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Abstract—Latest algorithms for automatic neural architecture
search perform remarkably but few of them can effectively design
the number of channels for convolutional neural networks and
consume less computational efforts. In this paper, we propose a
method for efficient automatic search which is special to the
widths of networks instead of the connections within neural
architectures. Our method, functionally incremental search based
on function-preserving, will explore the number of channels for
almost any convolutional neural network rapidly while control-
ling the number of parameters and even the amount of computa-
tions (FLOPs). On CIFAR-10 and CIFAR-100 classification, our
method using minimal computational resources (0.41∼1.29 GPU-
days) can discover more effective rules of the widths of networks
to improve the accuracy (a∼1.08 on CIFAR-10 and b∼2.33 on
CIFAR-100) with fewer number of parameters.

Index Terms—efficient search, function-preserving, the number
of channels, functionally incremental search

I. INTRODUCTION

In recent years, deep learning has achieved great success in
the field of computer vision. As the crucial factor affecting the
performance of convolutional neural networks, many excellent
neural architectures have been designed, such as VGG [1],
ResNet [2], PyramidNet [3], SENet [4], HCGNet [5] and so
on. Although these human-designed architectures constantly
refresh the classification accuracy on specific datasets, they
rely heavily on expert experience and it is extremely difficult
to manually design suitable neural architectures when faced
with brand new image tasks. With more and more attention
paid to the research of automatic neural architecture search,
many prominent neural architectures have been discovered by
various kinds of search algorithms [6]–[9]. Some of them have
gradually surpassed the human-designed neural architectures
in performance.

The choice of the number of channels has become an
important research point since the initial human-designed
convolutional neural networks were designed. Many classical
convolutional neural networks, such as AlexNet [10], VGG
and ResNet usually sharply increase the feature map dimen-
sion (the number of channels) at downsampling locations in
order to roughly increase the diversity of high-level attributes.
Several subsequent researches have improved the number
of channels for these thin and deep networks and achieve
better results. For example, WRNs [11] increase the widths
of residual networks and PyramidNet [3] design the additive
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and multiplicative pyramid shapes to gradually increase the
number of channels. With the continuous development in
the filed of neural architecture search, many algorithms [12],
[13] tend to seriously consider the number of channels for
convolutional neural architectures. Although these methods
have achieved outstanding results, they are all computationally
expensive and the search efficiency is not satisfactory.

In this paper, we propose a novel method based on function-
preserving for efficiently searching the widths of convolutional
neural networks. Function-preserving transformations derive
from Net2Net [14], which target at transferring the information
in the well-trained teacher networks into the student networks
rapidly. This method has been well used in network morphism
[15] and several neural architecture search algorithms [16],
[17]. Differently, we pay more attention on the number of
channels instead of the connections within neural architectures.
We propose the functionally incremental search which based
on function-preserving to efficiently explore the number of
channels of almost any network. We conducted confirmatory
experiments on several classical convolutional neural networks
and improved the performances of the original networks while
controlling the number of parameters of the models. Further,
we can discover search results with different advantages, such
as fewer FLOPs but better accuracy, by modifying the fitness
evaluation function. Based on the comparisons with other
methods and a series of additional supplementary experiments,
we further discuss the rules of the number of channels for
convolutional neural networks and analyse the efficiency and
the effectiveness of our method.

The results of our experiments show that our search method
achieves better classification accuracy (accuracy can be im-
proved by about 0.5% on CIFAR-10 and a∼2.33% on CIFAR-
100) with fewer number of parameters by only optimizing
the number of channels for classical convolutional neural
networks. By taking into account FLOPs, our search method
can discover more effective widths of networks (accuracy can
be improved by about b∼1.08% on CIFAR-10) with fewer
number of parameters and similar amount of computations.
The efficient search process consumes approximately 0.4∼1.3
GPU-days1 computational resources which mainly depends on
the complexity of networks.

Our contributions are summarized as follows:

1All of our experiments were performed using a NVIDIA Titan Xp GPU.
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• We propose an efficient method, functionally incremental
search, which can explore the number of channels for
almost any convolutional neural network rapidly while
controlling the number of parameters.

• We can discover search results with different advantages,
such as fewer FLOPs but better accuracy, by modifying
the fitness evaluation function.

• We conducted experiments on CIFAR-10 and CIFAR-
100, and further analyse the effectiveness and transfer-
ability of the results discovered by our search method.

Part of the code implementation is available at https://github.
com/Search-Width/Search-the-Number-of-Channels.

II. RELATED WORK

In this section, we review the number of channels designed
manually, function-preserving transformations and neural ar-
chitecture search which are most related to this work.

a) The Number of Channels Designed Manually: For
convolutional neural networks, appropriate depth and width
choices may achieve higher accuracy and smaller model size.
Even a slight change in the number of channels for the neural
architecture will have a huge impact on the performance.
Based on ResNet [2] blocks, Zagoruyko and Komodakis [11]
propose the wide residual networks (WRNs) which decrease
depth and increase width of residual networks and show
that these are far superior over their commonly used thin
and very deep counterparts. In addition, for many classical
convolutional neural networks such as VGG [1] and ResNet,
the number of channels is sharply increased at downsampling
locations. It is considered to increase the diversity of high-
level attributes and then roughly ensure effective performance
of networks. Instead of this method, PyramidNet [3] gradually
increases the feature map dimension at all units to involve as
many locations as possible and the design has proven to be an
effective means of improving generalization ability. From the
existing researches as above, we can notice that convolutional
neural networks can be improved by manually designing the
number of channels but it relies heavily on human experience.

b) Function-Preserving Transformations: Transferring a
well-trained neural network to a new one with its network
function completely preserved mainly contains two methods:
Net2Net [14] and network morphism [15]. They can transfer
the information stored in the teacher neural network into the
student neural network rapidly based on function-preserving.
Although they target at the same problem, there are several
major differences between them. For example, Net2Net’s
operations only work for idempotent activation functions while
network morphism may handle arbitrary non-linear activation
functions.Due to the new network immediately performs as
well as the original network rather than spending time passing
through a period of low performance, we can quickly change
the neural architecture while reducing redundant training.
Thus, the search algorithm may explore the number of chan-
nels for convolutional neural networks with less search time
and computational effort.
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Fig. 1. Widening operation based on functional-preserving. (a) represents the
original architecture and (b) represents the architecture after widening. The
rectangles and circles represent the convolutional layers and feature maps or
filters, respectively. The same color means identical.

c) Neural Architecture Search: The latest algorithms
for neural architecture search mainly include evolutionary
algorithm (EA) [6], [18], reinforcement learning (RL) [7],
[19], [20], Bayesian optimization (BO) [21] and gradient-
based methods [9], [22]. The algorithms of automatic neural
architecture search are increasingly concerned with their own
efficiency (such as search time) besides focusing on the effect
of neural architectures discovered. Several methods [16], [17]
based on function-preserving perform prominently with less
computational effort. However, existing methods basically paid
less attention on the number of channels. Fang et al. [12]
propose a differentiable method called DenseNAS which can
search for the width and the spatial resolution of each block
simultaneously. In general, efficient search for the number of
channels for convolutional neural networks is an intractable
and poorly researched problem. In this work, we propose a
novel method based on evolutionary algorithm and function-
preserving transformations for efficient search specifically for
the number of channels for convolutional neural networks.

III. PROPOSED METHODS

In this section, we propose our methods for efficiently
search the number of channels for convolutional neural net-
works. In the first subsection, we review the fundamen-
tal transformation to widen a convolutional layer based on
function-preserving. Next, we illustrate in detail the core of
our methods, i.e., functionally incremental search. Then, we
present the effect and usage of the fitness evaluation function.
Finally, we demonstrate the efficient search procedure based
on evolutionary algorithm.

A. Widening a Convolutional Layer

Widening a convolutional layer based on function-
preserving is the most fundamental transformation which
occurs each time the number of channels for every layer is
increased after calculating the increment. Due to the new net-
work performs as well as the original one, this operation may
implement a smooth and efficient architecture transformation
without restarting training.

In transfer learning, the output of the pre-trained teacher
network is used as supervisory information to train the student
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Fig. 2. Visualization of the Functionally incremental search. The top half of (a) ∼ (h) are the 8 kinds of functions to incrementally explore the number of
channels and the bottom half are the schematic diagrams of the corresponding models after width changes. The range of each function is 0 ∼ N on the
horizontal axis and 0 ∼ λ on the vertical axis.

network. Assume that α is the input to the network, function-
preserving transformation is to choose a new set of parameters
β
′

for a student network G(α;β
′
) which transforms from the

teacher network F (α;β) such that:

∀α : F (α;β) = G(α;β
′
). (1)

Assume that the kernel size is k1 × k2 and c is the number
of input channels of layer i. The number of output feature
maps of layer i and layer i + 1 are f and f

′
, respectively.

We denote the old parameters matrix by W (i) ∈ Rk1×k2×c×f

and W (i+1) ∈ Rk1×k2×f×f
′

. g represents a random mapping
function and U represents the new parameters matrix. The i-th
convolutional layer is widened by replicating the parameters
along the last axis at random and the parameters in W (i+1)

need to be divided along the third axis corresponding to the
counts of the same filters in the i-th layer. Specifically, A
noise δ is randomly added to every new parameter in layer
i+1 to break symmetry. The operation for widening a layer
based on function-preserving which is visualized in Fig.1 can
be expressed as follows:

g(j) =

{
j j ≤ f
randomsample from{1, 2, · · · , f} j > f

,

(2)
U

(i)
k1,k2,c,j

= W
(i)
k1,k2,c,g(j)

, (3)

U
(i+1)

k1,k2,j,f
′ =

W
(i+1)

k1,k2,g(j),f
′

|{x|g(x) = g(j)}|
· (1 + δ), δ ∈ [0, 0.05] . (4)

B. Functionally Incremental Search

Functionally incremental search is to widen a network
according to the corresponding increments calculated by the
specific function on the basis of the current number of channels
for every layer of the network. Compared with the mutation
for a single layer, the change of architecture for this method
is more significant. It is beneficial to get more accurate fitness
evaluation for the newly generated network. The procedure
of functionally incremental search can refer to the function
CHANGE WIDTHS in following Algorithm 1.

1) Designed Functions: We designed more functions with
smooth curves than piecewise ones, mainly because the pyra-
mid architecture proved to be more efficient. The functions
for incremental search and the schematic diagrams of the
corresponding models after width changes are visualized in

Fig.2. N represents the number of convolutional layers in the
network and the range for the serial number of a single layer
which is represented as the independent variable x is (0, N ] .
λ represents the rate of increase, in other words, the number
of channels will increase to 1 + λ times at most.

a) Functions with Smooth Curves: The motivation for
the functions with smooth curves is mainly derived from
additive and multiplicative pyramid-shaped architectures. The
function with increasing slop is shown in Fig.2(a) and it can
be expressed as:

fa (x) = λ · (λ+ 1)
x − 1

(λ+ 1)
N − 1

. (5)

The function with constant slop is shown in Fig.2(c) and it
can be expressed as:

fc (x) =
λ

N
x. (6)

The function with decreasing slop is shown in Fig.2(e) and
it can be expressed as:

fe (x) = λ · (λ+ 1)
N − (λ+ 1)

N−x

(λ+ 1)
N − 1

. (7)

The function shown in Fig.2(b), (d) and (f) are symmetric
with the functions in eq.(5), eq.(6) and eq.(7) about x = N/2,
respectively. They can be expressed as:

fb (x) = λ · (λ+ 1)
N−x − 1

(λ+ 1)
N − 1

, (8)

fd (x) = λ− λ

N
x, (9)

ff (x) = λ · (λ+ 1)
N − (λ+ 1)

x

(λ+ 1)
N − 1

. (10)

In particular, after the incremental changes according to
every two symmetric functions, the number of channels for
the convolutional layers in the network may be opposite.



b) Functions with Piecewise Curves: The motivation for
the functions with piecewise curves is mainly derived from
most human-designed networks. Assume that Ki represents
the number of convolution layers before the i-th downsampling
operation. Set n = max{i} + 1, the function with the Step
Shape is shown in Fig.2(g) and it can be expressed as:

fg (x) =


1

2n−1 · λ 0 < x ≤ K1

1
2n−2 · λ K1 < x ≤ K2

· · · · · ·
λ Kn−1 < x ≤ N

, (11)

The function shown in Fig.2(h) is the opposite of the
function in eq.(11) and it can be expressed as:

fh (x) =


λ 0 < x ≤ K1

· · · · · ·
1

2n−2 · λ Kn−2 < x ≤ Kn−1
1

2n−1 · λ Kn−1 < x ≤ N

. (12)

Notice that these two functions are not necessarily symmet-
ric about x = N/2 as the number of layers may be different for
every two intervals divided by the downsampling operation.

2) Calculate the Increments of the Widths: The methods
used to calculate increments mainly include: Calculating by
the initial fixed number of channels and calculating by the
number of channels that may change during the search process.
For the former, Each calculation is based on the initial network
in which the number of channels will be unchanged. In
this case, several functions (e.g. f (x) = λ) become useless
because their effects can be generated by the addition of other
functions. For the latter, each calculation is based on the new
network in which the number of channels is changed per
round. Assume that Θ is the initial set of the layers in the
network and the width of the i-th layer is represented as θi.
Θ
′

is the set after m changes and ξ represents a randomly
selected function. It can be expressed as:

Θ = {θi} , Θ
′

=

{
θi ·

m∏
p=1

(1 + fξ (i))

}
. (13)

In this case, we may add the function f (x) = λ/2 to ensure
that the network with the same number of channels in all
convolutional layers can be produced. For the sake of search
efficiency and intermediate results, we prefer the latter one in
our experiments.

C. Fitness Evaluation Function

The fitness evaluation function is especially important to
evaluate and select the individuals. We may finally discover
search results with different advantages by modifying fitness
evaluation functions. For example, if we only focus on the
accuracy of the final model, we can simply define the fitness
evaluation function as the accuracy on the validation set. If
necessary, we can add FLOPs into the fitness evaluation func-
tion to ensure the accuracy and the amount of computations

simultaneously. For the part involved FLOPs of this work, we
use the following fitness evaluation function:

γ =
FLOPsbaseline − FLOPsinitial

Accbaseline −Accinitial
. (14)

Fitness = kγ · (Acc−Accinitial)− FLOPs. (15)

Here, baseline represents the value of compared model
and initial represents the value of our initial model. No
subscript represents the value of the currently evaluated model.
γ is the approximate weight proportion of Acc and FLOPs
calculated. k is used to further adjust the proportion of them.

Algorithm 1 Evolutionary Search Algorithm
Input: Initial Model: Minitial, Population Size: P , Function

Set: F = {f1, · · · , fn}, Number of Layers: N , Channel
Number List: Θ = [ θ1, · · · , θN ] , Fitness Evaluation:
Fitness, Number of Parameters: Params.

Output: Best Model: Mbest.
1: while Paramsbest < Paramsthreshold do
2: if P < P1 then
3: Mnew ← CHANGE CHANNELS(Minitial, F);
4: else if P1 ≤ P < P2 then
5: Select an individual for mutate: Mselected;
6: Mnew ← CHANGE CHANNELS(Mselected, F);
7: else
8: Select an individual for mutate: Mselected;
9: Mnew ← CHANGE CHANNELS(Mselected, F);

10: Discard Fitnessworst individual: Mworst;
11: end if
12: Put Mnew into the population;
13: Update Fitnessbest, Mbest, Paramsbest, in turn;
14: end while
15: return Mbest

16:
17: function CHANGE WIDTHS(Mselected, F)
18: A randomly selected function from F : fξ;
19: for i = 1 : N do
20: Calculate the increment according to fξ: fξ(i);
21: Update θi in Mselected: θi ← θi(1 + fξ(i));
22: end for
23: return Mnew

24: end function

D. Search Based on Evolutionary Algorithm
Our search method is based on the evolutionary algorithm.

The initial network is randomly mutated several times to form
the initial population of size P1. Then we use tournament
selection [23] to select an individual for mutation: a fraction
k of individuals is selected from the population randomly and
the individual with the highest fitness is final selected from
this set. After several rounds, the population size will reach
P2. From this point on, the individual with the lowest fitness
in the population will be discard while a new individual is
generated through mutation. Thus, the population size remains
unchanged (P2) until the end of the evolution. Detailed search
algorithm is described in Algorithm 1.



Fig. 3. Select a small number of channels from the classical convolutional
neural network to form the initial model for search. Different colored
rectangles represent different convolutional layers.

IV. EXPERIMENTS

In this section, we show the initial model and the dataset
first. Then, we introduce the implementation of experiments
and report the performances of functionally incremental
search. The experiments are mainly implemented in accor-
dance with the methods mentioned in Sect.III and we make a
detailed introduction here. Finally, we compare the networks
discovered with baselines and other methods to prove the
effectiveness and efficiency of our method.

A. Initial Model

The method for constructing the initial model is described in
Fig.3. The widths of the original network are usually varied as
shown on the left and we choose the same number of channels
for every convolutional layer as shown on the right in the
schematic diagram. The main purpose of this is to create a
large and free enough search space and then we can use our
method to discover the widths of networks that may be more
suitable for the given dataset. In other words, We will select
a small number of channels (usually half of the minimum)
from the classical convolutional neural network for search.
For example, there are 4 kinds of widths in ResNet-18: 64,
128, 256 and 512. We will construct a small network with the
same depth but the number of channels are all initialized to
32. The weights are initialized as He normal distribution [2]
and the L2 regularization of 0.0001 is applied to the weights.

B. Dataset

For CIFAR-10 and CIFAR-100, We randomly sample
10,000 images by stratified sampling from the original training
set to form a validation set for evaluating the fitness of
the individuals while using the remaining 40,000 images for
training the individuals during the evolution. We normalize
the images using channel means and standard deviations for
preprocessing and apply a standard data augmentation scheme
(zero-padded with 4 pixels on each side to obtain a 40 × 40
pixel image, then a 32 × 32 crop is randomly extracted and
the image is randomly flipped horizontally).

C. Search for the Number of Channels

We search for the number of channels with the evolutionary
algorithm mentioned above. In our experiments, a mutation
represents a functionally incremental change. Each calculation
is based on the new network in which the number of channels
is changed per round. So we add the function f (x) = λ/2
besides the other 8 functions and the probability of choosing
any mutation is the same from the beginning to the end.
Here, we describe the general process of search and some
implementation details of different networks respectively.

1) The General Process of Search: In the process of search,
the rate of increase λ is fixed to 0.2 or 2. The initial population
consists of 12 individuals, each formed by a single mutation
from the initial model. The size of k in tournament selection
is fixed to 3 and we start to discard individuals when the
population size grows to 20. All the networks are trained
with a batch size of 128 using SGDR [24] with Nesterov’s
momentum set to 0.9, initial learning rate lmax = 0.05, T0 = 1
and Tmult = 2. The initial models will be trained for different
epochs (usually 31 epochs with SGDR) because it takes more
epochs to train a large-scale network to convergence. The
individuals generated by mutation are trained for 15 epochs
and then we evaluate the fitness on the validation dataset.
The process is repeated until the number of parameters of the
individual with the highest fitness is similar to the comparison
network. One search process of ResNet-18 on CIFAR-10 is
visualized in Fig.4. The horizontal axis represents the search
time. The vertical axis on the left represents the percentage of
individuals in each range of fitness as shown in illustration.
The vertical axis on the right represents the highest fitness of
the population. The bar chart represents the percentage and
the line chart represents the change of the highest fitness.
Although the process of evolution will slow down gradually,
we can notice that the fitness of the population increases
steadily and rapidly via our method. Finally, the individual
with the highest fitness will be selected and fine-tuned for more
training and be used to compare with the original network.
Specifically, we search ResNet-18 for several times while other
classical convolutional neural networks just once.

2) Some Implementation Details: Here, on the basis of
the general process, we additionally illustrate some imple-
mentation details for the different networks. This part mainly
includes several differences in training, model fine-tuning,
fitness evaluation functions and so on.

a) Implementation Details of ResNet-18 and ResNet-34:
As the feature map dimension of the network is increased at
every unit, we use projection shortcuts conducted by 1 × 1
convolutions. The two layers of a residual block are changed
separately, that is, there is no identity. For ResNet-18, we
conduct an additional experiment to show that this operation
will not lead to lower accuracy of the network and may even
be higer. But for ResNet-34, this operation may lead to slightly
lower accuracy than the original network. Besides Cutout and
SGDR may have some effect, the crucial cause of this problem
has been discussed by He et al. [25]. A projection shortcut
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Fig. 4. The schematic diagram visualized one search process of ResNet-18 on CIFAR-10. The horizontal axis represents the search time. The vertical axis
on the left represents the percentage of individuals in each range of fitness and that on the right represents the highest fitness of the population. The bar chart
represents the percentage and the line chart represents the change of the highest fitness.

TABLE I
COMPARISON AGAINST THE RESULTS OF CLASSICAL NETWORKS ON CIFAR-10 AND CIFAR-100 WHEN THE FITNESS EVALUATION FUNCTION IS

DEFINED AS ACCURACY ON THE VALIDATION SET. THE NUMBERS IN BRACKETS DENOTE THE IMPROVEMENT OVER THE BASELINES.

Networks
Original Networks Modify the Number of Channels

Params C10 Test Error C100 Test Error Params C10 Test Error C100 Test Error Search Time
(Mil.) (%) (%) (Mil.) (%) (%) (GPU-days)

ResNet-18 [2] 11.54 3.86 22.76
6.98 3.69(0.17) 20.60(2.16) 0.48
9.94 3.40(0.46) 20.74(2.02) 0.92

10.57 3.43(0.43) 20.46(2.30) 0.66

ResNet-34 [2] 22.22 4.71 24.81 13.00 4.39(0.32) 24.44(0.37) 1.29

VGG-16 [1] 15.00 5.95 28.38 7.24 5.43(0.52) 27.85(0.53) 0.41

SE-ResNet-50 [4] 26.12 3.81 22.30 11.96 3.38(0.43) 19.97(2.33) 0.79

can hamper information propagation and lead to optimization
problems, especially for very deep networks.

b) Implementation Details of VGG-16: For VGG-16,
there are several differences with the original network. We
change the number of fully-connected layers to 2, which con-
tain a hidden layer with 512 units and a softmax layer. Dropout
[26] layers are added to the convolutional (drop rate = 0.3
or 0.4) and fully-connected (drop rate = 0.5) layers. The
weights are initialized as Xavier uniform distribution and the
L2 regularization of 0.0005 is applied to the weights.

c) Implementation Details of SE-ResNet-50: Not exactly
the same as ResNet-34, we use projection shortcuts conducted
by 1 × 1 convolutions but we take the layers in an interval
separated by the downsampling operation as a whole. In
addition, the 3 layers of the bottleneck block are identical
and the ratio of the number of channels is fixed to 1:1:4.

d) Implementation Details of ResNet-20 and ResNet-32:
As ResNet mentioned above, we also use projection shortcuts
conducted by 1 × 1 convolutions and the effects of this
operation are also similar. Here, we add the index FLOPs into
the fitness evaluation function to ensure the accuracy and the
amount of computations of the model simultaneously.

e) Implementation Details of MobileNetV2: For simplic-
ity, we use ReLU and normal convolution instead of ReLU6

and depthwise convolution although function-preserving trans-
formation can be used to these cases.

D. Training Methods and Results

The training methods we mentioned here refer to that used
for finally training the networks to convergence for comparison
of their performances. To be fair, we used exactly the same
training methods to train the original classical networks and
the best networks discovered by our functionally incremental
search. Based on the training results, the comparative analysis
proves that our method is effective and efficient.

1) Training Methods: Networks are trained on the full
training dataset until convergence using Cutout [27]. All the
networks are trained with a batch size of 128 using SGDR [24]
with Nesterov’s momentum for 511 epochs (several networks
may be trained for extra epochs with SGD first). More hyper-
parameters are as follows: the cutout size is 16×16 for Cutout,
momentum = 0.9, lmax = 0.1,T0 = 1 and Tmult = 2 for
SGDR. Finally, the error on the test dataset will be reported.

2) Comparison of Just Focusing on Accuracy: We define
the fitness evaluation function as accuracy on the validation set
and the comparison against the results of original networks
on CIFAR-10 and CIFAR-100 is presented in Table I. We
show the comparison of the number of parameters and the test
error on the datasets. In addition, we add the search time of



TABLE II
COMPARISON AGAINST THE RESULTS OF CLASSICAL NETWORKS ON CIFAR-10 WHEN THE FITNESS EVALUATION FUNCTION CONSIDERS THE INDEX

FLOPS BESIDES ACCURACY.

Networks
Original Netwroks Modify the Number of Channels

Params (M) FLOPs (M) Test Error (%) Params (M) FLOPs (M) Test Error (%) Search Time (GPU-days)

ResNet-20 [2] 0.29 42.69 6.08±0.18 0.19 43.49 5.95±0.12 0.51

ResNet-32 [2] 0.49 72.61 6.97±0.04 0.47 71.44 5.89±0.05 1.06

MobileNetV2 [28] 2.29 83.19 6.32±0.19 2.05 85.14 6.15±0.21 0.88

TABLE III
COMPARISON WITH OTHER METHODS.

Method Compression Rate (%) Acc. Improved (%)

Variational Convolutional [29] 20.41 -0.35

Soft Filter Pruning [30] 15.20 +0.04

Ours (Search-Widths) 34.48 +0.13

our method to show the efficiency of the search. Specifically,
the number of parameters of the networks used to compare
the test error on CIFAR-100 are slightly more than that on
CIFAR-10 because of the last fully-connected layer (10-way
and 100-way). Since the number of parameters are almost the
same, we only show the one for CIFAR-10 in the table. Our
method is suitable for exploring the number of channels of
almost any network rapidly and we select several classical
networks for experiments. We can notice that our method using
minimal computational resources (0.41∼1.29 GPU-days) can
discover more effective widths of networks (the accuracy can
be improved by about 0.5% on CIFAR-10 and 0.37%∼2.33%
on CIFAR-100 with fewer number of parameters).

3) Comparison of Considering Accuracy and FLOPs: We
add the index FLOPs into the fitness evaluation function and
the comparison against baselines on CIFAR-10 is presented in
Table II. We show the comparison of the number of parameters
and the mean error with standard deviation on test dataset
in the case of the similar amount of computations. We can
notice that our method using minimal computational resources
(0.51∼1.06 GPU-days) can discover more effective widths of
networks (the accuracy can be improved by 0.13%∼1.08%
with fewer number of parameters and similar FLOPs).

4) Comparison with Other Methods: Most neural archi-
tecture search algorithms pay more attention to exploring
architectures instead of specially focusing on the number of
channels, because it’s easier to make a difference. For this
reason, it is obviously unfair to directly compare the results
discovered by our method with theirs. However, there are
some approaches that only focuses on the exploration about
the widths of networks for comparison, such as pruning on
ResNet-20. As is shown in Table III, our method achieves
better accuracy while compressing more parameters.

TABLE IV
COMPARISON OF RESULTS FOR DIFFERENT RULES OF THE NUMBER OF

CHANNELS FOR PYRAMIDNET-110 ON CIFAR-10.

Method FLOPs Params C10 Test Error
(G) (M) (%)

Original PyramidNet-110 0.76 3.87 3.80

Modification Considered Accuracy & FLOPs 0.72 2.87 3.65

Modification just Focused on Accuracy - 3.86 3.14

E. Supplementary Experiments and Discussions

Based on the rules searched by our method for different net-
works, we can notice that the number of channels discovered
are quite different from those designed manually by prede-
cessors. In this section, we conducted a series of additional
supplementary experiments for PyramidNet to further analyse
the rationality and transferability of the search results.

1) Additional Supplementary Experiments: We conducted a
series of supplementary experiments by transferring the search
results for ResNet to the similar architecture PyramidNet.
For PyramidNet-110, we select the additive PyramidNet (the
performance is slightly better than multiplicative PyramidNet)
whose widening factor α = 84 and the feature map dimension
of the first convolutional layer is 16. We consider the option
zero-padded identity mapping shortcuts used in original Pyra-
midNet and only use projection shotcuts when decreasing fea-
ture map dimensions. As comparisons, we change the original
number of channels for PyramidNet to that designed according
to the rules of the number of channels we discovered by our
method for ResNet. As is shown in Table IV, we can obviously
notice that search with the both fitness evaluation functions can
finally discover a network with better performance which we
attribute to the more reasonable rules of widths.

2) Discussions on the number of channels: Combined with
our experiment results, we can notice that the performance of
increasing the feature map dimension sharply at downsampling
locations is not very excellent. The rule for the widths of
convolutional neural networks is still worth further exploring
and it is even possible that the most suitable rule on a particular
dataset is not necessarily continuously increasing. On the basis
of our search results, the rules for the number of channels may
be different according to the performance we focus more on.
Our search results turned out to be more competitive and it
seems like a good solution to use our search method to explore



TABLE V
THE NUMBER OF CHANNELS USED TO COMPARE THE CLASSICAL

NETWORKS WITH THE ONES MODIFIED BY OUR METHOD.

Method Original networks Modify the Number of Channels

RenNet-20 16×6,32×6,64×6 16,18,24,24,22,22,24,24,24,26,34,34,40,40,44,48,50,64

RenNet-32 16×10,32×10,64×10 16,18,18,18,16,16,18×4,26×6,30,30,32,32,60,60,62,62,64,64,66,66,68,68

MobileNetV2 16×1,24×2,32×3,64×4,96×3,160×3,320×1 16×1,32×2,36×3,48×4,90×3,156×3,288×1

PyramidNet-110 {16,17,19,20,22,23,25,· · · ,100}×2 30×4,32×8,34×4,{40,36}×12,40×16,42×8,{54,64}×12,72×8,78×6,84×4,100×4

60×2,{62,70,78,58,62,66,68,56,60,60,60,56,56}×8,54×4

a complex and fluctuating rule of the number of channels
which is suitable for any given dataset.

V. CONCLUSIONS

We proposed an efficient method based on function-
preserving to search the number of channels for convolutional
neural networks. The classical convolutional networks with
the widths explored by the functionally incremental search
perform better than the original ones. The networks modified
by our search method contain fewer parameters and fewer
FLOPs but may achieve higher accuracy on the test datasets.

APPENDIX

In Table V, we publish the number of channels used for the
baselines and the ones searched by our methods.
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