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Abstract—Domain adaptation aims at learning from the la-
beled source domain to build an accurate classifier for a related
but different target domain. Existing methods attempt to reduce
domain discrepancy explicitly by means of statistical properties
yet ignore the inherent differences among samples. In this paper,
we present a novel solution for domain adaptation based on
collaborative representation, named Discrepancy-Aware Collabo-
rative Representation (DACR). Inspired by the success of nearest
regularization, DACR develops a novel indicator to measure the
discrepancy among every source sample and target domain. Then
the indicator is employed in sparse regularization thus ensure
that samples with small discrepancy have larger weights in the
learned representation. Extensive experiments verify that DACR
is able to achieve comparable performance with existing methods
while significantly reducing computing complexity.

Index Terms—Transfer Learning, Domain Adaptation, Collab-
orative Representation

I. INTRODUCTION

Traditional machine learning usually performs poorly when
the training and testing data have different distributions, more-
over, to label the data from each source is time-consuming.
To solve this challenging scenario, domain adaptation (DA)
has attracted the interests of many researchers. Specifically,
domain adaptation learns from a well-labeled source domain to
make predictions in an unlabeled target domain while the two
domains are different but related, which has been successfully
applied in many fields [1]–[4].

Existing methods try to reduce the domain discrepancy
by mapping original data to feature space. As a theoretical
basis, Ben et al. pointed out the ideal representation should
have less source discriminant error and domain discrepancy
[5]. A widely used method to measure the discrepancy be-
tween domains is moments (see in Fig. 1 (a)), either the
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first moment (maximum mean discrepancy, MMD [6]) or the
second moment (correlation alignment, CORAL [7]). Pan et
al. derived the close form solution with the goal of minimizing
MMD and proposed Transfer Component Analysis (TCA)
[8]. Long et al. further extended TCA by assuming that the
conditional probability of two domains are also different,
they proposed Joint Distribution Adaptation (JDA) to jointly
align both marginal and conditional probability [9]. Sun et
al. aligned the covariances of two domains and put forward
CORrelation ALignment (CORAL) [7]. Since deep learning
achieves remarkable performance in various areas, domain
adaptation with deep architectures also makes great progress.
Many deep methods simply use moments to regularize features
in the middle layers. Tzeng et al. trained the ALEXNET8 [10]
network while adding an MMD layer before the classification
layer to align features from two domains [11]. Long et
al. adapted more layers and adopted Multi-Kernel MMD to
improve the performance [12]. Sun et al. also extended their
CORAL to deep neural networks [13]. Adversarial training is
also popular, which trains a feature extractor and a domain
discriminator simultaneously [14]–[16].

Although feature-based methods have been widely used,
they still need a classifier to make predictions. Naturally,
the idea of classifier adaptation comes up, which does not
change the feature dimension but deals with the discrepancy
when constructing a classifier. Collaborative representation
(CR) based classification is an variant of nearest subspace
classifier which shows attractive performance in most cases.
Adaptation with CR is also a hot topic. Tang et al. ex-
ploited the local-neighbor geometrical information to learn
adaptive representation of target samples [17]. Zhang et al.
learned a common dictionary for two domains and presented
a kernelized CR method for domain adaptation [18]. Nearest
regularized CR is proposed for hyperspectral classification
[19], but it performs well even in the domain adaptation
setting. The key point is that distance between samples (see
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in Fig. 1 (b)) can measure the discrepancy between domains.
However, employing sample-to-sample distance means that we
must test the target samples one by one, which makes it time-
consuming.

S1

S2

S3

S4

S5

S6

S

T1

T2

T3

T4

T5

T6

T

distance

Moments based Distance

(a)

S1

S2

S3

S4

S5

S6

S

T1

T2

T3

T4

T5

T6

T

distance

Nearest Regularized CR

(b)

S1

S2

S3

S4

S5

S6

S

T1

T2

T3

T4

T5

T6

T

distance

Discrepancy-Aware CR

(c)

Fig. 1. Graphical illustration of different discrepancy quantization. The oval in
orange denotes the source domain, and Si denotes samples in source domain.
Correspondingly, the oval in blue and Ti denote target domain and target
samples, respectively. The solid lines denote different distance to measure the
domain discrepancy. (a) Moments Based (domain-to-domain), it computes
the distance between two domains. (b) Nearest Regularized CR (sample-to-
sample), it computes the distance between any two samples in two domains.
(c) Discrepancy-Aware CR (sample-to-domain), it computes just one value
for each source sample.

From the success of moments based methods and near-
est regularized CR, we can learn that the crucial issue for
domain adaptation is how to measure the discrepancy and
adjust features or classifiers accordingly. In this paper, we
propose a CR based method for unsupervised domain adap-
tation, named Discrepancy-Aware Collaborative Representa-
tion (DACR). Our key underlying idea is that samples in
source domain should contribute differently due to the distance
between each source sample and target domain is different,
which is consistent with most instance-based methods [20].
DACR computes domain discrepancy by reconstruction error,
then adds them to the sparsity regularization item thus samples
closer to the target domain are encouraged to have larger
weights. The contributions of the paper can be summarized
as follows.

• We proposed a novel domain adaptation solution (DACR)
based on collaborative representation. DACR models the
discrepancy explicitly and employs them to learn more
reasonable representations. Experiments show that the
proposed method can achieve reliable performance while
greatly improve computation efficiency.

• A discrepancy measurement for characterizing the
sample-to-domain relation is presented. Unlike existing
methods that measure the distance of domain-to-domain
(MMD, CORAL) or sample-to-sample (nearest regular-
ization), our method computes the discrepancy between
source samples and target domain. We show that this
newly-defined measurement can be derived from domain
discrepancy and work like a common regularization.

The rest of the paper is organized as follows. Section 2
details the domain adaptation problem and related works, then
introduces collaborative representation based classification.

Our method is introduced in Section 3 and experimental
evaluation is presented in Section 4. At last, we summarize
this paper and discuss future work in Section 5.

II. RELATED WORKS

In this section, we begin with a brief introduction to
transfer learning and domain adaptation. Then, collaborative
representation based classification is given since the proposed
method is highly related to it.

A. Transfer Learning and Domain Adaptation

Transfer learning aims to leverage the common knowledge
exists in data from different sources so as to fulfill recognition
or detection tasks [20]. There are two basic elements in transfer
learning, Domain (D) and Task (T ). A domain can be seen as
a set of data (X ) drawn from distribution P (X ). Specifically,
there are at least two domains in transfer learning, source
domain (Ds) providing a vast amount of knowledge (such as
labels in supervised learning) and target domain (Dt) with less
or zero knowledge. A task contains the label space (Y) and
the mapping function f(·).

Domain adaptation is an attractive branch of transfer learn-
ing, which assumes that the distributions of source and target
domain are different but related (P (Xs) ≈ P (Xt)). Further,
when target domain is completely unlabeled (Yt = ∅), it
is called unsupervised domain adaptation. Previous works
attempt to reduce the discrepancy caused by different distribu-
tions. A general idea is to first evaluate the discrepancy with
some measurements and then minimize it. Existing measures
can be roughly divided into two categories: 1) Moments based.
Both the first order moment (MMD [8]) and the second order
moment (CORAL [7]) based measurements are widely used. 2)
Adversarial training [21] based. The main idea is to establish
a domain discriminator during training.

B. Collaborative Representation based Classification

Sparse representation based face recognition (SRC) [22]
shows remarkable performance compared to traditional meth-
ods and attracts the attention of many researchers. Zhang et al.
pointed out the nature that it is the collaborative representation,
rather than the l1−norm sparsity that plays a vital role in
classification [23]. Inspired by this, the authors also presented
an efficient classification scheme, named collaborative repre-
sentation based classification (CRC), which has been applied
in many areas.

Given a query sample (y), CRC tries to collaboratively
represent it with the whole training set (X = [x1, x2 · · ·xn])
with coefficients ρ.

ρ = argminρ||y −X · ρ||22 + λ||ρ||22 (1)

Intuitively, the first item ||y −X · ρ||22 indicates that we hope
the reconstruction error can be small and ||ρ||22 is the sparsity
item. λ is introduced to balance two objectives. Noticed that
the sparsity item uses l2−norm but not as the l1−norm used
in SRC, the result is a massive saving in time since we can



solve ρ in a closed form. By setting the partial derivative to
zero, we can obtain:

ρ = (XTX + λI)−1XT y (2)

where XT denotes the transpose of X , I denotes the identity
matrix with n−dimension. To summarize, the authors assign
weights on training samples to represent the query sample
y ≈

∑
iXiρi.

To make prediction on the query sample, the authors com-
pute the class specific residual and take the label with the
minimum residual. The detailed process is in Algorithm 1. c
denotes the number of classes, Xi and ρi denote the samples
belong to class i and their weights, respectively.

Algorithm 1 CrcPre : Predicting on the query sample
Require: X, y, ρ

1: for i ∈ [1, 2 · · · c] do
2: ri = ||y −Xi · ρi||2
3: end for
4: label = argmin

i
ri

5: return label

Extend from CRC, Li et al. proposed nearest regularized
CRC which introduces a locality constraint for ρ by giving
different freedom to training samples according to their Eu-
clidean distances from the query sample [19].

ρ = argminρ||y −X · ρ||22 + λ||Γρ||22 (3)

where Γ is a biasing Tikhonov matrix defined by Γii = ||xi−
y||2, i = 1, 2 · · · , n. Obviously, if xi differs greatly from the
query sample, Γii will be large, then the contribution of xi in
reconstruction (ρi) should be small because of the constraint
||Γiiρi||2.

III. DISCREPANCY-AWARE COLLABORATIVE
REPRESENTATION

In this section, we first give a clear definition to domain
adaptation problem, then the proposed method is presented in
detail.

A. Problem Definition and Notations

Suppose that we have source and target domain data
(Xs/Xt) drawn from two different but relational domains
(Ds/Dt). The feature dimensions (m) of the data from two
domains are the same. Our goal is to establish a robust
classifier (C) with data from both domain (Xs&Xt) and source
labels (Ys), thus make accurate predictions on target samples
(Xt). It is worth noting that the target labels (Yt) are only
available when evaluating methods.

B. Methodology

Collaborative representation based classification is a gener-
alization of the nearest neighbors (NN) and nearest subspace
(NS) classifiers, its performance degrades in the scenario of
domain adaptation problems without the alignment of domains
[9]. According to our research, nearest regularized CRC shows

TABLE I
NOTATIONS AND DESCRIPTIONS USED IN THIS PAPER.

Notations Description
Ds/Dt source/target domain
Xs/Xt original source/target domain data
Ys/Yt source/target domain label
ns/nt number of source/target samples
m feature dimension
C learned classifier from source domain

trustworthy performance (which can be seen in experimental
results) in domain adaptation. This discovery verifies that the
Euclidean distance between samples from two domains can
measure the domain discrepancy approximately. However, we
need to compute the distance between any two samples in two
domains, which brings an enormous computational burden.

In this paper, we introduce an efficient regularization, named
Discrepancy-Aware Collaborative Representation (DACR), for
unsupervised domain adaptation. The basic principle is that
the importance of source samples is different and those close
to target domain should contribute more in the collaborative
representation. The proposed method consists of two parts:
discrepancy quantization and regularization.

1) Discrepancy Quantization: Here we devote to solving
the problem that how to evaluate the importance of each
source sample. For domain adaptation problem, we can assume
that there are both common and domain-specific features
[24]. Specifically, the source samples can be represented as
Xs = Fs + Fc where Fs denotes source specific features
and Fc denotes common features between domains, so the
target samples can be written as Xs = Ft + Fc where Ft
denotes target specific features. Obviously, we have Fs⊥Ft
since they are domain-specific features. A natural idea is that
these samples with less domain-specific features should be
more important. Based on this, we reconstruct every source
samples using target samples, and record the reconstruction
error. From the perspective of linear algebra, if we want to
represent an vector vi = Fs+Fc with the basis B = {Ft,Fc},
the reconstruction error should be related to Fs since B is
incomplete. If the reconstruction error is small, the sample
can be considered of higher importance.

The specific calculation is like a reversed CR. First we
collaboratively represent every source sample with the whole
target domain. Similarly, the objective can be written as:

ρ = argminρ||Xt · ρ−Xs||22 + α||ρ||22 (4)

Noticed that we employ the matrix form of source sample
(Xs) instead of performing one by one , which can save time.
By setting the partial derivatives to zero, we can obtain:

ρ = (XT
t Xt + αI)−1XT

t Xs (5)

Then we can calculate the residual with ||Xs − Xt · ρ||,
the specific process is shown in Algorithm 2. w ∈ Rns×ns



indicates the discrepancy between source samples and target
domain, and if wii is large, the discrepancy between xi and
target domain is big, so xi should contribute less.

Algorithm 2 DisQu : Discrepancy Quantization
Require: Xs, Xt

1: ρ = (XT
t Xt + αI)−1XT

t Xs

2: r = ||Xs −Xt · ρ||
3: wii = ||ri||2
4: return w = diag(wi)

2) Discrepancy Regularization: Since we already have the
indicator to quantize the discrepancy of source samples, the
regularization is similar to nearest regularization. First we
learn the representation to minimize the following equation

minimize
ρ

J = ||Xt −Xs · ρ||22 + β||w · ρ||22 (6)

In the first item we collaboratively represent the query sample
Xt by means of all training samples Xs with a small recon-
struction error. And in the second item, we use discrepancy-
aware sparse regularization rather than treat source samples
equally. When there is only one example in target domain,
then the second item can be written as:

w1 0 0 0
0 w2 0 0
· · · · · ·

0 0 0 wn

 ·

ρ1
ρ2
· · ·
ρn

 =


w1ρ1
w2ρ2
· · ·
wnρn

 (7)

Here we assume that sample 1 has larger discrepancy than
sample 2, which means that w1>w2. To minimize this ob-
jective, sample 2 is expected to have larger coefficient than
sample 1 (ρ2>ρ1) in the learned representation.

By setting ∂J
∂ρ equals to zero, we can solve equation 6

quickly.

∂J

∂ρ
= XT

s (Xsρ−Xt) + βwTwρ = 0

⇒(XT
s Xs + βwTw)ρ = XT

s Xt

⇒ρ = (XT
s Xs + βwTw)−1XT

s Xt

(8)

Then we can make prediction as original CRC (shown in
Algorithm 1) does. Algorithm 3 concludes the specific process
of the proposed method for unsupervised domain adaptation.

Algorithm 3 DACR : Discrepancy-Aware Collaborative Rep-
resentation
Require: Xs, Ys, Xt

1: Discrepancy quantization.
2: w = DisQu(Xs, Xt)
3: Regularized collaborative representation.
4: ρ = (XT

s Xs + βwTw)−1XT
s Xt

5: Make predictions.
6: Ŷ it = CrcPre(Xs, X

i
t , ρ)

7: return Ŷt

Compared to original CRC, we add w to the sparsity item to
learn more flexible representations. For these samples which

have a small value of discrepancy, they are intend to have
bigger weights to reconstruct target samples. Besides, we
compute just one value to measure the distance between each
source sample and target domain while nearest regularized CR
need to compute different distances for each target sample.
As a result, our method can compute with the whole samples
simultaneously while nearest regularized CR can only compute
one by one. When the number of target samples is large, this
will lead to a huge increase in efficiency.

IV. EXPERIMENTS

In this section, we conduct extensive experiments for do-
main adaptation problems to evaluate the proposed approach.

A. Data Preparation

Here we introduce two widely used datasets when compar-
ing domain adaptation methods.

ImageCLEF 1 is an online competition for domain adap-
tation. It consists of three domains: Caltech (C), ImageNet (I)
and Pascal (P), and in each domain there are twelve classes of
objects, such as aeroplane, bike and etc. There are 600 images
per domain.

Office31 [1] consists of three domains: Amazon (A), We-
bcam (W) and DSLR (D). There are over 4,000 images from
31 categories.

Amazon DSLR Webcam

Fig. 2. Objects in different domains.

By pairing the domains, we can conduct six subtasks for
each dataset. For ImageCLEF, we use C → I as the short for
training with Caltech while testing with ImageNet, and so do
others.

B. Baseline Methods

We compare the proposed method with a wide range of
state-of-the-art methods to verify its effectiveness. Here we
divide existing methods into shallow and deep roughly ac-
cording to whether there are deep neural networks in it. For
shallow methods, we employ the RESNET50 [25] features
of images, which use a 2048-dimensional vector to describe
an image. Since we use the deep features, we compare to
deep methods though there is no deep architecture in the
proposed method. And for fair comparison, we apply the
feature extractor network (RESNET50) as the backbone for
deep methods. The methods are listed as follows.

1https://www.imageclef.org/2014/adaptation



TABLE II
ACCURACY (%) ON 12 SUBTASKS COMPARED WITH BOTH SHALLOW AND DEEP METHODS.

Method C → I C → P I → C I → P P → C P → I A→ D A→W D → A D →W W → A W → D mean
CRC 83.33 67.00 91.50 74.17 87.83 84.00 75.90 70.82 61.55 95.97 63.05 99.00 79.51
TCA 83.16 71.66 91.50 75.00 84.66 79.50 76.71 69.94 62.87 95.47 63.83 99.20 79.46
GFK 84.83 70.00 91.16 73.50 83.00 76.00 77.51 73.21 59.07 96.35 61.01 99.60 78.75
JDA 92.00 75.50 92.33 77.00 82.83 79.16 81.33 81.89 67.09 95.97 68.41 99.60 82.76

CORAL 83.00 71.50 88.66 73.66 72.50 72.33 75.10 76.35 50.41 93.46 57.58 99.00 76.13
NRCR 86.33 72.00 93.00 78.00 92.67 89.50 83.33 78.36 63.44 95.35 65.74 98.59 83.02
RES50 78.00 65.50 91.50 74.80 91.20 83.90 68.90 68.40 62.50 96.70 60.70 99.30 78.45
DANN 87.00 74.30 96.20 75.00 91.50 86.00 79.70 82.00 68.20 96.90 67.40 99.10 83.60
RTN 86.90 72.70 95.30 75.60 92.20 86.80 77.50 84.50 66.20 96.80 64.80 99.40 83.22
CAN 89.50 75.80 94.20 78.20 89.20 87.50 85.50 81.50 65.90 98.20 63.40 99.70 84.05
DAN 86.30 69.20 92.80 74.50 89.80 82.20 78.60 80.50 63.60 97.10 62.80 99.60 81.41

DACR 87.67 70.83 92.67 77.50 92.83 90.67 80.92 78.36 61.95 93.71 64.15 97.99 82.43

TABLE III
RUNNING TIME (S) OF NRCR AND DACR.

Method C → I C → P I → C I → P P → C P → I A→ D A→W D → A D →W W → A W → D
NRCR 30.27 30.35 30.56 30.72 30.65 30.43 780.20 1223.93 108.23 30.21 259.25 45.71
DACR 0.23 0.22 0.23 0.23 0.24 0.24 2.00 2.40 2.36 0.47 2.52 0.38

Speed Gains 127x 137x 129x 131x 123x 124x 388x 508x 45x 63x 102x 119x
Target Number 600 600 600 600 600 600 498 795 2817 795 2817 498
Source Number 600 600 600 600 600 600 2817 2817 498 498 795 795

Shallow: CRC [23](Non-adaptation), TCA [8] (Moments
based), GFK [1], JDA [9] (Moments based), CORAL [7]
(Moments based), NRCR [19] (Nearest regularized and col-
laborative representation based).

Deep: RES50 [25](Non-adaptation), DANN [21] (Adversar-
ial based), RTN [26] (Adversarial based), CAN [27] (Adver-
sarial based), DAN [12] (Moments based).

C. Implementation Details
The proposed method involves two parameters, α controls

the sparsity when computing the discrepancy and β indicates
how we care about the regularization. In the experiment, we
set α = 1 and β = 1 for all the experiments.

D. Results
The experimental results are shown in Table II. First of

all, we focus on the results compared to CRC and RES50.
Comparisons with the two non-adaptation methods can verify
whether our method achieves improvement when applied to
domain adaptation problems. Obviously, our method is supe-
rior to both. The mean accuracy increases 3% (79.51% →
82.43%) and 4% (78.45% → 82.43%) respectively. More
precisely, the proposed method has better performance than
CRC and RES50 on most subtasks. These discoveries confirm
that our method is able to learn transferable representations in
different scenarios.

Intuitively, our method has comparable performance to the
state-of-the-art when compared with shallow methods. DACR
beats TCA, GFK and CORAL on mean accuracy, and loses
slightly to JDA (0.03%, 82.46% → 82.43%) and NRCR
(0.6%, 83.02% → 82.43%). It may seem strange that the
non-adaptation method CRC has higher average accuracy than
many DA methods. The reason is the selected shallow methods
use dimensionality reduction to learn transferable represen-
tations, and the classifier they used is 1-nearest neighbor.

Following the experimental setting indicated in the original
paper [8], [9], we set the feature dimension to 100, which
will cause information loss that cannot be ignored.

To further illustrate the performance of our approach, we use
some deep methods for comparison. Generally speaking, deep
methods perform better than shallow. The main reason is that
end-to-end training can avoid the information loss of convert-
ing images into vectors. Nevertheless, our method also shows
trustworthy performance, only 1.6% (84.05% → 82.43%)
lower than the best-performed deep method CAN.

E. Parameter Sensitivity Analysis

50

55

60

65

70

75

80

85

90

1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02

β 

α 

A
cc

u
ra

cy

Fig. 3. Average accuracy (%) on ImageCLEF with different values of λ and
β.

We conduct sensitivity analysis to validate that DACR can
achieve optimal performance under a wide range of parame-
ters, i.e. 1.00E-04 → 1.00E02. α controls the sparsity when
computing reconstruction error to measure domain discrep-
ancy. This sparsity works for controlling the complexity of
target coefficients while we mainly focus on the reconstruction
error. So α is not an essential parameter, and if it is too large,



the learned representation will be inaccurate due to it pay
too much attention to the sparsity. The experimental results
also illustrate that. As shown in Fig. 3, the mean accuracy
remains unchanged while α increases from 1.00E-04 to 10,
and drops slightly when it keep increasing. β is the weight of
the regularized sparsity item, so it would have great effect
on the accuracy. Fig. 3 presents that the average accuracy
rises first and then falls sharply. The performance improves
as it increases. But if it is too large, we cannot learn proper
representations for query samples. This also shows the validity
of the proposed regularization.

F. Running Time
To verify whether the ‘sample-to-domain’ distance can

reduce the computational complexity, we record the running
time of NRCR and DACR in Table III. The two methods are
implemented via MATLAB 2017a and executed on a Windows
PC with Intel Core i7 CPU at 3.6GHz and 8GB RAM. Speed
gains indicates how many times the proposed DACR is faster
than NRCR, besides, the sample numbers of two domains are
reported. Intuitively, the proposed DACR is much faster than
NRCR. According to our previous analysis, NRCR computes
the distance among every target sample and whole source
samples so that the running time is expected to be proportional
to target number. There is a significant positive correlation
between target numbers and running times for NRCR, such as
in subtasks A → D and A → W ( 780.20

1223.93 ≈
498
795 ), in subtasks

D → A and D → W ( 108.2330.21 ≈
2817
795 ), this finding confirms

that iterative predictions for target samples limit the calculation
efficiency of NRCR a lot. For our method, the importance of
source samples is the same for all target samples, so we can
calculate the representation at once thus significantly reduce
computing burden.

V. CONCLUSION

In this paper, we propose a solution for unsupervised
domain adaptation, named Discrepancy-Aware Collaborative
Representation. Unlike existing methods, we do not attempt to
reduce the domain discrepancy based on statistical properties
or adversarial training. By exploiting the relation of source
samples and target domain, we present a novel measurement to
characterize domain discrepancy. Sufficient experiments verify
that the proposed method is effective. In the future, we plan to
combine collaborative representation and deep neural networks
to learn meaningful and explainable features.
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