epoch. The models are trained from scratch for
120 epochs. For evaluation, the validation images are subjected
to center cropping of size 224× 224.

We use g = 100, i.e. 1 passive dataset mini-batch for every
100 original dataset mini-batches. At the end of the training,
the passive dataset-specific layers are removed. Therefore, our
approach is able to improve the performance of deep CNNs on
the original dataset without introducing any extra parameters
or FLOPS (floating-point operations per second) in the final
model.

Table I shows the classification accuracy on ImageNet
dataset using ResNet-50 and WideResNet-18 (widen=2) net-
works for the original network, our proposed method PBITT
(g = 100) and a recent performance boosting method SRIP.
Our method shows consistent performance improvement as
compare to SRIP. Our method (g = 100) uses CIFAR-100
as the passive dataset, i.e., for every 100 mini-batches of
ImageNet, 1 CIFAR-100 mini-batch was used for training the
network.

As shown in Table I, our approach yields a significant rel-
ative performance improvement (of 0.7 % in Top-1 accuracy)
over the baseline for ResNet-50 while there is no increment
in inference (test) time since we remove the set of dataset-
specific fully connected layers for the passive dataset after the
training is completed.



TABLE I
SINGLE-CROP ACCURACY (%) ON THE IMAGENET VALIDATION SET FOR RESNET-50 AND WIDERESNET-18 (WIDEN=2).

Models Active Passive Accuracy
Dataset Dataset Top-1 Top-5

ResNet-50 (Baseline) ImageNet - 76.1 92.9

SRIP [8] ImageNet - 76.4 93.1

PBITT g = 100 (Ours) ImageNet CIFAR-100 76.8 93.3

WResNet-18-2 (Baseline) ImageNet - 74.4 91.8

SRIP [8] ImageNet - 74.6 92.0

PBITT g = 100 (Ours) ImageNet CIFAR-100 74.8 92.2

TABLE II
CLASSIFICATION ACCURACY (%) OF RESNET-56, WIDERESNET-22 (WIDEN=10), AND VGG-16 ON CIFAR-10 AND CIFAR-100 DATASETS.

Models Active Passive Accuracy
Dataset Dataset Top-1

ResNet-56 (Baseline) CIFAR-10 - 93.4

PBITT g = 1 CIFAR-10 SVHN 93.3

SRIP [8] CIFAR-10 - 93.7

PBITT g = 100 (Ours) CIFAR-10 SVHN 94.4

WideResNet-22-10 (Baseline) CIFAR-10 - 95.6

PBITT g = 1 CIFAR-10 SVHN 95.4

SRIP [8] CIFAR-10 - 95.8

PBITT g = 100 (Ours) CIFAR-10 SVHN 96.0

VGG-16 (Baseline) CIFAR-10 - 93.5

PBITT g = 1 CIFAR-10 SVHN 93.4

SRIP [8] CIFAR-10 - 93.9

PBITT g = 100 (Ours) CIFAR-10 SVHN 94.1

ResNet-56 (Baseline) CIFAR-100 - 71.6

PBITT g = 1 CIFAR-100 SVHN 71.3

SRIP [8] CIFAR-100 - 71.6

PBITT g = 100 (Ours) CIFAR-100 SVHN 71.7

WideResNet-22-10 (Baseline) CIFAR-100 - 79.3

PBITT g = 1 CIFAR-100 SVHN 79.2

SRIP [8] CIFAR-100 - 79.9

PBITT g = 100 (Ours) CIFAR-100 SVHN 80.2

VGG-16 (Baseline) CIFAR-100 - 72.0

PBITT g = 1 CIFAR-100 SVHN 71.9

SRIP [8] CIFAR-100 - 73.8

PBITT g = 100 (Ours) CIFAR-100 SVHN 74.1

For the CIFAR-10 and CIFAR-100 datasets, we experi-
ments on ResNet-56 [7], VGG-16 [35], and WideResNet-22
(widen=10) [36]. We use SVHN [40] dataset as the passive
dataset. For each network, the baseline is the original model.
We compare our approach to a recent performance boosting
method, Spectral Restricted Isometry Property (SRIP) regular-
ization [8].

The CIFAR-10 dataset consists of 60000 32 × 32 color
images in 10 classes, with 6000 images per class. The CIFAR-
100 dataset consists of 60000 32 × 32 color images in 100
classes, with 600 images per class. Out of these, 50000

are training images, and 10000 are test images. For CIFAR
experiments, we perform standard data augmentation methods
of random cropping to a size of 32 × 32 (zero-padded on
each side with four pixels before taking a random crop)
and random horizontal flipping. For optimization, stochastic
gradient descent (SGD) is used with momentum 0.9 and a
minibatch size of 128. Initially, the learning rate is set to 0.1
and is decreased by a factor of 5 for every 50 epoch. The
models are trained from scratch for 250 epochs. For evaluation,
the test images are used.

We can see from Table II that PBITT g = 1 performs even



TABLE III
PERFORMANCE ON OBJECT DETECTION: OBJECT DETECTION MAP (%)

ON THE MS COCO DATASET USING FASTER R-CNN NETWORK.

Base Model AP@IoU=0.5 AP@IoU=0.5:0.95

ResNet-50 (Baseline) 45.2 25.1

ResNet-50 (PBITT) 46.0 25.7

worse than the baseline since when we use g = 1, we are
training the same model equally for both the datasets. Since
the network is almost fully shared and the two datasets have
different data distributions, the overall performance on both
has been experimentally found to be lower than their separate
models by previous works such as [20]–[23]. Further results
on the mini-batch proportion of g have been provided in the
ablation studies section.

Table II shows the classification accuracy on CIFAR-10
and CIFAR-100 datasets using ResNet-56, WideResNet-22
(widen=10) and VGG-16 networks for the original networks,
PBITT (g = 100) and SRIP. Our method PBITT (g =
100) shows consistent performance improvement in all cases.
PBITT (g = 100) uses SVHN as the passive dataset i.e. for
every 100 mini-batches of CIFAR-10/CIFAR-100, 1 SVHN
mini-batch is used for training the network.

B. Object Detection

We use Faster R-CNN network [41] for object detection.
The ResNet-50 model is used as a base model in the Faster R-
CNN network [41]. We use MS-COCO dataset [42] for object
detection. Table III shows the performance of the object detec-
tor using the base ResNet-50 model and the modified ResNet-
50 with the PBITT approach where CIFAR-100 is used as
the passive dataset. The PBITT modified ResNet-50 shows
improvement over the base model. We can conclude from
these experiments that the PBITT approach induces substantial
performance improvements in the network performance across
several architectures, datasets, and tasks than other existing
methods.

VI. ABLATION STUDIES

We validate the proposed approach using extensive ablation
studies. We perform ablation experiments to check the effects
of our approach on the model overfitting, to check the effect
of the choice of g for PBITT, the effect of swapping of the
original and passive dataset, and the effect of changing the
passive dataset.

A. Effect of PBITT on Overfitting

We perform experiments to show how much the model
overfits under the original training procedure and our proposed
PBITT approach. We use the difference between the training
and test accuracy as a measure of overfitting. Higher the
difference/gap, higher is the overfitting on the training data.
We perform training with 100%, 25%, and 12.5% of the
training data. From Table IV, we can see that the gap between
training and test classification accuracy on the CIFAR-10

dataset is consistently lower in PBITT (g = 100) as compared
to the baseline.

We should note here that the ResNet-56 model already uses
batch normalization, and the standard training procedure uses
weight decay (L2 regularization), both of which are used to
reduce overfitting. Therefore, from the results, we can see that
our approach further reduces the level of overfitting on top
of existing techniques to reduce overfitting. This results in
better generalization and hence, better test accuracy. This is the
reason why the models trained using our approach performs
better than the original models on the same dataset.

B. Selection of Passive Dataset

We also analyze the effect of changing the passive dataset in
our ablation studies to show that our approach (BITT g = 100)
does not depend on the selection of a passive dataset.

From Table V, we can see that even when we use the Ger-
man Traffic Sign Recognition Benchmark (GTRSB) dataset
[43] as the passive dataset, the PBITT (g = 100) approach still
gets better classification accuracy on the CIFAR-10 dataset.
So for both SVHN and GTRSB passive datasets, which have
significantly different data-distribution than CIFAR-10, our
PBITT approach is able to improve the performance of the
model on CIFAR-10. A similar pattern has been observed for
ResNet-50 on ImageNet as shown in Table VI. The proposed
approach is, therefore, a widely usable and efficient way of
improving the performance of Deep CNN models.

C. Mini-batch Proportion

Our framework uses g = 100, i.e., for every 100 mini-
batches of the original dataset 1 mini-batch of the passive
dataset is used to train the model. We experimented with
g = 1, 10, 100, 1000. We performed the experiments on the
ResNet-56 network with the original dataset as a classifica-
tion on the CIFAR-10 dataset and the passive dataset as a
classification on the SVHN dataset.

From Table VII, we can see the best original dataset
performance on CIFAR-10 is obtain when we use g = 100
i.e. 1 SVHN (passive) mini-batch for every 100 CIFAR-10
(original) mini-batch. We also note that g = 1000 performs
worse than g = 10, 100, which shows that when the proportion
of the passive dataset mini-batches is extremely small, the
performance on the original dataset is similar to the original
network with no passive dataset (1 : 0). This validates our
choice of g = 100.

From Table VII, we can see that PBITT g = 1 performs
even worse than the baseline. This is because, when we use
g = 1, we are giving equal training for both the datasets. Since
the network is almost fully shared and we are using different
data distributions for training, the overall performance on both
datasets has been experimentally found to be lower than their
separate models by previous works such as [20]–[23]. Further,
g = 1 is also not preferable because it doubles the overall
training time since we have 1 passive dataset mini-batch for
every original dataset mini-batch.



TABLE IV
GAP IN TRAIN AND TEST CLASSIFICATION ACCURACY (%) FOR RESNET-56 WITH DIFFERENT PROPORTION OF THE TRAINING DATA USING THE

BASELINE AND PROPOSED APPROACH PBITT (g = 100).

Datasets Model % Training data Train-Test Acc. Gap
Active Passive Top-1

CIFAR10 - ResNet-56 (Baseline) 100 6.5
CIFAR10 SVHN ResNet-56 (PBITT) 100 5.5
CIFAR10 - ResNet-56 (Baseline) 25 16.2
CIFAR10 SVHN ResNet-56 (PBITT) 25 14.9
CIFAR10 - ResNet-56 (Baseline) 12.5 24.4
CIFAR10 SVHN ResNet-56 (PBITT) 12.5 21.1

TABLE V
CLASSIFICATION ACCURACY (%) FOR RESNET-56 WITH SVHN AND GTSRB AS THE PASSIVE DATASET (g = 100). OUR APPROACH OF PASSIVE BATCH

INJECTION TRAINING TECHNIQUE (BITT g = 100) DOES NOT DEPEND ON THE SELECTION OF PASSIVE DATASET FOR PERFORMANCE IMPROVEMENT.

Datasets Models Active Acc.
Active Passive Top-1

CIFAR-10 - ResNet-56 (Baseline) 93.4

CIFAR-10 SVHN ResNet-56 (PBITT) 94.4
CIFAR-10 GTSRB ResNet-56 (PBITT) 94.3

TABLE VI
CLASSIFICATION ACCURACY (%) FOR RESNET-50 WITH CIFAR-100 AND SVHN AS THE PASSIVE DATASET (g = 100).

Datasets Models Active Acc.
Active Passive Top-1

ImageNet - ResNet-50 (Baseline) 76.1

ImageNet CIFAR-100 ResNet-50 (PBITT) 76.8
ImageNet SVHN ResNet-50 (PBITT) 76.7

TABLE VII
CLASSIFICATION ACCURACY (%) FOR RESNET-56 WITH DIFFERENT

MINI-BATCH PROPORTION g.

Datasets g:1 Active Acc.
Active Passive Top-1

CIFAR10 - 1:0 93.4
CIFAR10 SVHN 1:1 93.3
CIFAR10 SVHN 10:1 94.1
CIFAR10 SVHN 100:1 94.4
CIFAR10 SVHN 1000:1 93.6

SVHN - 1:0 96.3
SVHN CIFAR10 1:1 96.1
SVHN CIFAR10 10:1 96.7
SVHN CIFAR10 100:1 96.8
SVHN CIFAR10 1000:1 96.4

D. Swapping Active and Passive Datasets

From Table VII, we can see that even when we swap the
original and passive dataset, the new original dataset (SVHN)
behaves similarly to the previous original dataset (CIFAR-10),
i.e., the network shows the best original dataset performance
when it uses g = 100 and the worst performance for g = 1.

This further validates the usability of our approach.

VII. CONCLUSION

In this paper, we have proposed a Passive Batch Injection
Training Technique (PBITT) approach to improve the per-
formance of networks on an original dataset by additionally
training on a passive dataset mini-batch after every substantial
number of original dataset mini-batches. Our approach reduces
the level of overfitting further, even on top of L2 regularization
and batch normalization, which are standard techniques to
reduce overfitting. Our approach does not increase the number
of parameters and inference (test) time of the final model while
improving the performance of deep CNNs. We thoroughly
evaluate the proposed approach on several standard architec-
tures: VGG, ResNet, and WideResNet, and on several popular
datasets: CIFAR-10, CIFAR-100, SVHN, and ImageNet. On
using the proposed approach, we observe consistent accuracy
improvements. We also show that our approach generalizes to
detection as well. We validate our proposed approach through
various ablation studies (effect of PBITT on overfitting, mini-
batch proportion, swapping active and passive datasets, and
selection of the passive dataset). Therefore, we can conclude
that Passive Batch Injection Training Technique is an efficient
way of improving the performance of Deep CNN models.
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