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Abstract—Recently generative models have focused on com-
bining the advantages of variational autoencoders (VAE) and
generative adversarial networks (GAN) for good reconstruction
and generative abilities. In this work we introduce a novel hybrid
architecture, Implicit Discriminator in Variational Autoencoder
(IDVAE), that combines a VAE and a GAN, which does not need
an explicit discriminator network. The fundamental premise of
the IDVAE architecture is that the encoder of a VAE and the
discriminator of a GAN utilize common features and therefore
can be trained as a shared network, while the decoder of the
VAE and the generator of the GAN can be combined to learn a
single network. This results in a simple two-tier architecture that
has the properties of both a VAE and a GAN. The qualitative
and quantitative experiments on real-world benchmark datasets
demonstrate that IDVAE performs better than the state of the
art hybrid approaches. We experimentally validate that IDVAE
can be easily extended to work in a conditional setting and
demonstrate its performance on complex datasets.

Index Terms—Variational Autoencoders, Generative Adversar-
ial Networks

I. INTRODUCTION

Deep Variational Autoencoders(VAE [15]) and Generative
Adversarial Networks(GAN [12]) are two recently used ap-
proaches in the generative modeling world. VAE is more stable
in training but generates blurry samples. While GAN has the
appealing property of generating realistic images; training a
GAN is well known to be challenging leading to problems
such as mode collapse.

Several recent approaches have proposed hybrid models of
autoencoder and adversarial networks with a joint objective of
achieving stable training like VAE and inferencing ability like
GAN. In order to introduce the adversarial loss component in
the objective functions most of the recent hybrid approaches
include an adversary network that results in a three-tier archi-
tecture i.e an encoder, a decoder, and an adversary network.
We hypothesize that the encoder and discriminator networks
can share common layers encoder itself can be reused as a
discriminator, thereby assuming an overlap in the knowledge
learned by the encoder and the discriminator network.

The key idea behind our approach is that we would like the
discriminator to provide the useful gradients to the generator if
it misses any mode in the true data distribution. The traditional
GAN learning does not explicitly encourage such a property in
the discriminator and therefore, we suspect that it is vulnerable
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Fig. 1: Flow diagram of traditional hybrid approaches(left) and
our proposed approach(right). We introduce the adversarial
loss by collapsing the encoder into the discriminator, which
we term as Implicit Discriminator. The output of discriminator
is denoted by y ∈ [0, 1] where 0 and 1 represent fake and real
respectively.

to the issue of mode collapse. Further, we note that the
traditional L2 loss used for learning the encoder can be seen
as minimizing the forward-KL divergence. The forward-KL
divergence comes with the mode inclusive property (i.e it
never misses a mode in the true data distribution). Therefore,
to make the discriminator aware of all the modes in the true
data we propose to share the forward-KL information with the
discriminator by explicitly sharing the parameters between the
encoder and the discriminator network. We restrict the sharing
of the parameters between the encoder and discriminator
networks until the penultimate layer to facilitate the modelling
of the different outputs.

Figure 1 illustrates our proposed two-tier architecture and
contrasts it against the traditional hybrid (V)AE/GAN ap-
proaches. We propose an adversary free two-tier architecture
an encoder and decoder network that has the capabilities of
both a discriminator and a generator. In the proposed model
the decoder network collapses into the generator, while the
encoder network is merged with the discriminator resulting in
a two tier architecture. We term our two tier architecture as
Implicit Discriminator in Variational Autoencoder (IDVAE).
VAE-GAN is a special case of IDVAE where there is no shar-
ing of parameters between the encoder and the discriminator.

In this work we show that our proposed simpler hybrid
VAE/GAN model, IDVAE outperforms the prior approaches
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in terms of visual fidelity measured in terms of FID score.
We also show that our model sustains both reconstruction and
generation ability without training an unnecessary adversary
network that would result in learning more parameters. Overall
the main contributions of the work are as follows :
• We introduce a novel two-tier architecture, IDVAE, which

sustains the abilities of both reconstruction (VAE) and
generation (GAN) without learning a separate discrimi-
nator or a generator.

• We present a training schedule that facilitates the encoder
to act as as implicit discriminator while maintaining the
tight coupling between encoder and decoder network.

• Empirical evaluations of IDVAE performed on bench-
mark datasets show that IDVAE achieves better generative
ability than prior approaches. We also show that Fréchet
Inception Distance, a common measure to evaluate the
quality of the generations has inconsistent outputs and
thereby propose an ensemble of experts for conducting
quantitative evaluation.

II. RELATED WORK

Variational Autoencoder (VAE) introduced by Kingma et
al. [15] minimizes the KL divergence between the real dis-
tribution (Px) and the generated distribution (Pg) through the
variational bound. Detailed analysis of VAE by Doersch [9]
shows that VAE works well in practice and is considered to
model the true data distribution quite well but often generates
poor quality samples the images produced by the decoder are
blurred. On the other hand GAN’s [12] generate samples that
are visually more realistic through an adversarial game play
between the generator and the discriminator. However, GAN’s
suffer from problems like instability during training and mode
collapse. Recently Bang and Shim [4] proposed RFGAN
that uses pre-trained encoder features (representative features)
to regularize the training of the discriminator to alleviate
the problem of mode collapse. Similarly, MR-GAN [6] also
proposes to use autoencoder features as regularizer in GAN
training. Inspired from these architectures, we propose IDVAE
that exploits the complementary properties of forward KL
and reverse KL to capture the data distribution. While these
approaches make use of a pre-trained encoder, our approach
jointly and simultaneously trains a VAE and GAN achieving
both the reconstruction and generation capabilities. There has
also been some efforts towards utilizing the advantages of
VAE for training GANs. Larsen [17] proposed VAE-GAN that
collapses the decoder of the VAE into the generator of the
GAN. VAE-GAN achieves sharp generations using a similarity
metric learned by the intermediate representations of an ex-
plicit adversary. VAE-GAN requires an explicit discriminator,
while our proposed approach overcomes this necessity by
converting the encoder of the network into a discriminator.
ALI [11] and BiGAN [10] also propose to use three networks:
the encoder, the decoder and the adversary. Unlike IDVAE,
both the ALI and the BiGAN discriminator differentiates
between samples from the joint distribution of observed data
and latent codes. However, the reported reconstructions are of

poor quality [21]. Akin to BiGAN discriminator setting, the
AVB [21] model uses an additional discriminator to facilitate
learning without explicitly assuming any form for posterior
distribution. However, the samples generated by AVB for the
CelebA dataset are observed to be blurry [3]. In contrast, the
simpler IDVAE model is able generate higher quality samples
with lesser parameters.

Li [19] propose ALICE that improves upon ALI by alle-
viating certain undesirable solutions (saddle points). Unlike a
two tier approach of IDVAE, ALICE requires three networks
and proposes to regularize the objective with cycle loss (an
upper bound for conditional entropy). While in IDVAE, there
is an implicit regularization on the discriminator by sharing
its parameters with the encoder. The AS-VAE model of Pu
[23] focuses on both reverse and forward-KL between the
encoder and decoder joint distributions with an objective to
maximize the marginal likelihood of observations and latent
codes. AS-VAE also needs two adversaries to circumvent the
need of assuming an explicit form for the true intractable
distribution (eqn 8 and 9 in [21]). IDVAE also focuses on
forward-KL and reverse-KL but in a very novel way by
sharing the parameters of the encoder (forward-KL) and dis-
criminator (reverse-KL) resulting in a simpler model. α-GAN
[24] fuses VAE and GAN exploiting the density ratio trick
by constructing two additional discriminators for measuring
the divergence between the reconstructions and the true data
points, and the latent representations and the latent prior.
The first discriminator minimizes the reverse-KL divergence,
and the reconstruction error term minimizes the forward-KL
divergence to discourage mode collapse. Training α-GAN is
difficult as it requires learning a large set of parameters (for
the 4 networks). In contrast to previous approaches, Ulyanov
[28] propose a two tier adversary free approach, AGE, where
the encoder network is responsible for the adversarial signal.
While the architectures of AGE and IDVAE appear to be sim-
ilar, there are some fundamental differences in the process of
learning the discriminator. The AGE discriminator compares
(via divergence) the encoded real and fake distributions against
a fixed reference distribution (typically, a prior in latent space).
Whereas the IDVAE discriminator directly compares the real
and fake data using a simple cross entropy loss, where both the
reconstructions and randomly generated samples are treated as
fake examples. We empirically show that IDVAE learns better
as its discriminator relies on reconstructed samples as well.
Importance of reconstructed samples in adversarial learning is
supported in literature [7].

III. METHODOLOGY

Notations Let x be the data point in the input space X
and z be the code in the latent space Z . The output of
the encoder and the discriminator network for an input x is
represented as Enc(x) and Dis(x) respectively. Similarly the
output of decoder network x̃ for a latent code z is denoted
by Dec(z). The output at the lth layer of the encoder network
for an input x is denoted as Encl(x). This is same as the
output at the lth layer of the discriminator network for an



Fig. 2: The proposed architecture for IDVAE. The parameters
θµ and θΣ denote a single fully connected layer learning the
encoder specific parameters, θenc. θdis also represents a single
fully connected layer which denotes discriminator specific
parameters. Similarly θshared denotes the shared parameters be-
tween the encoder and the discriminator whereas θdec denotes
the decoder/generator specific parameters.

input x which is denoted as Disl(x). Encl(x) and Disl(x) are
used interchangeably depending on the context. In reference
to Figure 2, we denote the encoder specific parameters by θenc
where θenc = {θµ, θΣ}.

We start with some preliminaries on VAE [15] and GAN
[12] before describing our proposed model, which combines
both of them.

A. Variational Autoencoder

A VAE comprises of learning two networks, namely, the
encoder and the decoder network. In contrast to traditional au-
toencoders, VAE views the encoder and the decoder networks
as probabilistic functions. The encoder learns a conditional
distribution on the latent code z conditioned on the input x.
Similarly decoder learns a distribution on x̃ conditioned on the
latent code z.

z ∼ Enc(x) = q(z|x) (1)

x̃ ∼ Dec(z) = p(x|z) (2)

Vanilla VAE jointly trains over the encoder and the decoder
network parameters by minimizing negative log-likelihood (re-
construction term) and divergence between prior and learned
distribution in latent space Z . The prior, p(z), over the latent
space is typically assumed to be a unit Normal distribution,
i.e. z ∼ N (0, I). Thus training a VAE would mean minimizing
the following loss:

LVAE = Lrecons + Lprior (3)

where,
Lrecons = −Eq(z|x)[log p(x|z)] (4)

Lprior = KL(q(z|x)‖p(z)) (5)

and KL(q(z|x)‖p(z)) is the Kullback-Leibler divergence be-
tween the distributions q(z|x) and p(z).

B. Generative Adversarial Network

A GAN consists of two networks, namely, the discriminator
and the generator that are learned through an adversarial
game play. The generator network maps a point z in some
arbitrarily low dimensional latent space Z to a point in a high
dimensional data space X . We denote Gen(z) as the output
of the generator network when z is the input. In a similar
vein, the discriminator network maps a data point x in the
data space to a probability value y ∈ [0, 1]. The objective
of the discriminator is to assign the probability y = Dis(x)
that x is a sample from true distribution and the probability
1 − y that x is a generated sample i.e. x = Gen(z), with
z ∼ p(z). Thus, in this adversarial game play, the objective
of the generator is to synthesize samples that can fool the
discriminator learning the true data distribution, while the goal
of the discriminator is to recognize the samples coming out
of the generated(fake) distribution and the true distribution.
Adversarial game play between the discriminator and the
generator is formally defined by the GAN loss as

LGAN = log(Dis(x)) + log(1− Dis(Gen(z))) (6)

We want to maximize the binary cross entropy loss with
respect to the discriminator (D) while minimizing it for the
generator (G). Thus, the minimax objective is defined as

min
G

max
D
LGAN (7)

C. IDVAE

Our proposed approach, Implicit Discriminator in
Variational AutoEncoder (IDVAE), exploits the properties
of both VAE and GAN. IDVAE sustains the stable training
properties of VAE while generating samples of quality
approaching GAN. We borrow the encoder and decoder
networks from VAE with slight modifications. In particular,
we collapse the VAE decoder network into the generator of
the GAN and the VAE encoder network partially into the
discriminator of the GAN.

We partially collapse the encoder into the discriminator
following the assumption that there exists an overlap in the
knowledge of encoder and discriminator network. As the en-
coder’s objective is to learn representational features, while the
discriminator’s objective is to learn discriminative features, we
restrict the weight sharing to the penultimate layer (say some
lth layer of encoder represented as Encl) in encoder of the
VAE. Further to encourage the encoder to learn the features of
discriminator we add a single fully connected layer from Encl
to a single sigmoid node that acts as the discriminator’s output.
Figure 2 illustrates the proposed IDVAE network architecture.

Thus, in our model we have four sets of parameters that need
to be learned, namely; θdec - the shared parameters between
the decoder and the generator, θshared - the parameters shared
between the encoder and the discriminator, θenc - the encoder
specific parameters of the VAE, and θdis - the discriminator
specific parameters of the GAN. These are updated based on
the loss incurred by each of the individual networks.



The loss incurred by the encoder is used to update both
θshared and θenc. The encoder loss in the IDVAE consists of two
components similar to a standard VAE. The first component
is the reconstruction loss - Lrecons and the second component
is the prior discrepancy loss - Lprior. It is well known that
minimizing the forward-KL divergence KL(Pdata‖Pmodel)
achieves mode coverage for generative models. Thus, we
minimize forward-KL divergence by minimizing Lrecons for
helping IDVAE to learn the different modes in the data. The
shared parameters between the encoder and the discriminator
encode the forward-KL divergence information. Thus using
Lrecons in the encoder reduces the extent of mode collapse as
the gradients from the discriminator to the generator implicitly
contain the information about multiple modes. Thus the overall
encoder loss (Lenc) is defined as follows

Lenc = αLrecons + βLprior (8)

where α and β are hyper parameters controlling the contri-
bution of each of the loss terms.

It has been shown that GAN [12] achieves sharper images
by minimizing the reverse-KL divergence. Thus, we use the
implicit adversary (encoder as a shared discriminator) of
IDVAE as a way to propagate reverse-KL divergence informa-
tion. The discriminator loss is used to update both θshared and
θdis. The generated (fake) examples that are presented to the
discriminator of IDVAE are the output of the decoder when
viewed as a generator Dec(z), where z ∼ p(z). In addition
to this, we also present the synthesized sample through re-
construction, Dec(Enc(x)), for an input x. As Dec(Enc(x))
is more likely to be similar to x than Dec(z), for an arbi-
trary z ∼ p(z), we hypothesize that the discriminator loss
corresponding to Dec(Enc(x)) encourages the generator to
learn the properties of the decoder. Similarly the discriminator
loss corresponding to Dec(z) encourages the decoder to learn
the properties of the generator be able to generate realistic
examples from the prior distribution p(z). Therefore using both
the terms, Dec(z) and Dec(Enc(x)) encourages the model to
learn a blend of both the generator and the decoder. Intuitively
in equation 9 to maintain the ratio of real and fake samples
shown to the discriminator the loss terms for the fake samples
should be scaled by a factor of 0.5 or the real term log(Dis(x))
by 2. We observed no significant change in the performance
of IDVAE when these factors are dropped, thereby giving rise
to the following loss function

Ldis = −
[
log(Dis(x)) + log(1− Dis(Dec(z)))

+ log(1− Dis(Dec(Enc(x)))
]

(9)

As we have collapsed the decoder of the vanilla VAE
into the generator, the loss incurred by both the decoder and
generator is used to update the shared parameters between
the decoder and generator (θdec). The decoder/generator loss
in IDVAE consists of two components. The first component
(Ldis

recons) is a learned similarity metric motivated by VAE-GAN
[17]. Specifically, we learn a similarity metric(Ldis

recons) using
an intermediate representation ( lth layer) of the discriminator

(equivalent to the lth layer of the encoder) by assuming a
Gaussian observation model on Disl(x̃) with mean Disl(x) and
unit covariance :

p(Disl(x̃)|z) = N (Disl(x̃)|Disl(x), I) (10)

where for a given sample x, x̃ = Dec(z) and z = Enc(x).
Ldis

recons is defined as a Gaussian observation model:

Ldis
recons = −Eq(z|x)[log p(Disl(x)|z)] (11)

The second component is the adversarial loss which encour-
ages the decoder to learn the properties of a generator. The
adversarial loss, (LGAN), is defined as

LGAN = −log(Dis(Dec(z′)))− log(Dis(Dec(Enc(x)))) (12)

where z′ ∼ p(z).
Therefore the presence of both the reconstruction loss and

the adversarial loss in objective function of decoder makes it
learn a blend of the two models. The overall loss function for
the decoder/generator (Ldec) is defined as:

Ldec = ωLGAN + λLdis
recons (13)

where ω and λ used in Ldec are hyper-parameters that are
learned empirically.

D. Training Schedule

The lth shared layer between the encoder and the discrimi-
nator outputs representations for learning the parameters of the
encoder’s distribution and for discriminating between samples
from the true distribution and generated samples simultane-
ously. We need to ensure that the shared weights (θshared) of
the encoder and discriminator network gets the learning signal
corresponding to both the encoder and discriminator objective
function. In theory θshared, θdis, and θenc can be updated in
a single step using the joint loss of both the encoder and
discriminator. However, in practise we observed training using
the joint loss to be challenging in terms of hyper-parameter
fine tuning. Hence, we update the shared weights (θshared) in
two iterations, once each with the encoder and discriminator
losses respectively. In the first iteration θshared and θdis are
updated while in the second iteration θshared and θenc are
updated. Algorithm 1 presents the overview of the training
procedure. Thus the parameters θshared learn the information
of both reverse-KL (first iteration) and forward-KL (second
iteration), which is leveraged by the decoder/generator in the
third step of the algorithm. The parameters, θshared, can be
updated in any arbitrary order, we empirically found that using
first the discriminator loss helps in better learning. We present
the qualitative results on the other two variants (using the
joint loss, and updating θshared with respect to the encoder first
followed by the discriminator) in the supplementary material.

IV. EXPERIMENTS

We investigate the proposed IDVAE architecture for the
quality of both reconstructions and generations. We evalu-
ate the performance of IDVAE on the following two real
world benchmark datasets: i) CIFAR10 [16], which contains



Algorithm 1 IDVAE Training Schedule

1: P (z)← N (0, I)
2: θshared, θenc, θdec, θdis ← Initialize parameters
3: X ← random mini batch from dataset
4: Z ← Enc(X)
5: X̃ ← Dec(Z)
6: Z ′ ← samples from prior P (Z)
7: X ′ ← Dec(Z ′)
8: while not convergence do
9: θdis, θshared

+←− −∇(θdis,θshared)(Ldis)

10: θenc, θshared
+←− −∇(θenc,θshared)(Lenc)

11: θdec
+←− −∇θdec(Ldec)

12: end while

60k images of which 50k are used for training and the
remaining 10k for testing. (ii) CelebA [20], which consists
of 202,599 images. We use 1-162,770 images for training,
162,771-182,637 for validation and rest for testing. In our
implementation pipeline we crop and scale the images to
64x64 for faster training. The details of encoder and decoder
network architecture along with fine tuned hyper-parameters
for each of the dataset are provided in the supplementary
material. For generating instances over the different datasets
we randomly sample z from the assumed prior distribution (on
the latent space Z)N (0, I). We also conducted experiments on
a synthetic 2D Gaussian dataset and the MNIST digits dataset.
These details can be found in the supplementary material.

We compare the performance of IDVAE against approaches
that have both generative and reconstruction abilities, namely;
VAE [15], VAE-GAN [17], AGE [27], and α-GAN [24].
We use the pre-trained models available for AGE, while we
train all the other models from scratch using the best hyper-
parameters reported in the literature.

V. RESULTS AND DISCUSSION

We conduct both qualitative and quantitative comparison of
IDVAE for generations and reconstructions against all the prior
approaches.

A. Quantitative Analysis

The reconstruction quality is objectively quantified using the
standard square loss Lrecons. We obtain an unbiased estimate
of the loss using a large test set consisting of 10k samples for
both the CelebA and the CIFAR10 datasets. Thus even a small
improvement on such a large set is significant considering
the complexities of the dataset. It is evident from the results
presented in Figure 3 that for the reconstruction task IDVAE
performs better than or is at par with VAE-GAN, AGE and α-
GAN. However the lowest reconstruction error is obtained by
VAE. This is understandable as there is no explicit penalty on
the decoder for reconstructing unrealistic images. On the other
hand both VAE-GAN and IDVAE strike a balance between the
reconstruction loss and the generative ability. We also modify
IDVAE to explicitly minimize Lrecons in the decoder, which

Fig. 3: Comparing reconstruction loss (lower is better) among
different generative models.

we term as IDVAE(R). The reconstruction loss of IDVAE(R)
is the best among all the variants of VAE, However, this comes
at the cost of quality of the generations.

There are two popular measures for qualitatively evaluating
generative models, namely the Inception Score (IS) [25] and
Fréchet Inception Distance (FID) [14]. It has been shown
that IS closely follows human scoring of images synthesized
by generative models for the CIFAR 10 dataset [16]. The
IS uses the Inception v3 model pre-trained on ImageNet.
The IS is a statistic on the Inception model’s output when
applied to the synthesized images. This statistic captures two
desirable qualities of a generative model - the synthesized
images should contain an object (the image is sharp and
not blurry) that is reflected in a low entropy output of the
Inception model [26] and; there must be diversity in the
generations that is reflected in the high entropy output of
the Inception model over the entire generated set. Barratt
and Sharma [5] have recently shown that the IS suffers from
suboptimalities and is an appropriate measure only for datasets
that are trained on ImageNet. Thus, it is not advisable to
measure the quality of generations on the CelebA dataset.
The FID improves upon the IS by comparing the statistics of
both the generated and true samples, instead of evaluating the
generated samples in isolation. The FID is the Fréchet distance
between two multivariate Gaussians estimated from the 2048-
dimensional activations of the Inception-v3 pool3 layer for real
and generated samples. Lower FID scores correspond to more
similar real and synthetic samples.

Table I, presents the Fréchet distance scores computed using
Inception-151 (FID15), Inception-162 (FID16), and ResNet
[13]. As all the three experts have the same knowledge all the
models are pre-trained on ImageNet [8] and the representations
extracted from the intermediate layer have the same dimen-
sions (2048), the relative performance of the models with
respect to each expert can be compared. While the distance
scores across the experts for the same model may be different,
we expect the order of the goodness among the generative
models to be preserved. However, as can be observed from

1weights used from 2015 year model [1]
2weights used from 2016 year model [2]



Model FID15 FID16 FRD
CIFAR10

True Data 3.16±0.06 7.41±0.82 26.17±1.44
IDVAE 23.48±0.15 28.15±0.39 105.45±0.79
IDVAE(R) 43.38±0.15 49.9±0.85 191.32±5.88
VAE-GAN 27.04±0.12 33.12±0.73 139.95±2.71
VAE 85.74±0.3 130.38±3.47 626.67±8.61
AGE 32.19±0.3 29.3±0.54 122.43±2.61
α-GAN 20.61±0.12 27.87±0.7 121.88 ± 3.09

CelebA
True Data 1.58±0.02 2.67±0.15 5.77±0.35
IDVAE 8.53±0.12 9.52±0.72 34.47±2.41
IDVAE(R) 14.81±0.17 16.71±0.66 70.99±0.91
VAE-GAN 9.52±0.06 10.5±0.9 38.32±1.69
VAE 35.27±0.04 55.44±0.87 150.02±1.41
AGE 12.74±0.14 15.27±0.36 82.45±0.97
α-GAN 10.38±0.2 13.89±1.58 55.44±7.97

TABLE I: Comparing Frechet Distance (lower is better) among
different generative models. FID15,16: Inception Model with
2015, 2016 year weights respectively and FRD ResNet
model.

Table I on CIFAR10 dataset, VAE-GAN appears to perform
better than the AGE based on FID15, while the trend reverses
when comparing based on both FID16 and FRD. Therefore,
our results suggest that a generative model should be compared
across a battery of experts rather than in isolation. IDVAE
performs better than all the other approaches on the CelebA
dataset. The result is statistically significant on both FID15

and FRD scores. On the other hand both IDVAE and α-
GAN result in the best performance on the CIFAR10 dataset.
There is no significant difference between IDVAE and α-GAN
with each performing better than the other only according
to a single measure. However, from Figure 3, it is quite
apparent that α-GAN focuses less on reconstructions whereas
in IDVAE we do not observe such a bias. These results support
our hypothesis that the encoder and discriminator can be a
shared network. IDVAE is able to perform at par or sometimes
better than VAE-GAN and α-GAN that require a separate
encoder/discriminator network. This is further verified through
our qualitative results. We also observe a dip in the Fréchet
distance for the IDVAE(R) model in comparison to IDVAE. As
the decoder/generator of IDVAE(R) focuses on reconstructions
in the image space we observe a drop in the Fréchet distance
at the cost of a better reconstruction loss. Therefore IDVAE(R)
model has the potential to fit within the required thresholds
by tuning the hyper parameters ω, λ and γ.

B. Qualitative Analysis

Mode collapse is the problem faced in GAN [12] when
the generator stops exploring, thereby limiting the diversity in
its generations. As the gradients coming from discriminator
of IDVAE have the information of both the representative
(encoder) and the discriminative (discriminator) features, we
hypothesize that by using the encoder as a discriminator,
the generator gets better learning signal than it would have
received from an independent discriminator. We perform the

Fig. 4: Experiments on the 7 mode Gaussian mixture dataset.
The leftmost image denotes the true data distribution. The true
modes are colored in blue whereas points in green color are
either reconstructed or generated data points. Images in top
and bottom row show generated samples and reconstructed
data points respectively.

mode collapse test using a toy 2D dataset of 7 mode Gaussian
mixture to qualitatively investigate both the reconstructions
(Figure 4) and the generations (Figure 4) of IDVAE. Our
objective behind the mode collapse test is to show that IDVAE
is free from mode collapse which is apparent from the above
mentioned figures. In fact, it is effectively able to capture
all the modes. Thus the empirical result further supports our
hypothesis that encoder can act as a implicit discriminator.
We present the qualitative results obtained from the different
models in the Table II on the CIFAR10 and CelebA datasets.
It is quite evident from the images that VAE results in blurry
reconstructions while the rest of the approaches output sharp
images, which is due to presence of adversarial loss. On
both CelebA and CIFAR10 datasets, we observe IDVAE and
IDVAE(R) performing on par with VAE-GAN and α-GAN,
while significantly outperforming VAE in terms of sharpness
of the images. The images generated by the different models
are also presented in Table II. The undesirable blurriness
property in VAE is apparent on the CIFAR10 dataset while the
performance of IDVAE is on par with both α-GAN and VAE-
GAN. The images generated by IDVAE trained on the CelebA
dataset appears to capture a large diversity in background
when compared to α-GAN and VAE-GAN. We observe both
IDVAE(R) and α-GAN tend to focus more on faces than the
background in these images.

C. Conditional IDVAE

We extend IDVAE to a conditional setting where our objec-
tive is to learn a generator/decoder whose output is controlled
by some conditional information, y. We term this variant as
Conditional-IDVAE (C-IDVAE). We qualitatively analyze the
C-IDVAE model using MNIST [18] and CelebA datasets.
We follow the recent work of Perarnau [22] to provide the
conditional information to the generator at the input layer,
while for the discriminator this is provided after the first
convolution layer. To the best of our knowledge the encoder
of VAE is never made aware of the conditional information
but as we have our encoder acting as a discriminator we add
this conditional information after the first convolution layer.



Fig. 5: Conditional-IDVAE on celebA and MNIST datasets

We use the one hot encoding of the MNIST class labels
as the conditional information to evaluate C-IDVAE. Figure 5
illustrates the samples generated by C-IDVAE, where each row
illustrates the images generated by conditioning on a unique
label. We observe a large diversity in the generations in each
row implying the diverse generative ability of the conditional
decoder/generator.

Following the work of Perarnau [22] we use 13 attributes
that have clear visual impact out of the total 40 attributes
as conditioning information while training C-IDVAE on the
CelebA dataset. Figure 5 presents the images generated by
C-IDVAE for different conditioning information. Each row in
the figure represents the images generated by C-IDVAE with
the conditioning information provided in the top row, and the
original image that is modified in the first column. It can be ob-
served that the changes in each of the generations with respect
to the original image are a result of the model imagining the
original image on different attributes. For example, consider
third and fifth rows in the Figure 5, where the original image is
a female face. The generations in the columns 2, 5, and 6 that
are conditioned on the male attribute actually contain a face
that resembles a male. Similarly in the last column the model
does reasonably well in adding eyeglasses to all the generated
images. Thus considering the generative ability matching with
the human imagination and the complexity of the real world
CelebA dataset, C-IDVAE shows the potential to model the
complex distributions.

VI. SUMMARY AND FUTURE WORK

In this work, IDVAE, a novel hybrid of the variational au-
toencoder and the generative adversarial network is introduced.
IDVAE shares a common decoder and generator network, and
partially shares the encoder and the discriminator network. The
experiments on real-world benchmark datasets demonstrates
that IDVAE (and its variant IDVAE(R)) performs on par and
sometimes better than the state of the art hybrid approaches.
We also show that IDVAE can be easily extended to work
in a conditional setting, and experimentally demonstrate its
performance on complex datasets. Further, our results present
inadequacies of the Fréchet Inception Distance and suggests
an ensemble of experts for evaluating the quality of the
generations. This can be further explored to derive a measure
that does not require a model that is pre-trained on data from
a different domain as that of the training samples.
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conditional gans for image editing. arXiv preprint arXiv:1611.06355,
2016.

[23] Y. Pu, W. Wang, R. Henao, L. Chen, Z. Gan, C. Li, and L. Carin.
Adversarial symmetric variational autoencoder. In Neural Information
Processing Systems. 2017.

[24] M. Rosca, B. Lakshminarayanan, D. Warde-Farley, and S. Mohamed.
Variational approaches for auto-encoding generative adversarial net-
works. arXiv preprint arXiv:1706.04987, 2017.

[25] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen. Improved techniques for training gans. In Advances in Neural
Information Processing Systems, pages 2234–2242, 2016.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–9, 2015.

[27] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Adversarial generator-
encoder networks. CoRR, abs/1704.02304, 2017.

[28] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. It takes (only) two:
Adversarial generator-encoder networks. In AAAI, 2018.



Approach
CIFAR10

Reconstructions
CIFAR10

Generations
CelebA

Reconstructions
CelebA

Generations

Original

VAE

IDVAE

IDVAE(R)

VAE-GAN

α-GAN

TABLE II: Qualitative experiments comparing different generative models.




