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Abstract—It has been argued in the past that high-dimensional
neural networks do not exhibit local minima capable of trapping
an optimisation algorithm. However, the relationship between loss
surface modality and the neural architecture parameters, such
as the number of hidden neurons per layer and the number of
hidden layers, remains poorly understood. This study employs
fitness landscape analysis to study the modality of neural network
loss surfaces under various feed-forward architecture settings. An
increase in the problem dimensionality is shown to yield a more
searchable and more exploitable loss surface. An increase in the
hidden layer width is shown to effectively reduce the number of
local minima, and simplify the shape of the global attractor. An
increase in the architecture depth is shown to sharpen the global
attractor, thus making it more exploitable.

Index Terms—loss landscapes, neural networks, local minima,
fitness landscape analysis, modality

I. INTRODUCTION

Neural network (NN) performance is known to depend
on the chosen NN architecture, i.e., the number of neurons,
hidden layers, and the structure of connections [1]–[5]. A
NN with too few trainable parameters will not be able to
fit complex non-linear data, and a NN with an excessive
number of trainable parameters was argued to be prone to
overfitting [5]. However, recent advances in deep learning
challenged our understanding of the relationship between the
neural architecture and the performance of a NN, empirically
and theoretically showing that excessive complexity often
leads to superior results [6]–[8]. Sagun et al. [8] empirically
observed that no high error local minima were detected when
the NN architecture was over-parametrised. Theoretical stud-
ies have also been published showing that over-parametrised
models do not exhibit high error local minima [9], [10].
In fact, recent studies claim that using an excessively large
hidden layer (larger than the number of training points in
the dataset) guarantees that almost all local minima will be
globally optimal [7]. The opposite is also true: deep and
“skinny” NNs, i.e., NNs with a limited number of hidden
neurons per layer, were theoretically shown to not exhibit the
universal approximator properties [11].

With the number of neural architecture search algorithms
on the rise [12], it becomes increasingly important to improve
our understanding of the NN loss surfaces [13]–[15], and the

implications of width (i.e. number of hidden neurons per layer)
and depth (i.e. number of layers) on the resulting optimisation
problem.

This study aims to investigate NN loss surfaces under vari-
ous NN architecture settings using a sampling-based technique
developed for fitness landscape analysis (FLA). Stationary
points are discovered and classified into minima, maxima, and
saddles using Hessian matrix analysis. A simple visualisation
method proposed in [16] is used, which enables intuitive
insights into the nature of the loss surfaces. The experiments
correlate well with the current theoretical insights, and provide
ground for further hypothesis.

The main contributions of this paper are as follows:
• Empirical evidence for the existing theoretical conjec-

tures [7], [11] is obtained.
• An increase in the problem dimensionality is shown to

yield a more searchable and more exploitable loss surface.
• An increase in the architecture width is shown to effec-

tively reduce the number of local minima, and simplify
the shape of the global attractor.

• An increase in the architecture depth is shown to sharpen
the global attractor, thus making it more exploitable.

The rest of the paper is structured as follows: Section II
briefly discusses fitness landscape analysis in the context of
NNs. Section III describes the experimental procedure of this
study. Section IV presents a visual analysis of stationary
points and basins of attraction associated with the various NN
architectures. Section V concludes the paper.

II. FITNESS LANDSCAPE ANALYSIS OF NEURAL
NETWORKS

Fitness landscape analysis (FLA) was first applied in the
evolutionary context, where quantitative metrics were pro-
posed to study the optimisation landscapes of combinatorial
problems [17], [18]. FLA techniques were soon extended to
continuous search spaces [19]–[22]. FLA techniques aim to
estimate various fitness landscape properties, such as rugged-
ness, neutrality, modality, and searchability, based on multiple
samples of the search space. An objective function value
is calculated for each sampled point, and the relationship
between the spatial and the qualitative characteristics of the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



sampled points is analysed. Properties of a fitness landscape
captured by the samples are considered to be an approximation
of the global fitness landscape properties.

The NN search space is defined as all possible real-valued
weight combinations. Thus, weight space can be sampled to
make conclusions about the search space properties. This study
considers the NN loss surface modality, i.e., local and global
minima properties. The FLA technique called loss-gradient (l-
g) clouds [16] is used to visualise the basins of attraction of
NN loss surfaces in a 2-dimensional projection.

Sampling is performed using progressive gradient
walks [23]. A progressive gradient walk uses the numeric
gradient of the loss function to determine the direction of
each step. The size of the step is randomised per dimension
within predefined bounds. The progressive gradient walk
algorithm is summarised as follows:

1) Gradient vector ~gl is calculated for a point ~xl.
2) A binary direction mask ~bl is extracted from ~gl as

follows:

blj =

{
0 if glj < 0,

1 otherwise,

where j ∈ {1, . . . ,m} for the m-dimensional vector ~gl.
3) The progressive random walk algorithm, proposed

in [24], is used to generate the next step ~xl+1. A single
step of a progressive random walk can be defined as
randomly generating an m-dimensional step vector ∆~xl,
such that ∆xlj ∈ [0, ε] ∀j ∈ {1, . . . ,m}, and setting the
sign of each ∆xlj according to the corresponding blj :

∆xlj :=

{
−∆xlj if blj = 0,

∆xlj otherwise.

To generate the next step, ~xl+1, the current step ~xl is
modified by adding ∆~xl:

~xl+1 = ~xl + ∆~xl

The progressive gradient walk algorithm requires one param-
eter to be set: the maximum dimension-wise step size, ε.

The advantage of this sampling approach compared to
random sampling or NN training algorithm sampling is that
gradient information is combined with stochasticity, preventing
convergence, yet guiding the walk towards areas of higher
fitness (i.e. lower error).

Once the sampling is complete, a 2-dimensional scatterplot
is generated, with the sampled loss values on the x-axis,
and the corresponding gradient vector magnitude values on
the y-axis. All points of zero gradient are stationary points,
which can be further classified into minima, maxima, or saddle
points using the eigenvalues of the corresponding Hessian
matrix [25]. These scatterplots are referred to as loss-gradient
(l-g) clouds for the rest of the paper. Studying the discovered
stationary points in a 2-dimensional space allows for the
identification of the total number of attractors, both local
and global, corresponding to unique loss values. The gradient
behaviour of the attractors is also visualised by the l-g clouds,

and can provide useful insights into the structure of the
attraction basins, such as the steepness of the basins, and the
connectedness of the basins, i.e., the ability of the sampling
algorithm to make a transition from a local attractor to the
global attractor.

III. EXPERIMENTAL SET-UP

The aim of the study was to visually investigate the local
minima and the associated basins of attraction exhibited by
the NN architectures of varied dimensionality and structure.
This section discusses the experimental set-up of the study,
and is structured as follows: Section III-A lists the benchmark
problems used, Section III-B discusses the architecture settings
employed, and Section III-C outlines the sampling algorithm
parameters, and the data recorded for each sampled point.

A. Benchmark problems

A selection of well-known classification problems of varied
dimensionality were used in this study. For the sake of brevity,
only two problems are discussed in this paper: the XOR
problem and the MNIST problem. The XOR problem requires
the NN to model the “exclusive-or” logical gate using four
binary patterns of two inputs and one output. Despite seeming
triviality, the XOR problem is not linearly separable, and thus
makes a good case study for fundamental NN properties [26].
The MNIST dataset of handwritten digits [27] contains 70 000
examples of grey scale handwritten digits from 0 to 9, where
60 000 examples constitute the training set, and the remaining
10 000 constitute the test set. For the purpose of this study,
the 2-dimensional input is treated as a 1-dimensional vector,
with the total number of inputs equal to 784.

Note that the results obtained for other classification
problems, together with the code used to run the experi-
ments, are available at the following URL: https://github.com/
annabosman/fla-in-tf

B. Architectures

All experiments employed feed-forward NNs with the expo-
nential linear unit (ELU) [28] activation function in the hidden
layers. For the binary classification problems, the sigmoid
function was used in the output layer. For the multinomial
classification problems, the softmax activation function was
used in the output layer. Log-likelihood loss was used to
calculate the NN error.

To study the influence of the hidden layer width on the NN
loss surfaces, each problem was considered with h minimal
number of hidden neurons (h = 2 for XOR, h = 10 for
MNIST), with twice as many hidden neurons as prescribed
by the minimal architecture (2 × h), and with ten times as
many hidden neurons (10 × h). These settings were chosen
to simulate a minor increase in width (2 × h), as well as a
more substantial increase corresponding to the next order of
magnitude (10× h).

To study the influence of the architecture depth on the NN
loss surfaces, 1, 2, and 3 hidden layers were considered for
each hidden layer width (h, 2 × h, and 10 × h) as discussed



in the preceding paragraph. The same width setting was used
for each successive hidden layer.

C. Sampling parameters

Progressive gradient walks [23] were used for the purpose
of sampling. The total number of walks was set to be 2×m,
where m is the dimensionality of the search space. The walks
were unbounded, but two distinct initialisation ranges were
considered, namely [−1, 1] and [−10, 10]. Two granularity
settings were used throughout the experiments: micro, where
the maximum step size, ε, was set to 1% of the initialisation
range, and macro, where ε was set to 10% of the initialisation
range. Micro walks performed 1000 steps each, and macro
walks performed 100 steps each. To calculate the training (Et)
and the generalisation (Eg) errors for MNIST, random batches
of 100 patterns were randomly sampled from the respective
training and test sets. The same data subsets were used to
calculate the average classification accuracy obtained at the
last step of the gradient walks. All experiments were run on a
single node of a computing cluster with 24 Intel 5th generation
CPUs and 128 GB RAM.

IV. EMPIRICAL RESULTS

This section presents the analysis of sampled local minima
and the corresponding basins of attraction as captured by the
progressive gradient walks for the various NN architectures.
L-g clouds, discussed in Section II, are employed for the
purpose of this study. Sections IV-A and IV-B present the
analysis of the various NN architectures for XOR and MNIST,
respectively.

A. XOR

Curvature information was obtained by calculating the
eigenvalues of the Hessian for each sampled point. Figure 1
summarises the curvature information obtained for the differ-
ent architectures and sampling settings considered. Each bar
in the plot corresponds to a distinct granularity setting, and
is colourised proportionally to the curvature of the sampled
points. The plots are grouped horizontally according to the
layer width (h, 2×h, and 10×h), and vertically according to
the network depth (1, 2, and 3 hidden layers). According to
Figure 1, an increase in width caused a reduction in convexity
and an increase in flatness (singular Hessians). Indeed, the
addition of extra neurons to a minimal architecture introduces
unnecessary, or redundant weights. Since more compact so-
lutions, i.e., solutions with fewer weights, are embedded in
over-parametrised architectures [26], the discovery of such
solutions will cause the unnecessary neurons to be disabled,
thus introducing flatness.

Figure 1 shows that an increase in depth had a similar effect:
Convexity decreased, and flatness increased. In fact, according
to Figure 1, an increase in depth increased the flatness more
rapidly than an increase in width. The rapid increase in flatness
associated with deeper architectures is attributed to the inter-
dependent variable structure of feed-forward NNs. Since each
layer propagates the signals to the next layer, each layer has
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Fig. 1. Histogram representation of the curvature information sampled by the
progressive gradient walks for the XOR problem for various NN architecture
settings. Mic and mac correspond to micro and macro granularities, 1 and 10
correspond to [−1, 1] and [−10, 10] initialisation ranges.

the ability to set the incoming signals to zero. In other words,
if a neuron in a later layer saturates, the effects of saturation
will influence the contribution of the weights in all preceding
layers.

An increase in flatness due to an increase in dimensionality,
whether by adding extra neurons, or by adding extra layers,
agrees with the findings of Sagun et al. [29], where Hessian
analysis of over-parametrised NNs was performed for the first
time. A question that remains to be answered is whether
the modality of the NN loss surface changes when hidden
neurons/hidden layers are added, and whether the effect of
increased width differs from the effect of increased depth.

1) The effect of width: Figure 2 shows the l-g clouds
obtained for 1- and 2-hidden layer architectures of varied
width. Figure 2 shows that the number of convex attractors,
i.e., local minima (represented by points of zero gradient norm
and non-zero error) reduced as more hidden neurons were
added to a layer. For h = 2, four attractors, three of them
constituting local minima, were observed (Figures 2a and 2b).
For h = 4, only three attractors were detected for the single
hidden layer architecture. Two of the attractors constituted
local minima (Figure 2c). Finally, for h = 20, two non-convex
attractors were observed (Figure 2e), thus local minima were
eliminated altogether.

The same trend is evident for the 2-hidden layer archi-
tectures: The number of attractors decreased as more hidden
neurons were added. Figure 2f also indicates that excessive
width yielded a split into two clusters, namely the high
gradient cluster associated with flat curvature in individual



(a) h = 2, 1 hidden layer (b) h = 2, 2 hidden layers

(c) 2 × h = 4, 1 hidden layer (d) 2 × h = 4, 2 hidden layers

(e) 10 × h = 20, 1 hidden layer (f) 10 × h = 20, 2 hidden layers

Fig. 2. Loss-gradient clouds for the micro gradient walks (ε = 0.02) initialised in the [−1, 1] range for the XOR problem for the various hidden layer widths.

dimensions, and a low gradient cluster of saddle curvature.
Lack of curvature in some dimensions means that those
particular dimensions did not contribute to the final loss value.
In the case of NNs, each dimension corresponds to a weight.
A non-contributing weight indicates that the signal generated
by that weight is zeroed somewhere in the architecture, and
any change in the weight value would not have an effect on the
NN output. In a 2×20×20×1 feed-forward architecture used
for the XOR problem, a large number of neurons can be safely
disabled without damaging the quality of the model, since the
optimal architecture for XOR is 2 × 2 × 1. Therefore, these
unnecessary neurons contribute to the flatness of the resulting
NN loss surface. It has been observed in the past that optima
for smaller NN architectures are embedded in the weight space
of larger NN architectures [26]. Thus, flat areas around the
global minimum are attributed to the non-contributing weights,
which are associated with implicit regularisation.

Thus, an increase in the hidden layer width yielded a
decrease in the number of convex attractors for the XOR
problem, and reduced the number of local minima attractors.
This observation correlates with the recent theoretical study
of Nguyen and Hein [7], where using more hidden neurons

than the number of training points was shown to guarantee
that most local minima would be globally optimal.

2) The effect of depth: Figure 3 shows the l-g clouds
obtained for the [−1, 1] macro walks executed on the loss
surface yielded by a NN architecture of varied depth (1, 2, and
3 hidden layers). Figure 3a shows that four stationary convex
attractors were discovered for the single hidden layer archi-
tecture with h = 2. Three of the attractors constituted local
minima. The addition of the second hidden layer (Figure 3c)
decreased the convexity and increased the flatness around the
attractors, but the total number of attractors remained the
same. The addition of the third hidden layer (Figure 3e) also
yielded exactly four zero-gradient attractors. Thus, the number
of hidden layers did not change the modality of the landscape
for the XOR problem, i.e., the number of attractors of a
unique error value remained the same. Figure 3 shows that the
same behaviour was observed for the architectures with four
hidden neurons per layer: For the varied NN depth, exactly
two attractors were observed.

Even though the number of attractors was not altered by
the NN depth, the properties of the said attractors were
affected. In addition to the decreased convexity and increased



(a) 1 hidden layer, h = 2 (b) 1 hidden layer, 2 × h = 4

(c) 2 hidden layers, h = 2 (d) 2 hidden layers, 2 × h = 4

(e) 3 hidden layers, h = 2 (f) 3 hidden layers, 2 × h = 4

Fig. 3. Loss-gradient clouds for the macro gradient walks (ε = 0.2) initialised in the [−1, 1] range for the XOR problem for the various architecture depths.

flatness, a drastic increase in the gradient magnitudes was
observed for deeper architectures. Figure 3 shows that each
new layer increased the maximum gradient by an order of
magnitude. Figure 2 shows that the increase in width also
caused an increase in the gradient magnitudes, but not as
drastic, especially for the single hidden layer architecture. The
range of the error values also increased rapidly for each new
layer added.

Thus, an increase in width decreased the number of ob-
served minima for the XOR problem, and an increase in depth
did not alter the modality properties of the loss surface.

B. MNIST

The average classification accuracies arrived at by the
progressive gradient walks are presented in Figure 4. Averages
were calculated across the accuracies as observed at the
last step of each walk. The plots are grouped horizontally
according to the layer width (h, 2 × h, and 10 × h), and
vertically according to the network depth (1, 2, and 3 hidden
layers). The results in Figure 4 show that the training accuracy
(Ct) generally increased as the hidden layer width increased
for all granularity settings except the [−1, 1] micro setting.

Thus, the loss surfaces yielded by wider hidden layers were
somewhat harder to exploit with very small steps, but the
overall searchability, i.e., global landscape structure, improved.
For the 1-hidden layer architecture, Ct improved from 61% to
87% for the [−10, 10] macro setting as h increased from 10
to 100. For the 3-hidden layer architecture, Ct improved from
15% to 91% as h increased from 10 to 100. This observation
corresponds to a recent theoretical study by Johnson [11],
where deep and “skinny” NN architectures, i.e., architectures
with many hidden layers of a limited size, were shown to not
be universal approximators. The generalisation accuracy (Cg)
was also positively affected by an increase in width for the 2-
and 3-hidden layer architectures.

Figure 5 shows the l-g clouds obtained for the various archi-
tectures using the [−1, 1] micro walks, colourised according
to the Eg values. For all architectures considered, the sampled
points split into the steep and shallow gradient clusters,
where the steep gradient cluster generally corresponded to
poor generalisation performance. These clusters are attributed
to the narrow and wide valleys exhibited by the NN loss
surfaces [30]–[32]. An increase in depth affected the shape
of the steep gradient cluster by making it wider and steeper.



h 2h 10h

1
l

2
l

3
l

mic1 mac1 mic10mac10 mic1 mac1 mic10mac10 mic1 mac1 mic10mac10

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Granularity setting

A
c
c
u
ra

c
y

Accuracy Train Test

Fig. 4. MNIST, classification accuracy for the training and test sets for the
various NN architectures. Standard deviation for each point is reported as a
vertical bar. Mic and mac correspond to micro and macro granularities, 1 and
10 correspond to [−1, 1] and [−10, 10] initialisation ranges. 1l, 2l and 3l
correspond to 1, 2, and 3 hidden layers.

Figure 5 shows that the transition from h to 2× h, to 10× h,
yielded the steep gradient cluster to become progressively
wider. The overlap between the two clusters also increased
with an increase in the architecture width.

Figure 6 shows the l-g clouds obtained by the [−10, 10]
micro walks. For the wider initialisation range, the same split
into two clusters is observed, although the two clusters appear
more connected. The [−10, 10] micro walks used a larger
maximum step size (ε = 0.2) than the [−1, 1] micro walks
(ε = 0.02), which enabled the transition between the attractors.
Overall, Figure 6 shows that an increase in width increased the
overlap between the two clusters, effectively blending the two
clusters into one wide cluster with a single global attractor at
the error of zero. Thus, an increase in the hidden layer width
simplified the loss surface.

Figure 4 shows that an increase in depth without an increase
in width generally resulted in deteriorating Ct and Cg values.
This observation once again correlates with the theoretical
findings in [11]. The l-g clouds in Figures 5 and 6 show that an
increase in depth increased the gradient and error magnitude
ranges, but otherwise did not affect the degree of separation
between the steep and the shallow gradient clusters. As the
depth of the architecture increased, the steeper cluster became
visibly heavier, and the shallow cluster diminished. Overall, an
increase in depth did not simplify the structure of the MNIST
loss surface, but made the global attractor steeper.

V. CONCLUSIONS

This paper presented a visual analysis of the NN loss
surface modality associated with various NN architectures.

Two different classification problems were considered. For
each problem, h, 2 × h, and 10 × h hidden layer widths
were considered, where h corresponded to the minimal number
of hidden neurons per layer. Further, for each hidden layer
width, 1-, 2-, and 3-hidden layer architectures were considered.
Each architecture was studied under four different granularity
settings in order to capture the loss surface features present at
different parts of the search space.

The results presented in this paper confirm that an increase
in problem dimensionality yields an increase in indefinite, or
flat curvature, as previously observed by Sagun et al. [29]. An
increase in NN depth yielded a more rapid increase in flatness
than an increase in NN width. This behaviour is attributed to
the inter-variable dependency between the hidden layers in a
feed-forward architecture.

For the XOR problem, an increase in width was shown to
reduce the number of local minima. For the same problem,
an increase in depth was shown to reduce the convexity and
increase the amount of saddle curvature. However, an increase
in NN depth with a fixed width had no effect on the total
number of stationary attractors. Thus, an increase in width
was shown to change the shape of the attractor in a more
meaningful way than an increase in depth. This observation
correlates with [11], where deep and “skinny” NNs were
shown to not exhibit the universal approximator properties.

For the MNIST problem, a single major attractor at the
global minimum was observed. An increase in width, as well
as an increase in depth, yielded an increase in the width and
steepness of the observed attractor. A split into two clusters
of steep and shallow gradients was observed. The clusters are
attributed to the narrow and wide valleys exhibited by the NN
loss surfaces [30]–[32]. An increase in width was shown to
increase the overlap between the two clusters, up to a complete
merge of the two clusters into a single cluster. An increase in
depth did not exhibit the same effect. Instead, the steep cluster
generally became heavier as more hidden layers were added,
up to a complete disappearance of the shallow cluster. Thus, an
increase in depth was shown to exaggerate the narrow valleys
as a loss surface feature.

In general, both an increase in width, as well as an increase
in depth, were shown to improve the searchability, i.e., global
landscape structure, of the resulting loss surfaces. However,
wider hidden layers were shown to be more instrumental in
the overall improvement of the loss surface structure. Supe-
rior classification quality was associated with wider hidden
layers. The steep gradient cluster was associated with inferior
generalisation performance for the MNIST problem.

Thus, an increase in the problem dimensionality was shown
to yield a more searchable and more exploitable loss surface.
An increase in width was shown to effectively reduce the
number of local minima, and simplify the shape of the global
attractor. An increase in depth was shown to sharpen the
attractor, thus making it more exploitable.

In future, l-g clouds can be used to further improve our
understanding of NN loss surfaces under various hyperparam-
eter settings. In particular, the properties of wide and narrow



(a) h = 10, 1 hidden layer (b) 2 × h = 20, 1 hidden layer (c) 10 × h = 100, 1 hidden layer

(d) h = 10, 2 hidden layers (e) 2 × h = 20, 2 hidden layers (f) 10 × h = 100, 2 hidden layers

(g) h = 10, 3 hidden layers (h) 2 × h = 20, 3 hidden layers (i) 10 × h = 100, 3 hidden layers

Fig. 5. Loss-gradient clouds, colourised according to the corresponding Eg values, for the micro gradient walks (ε = 0.02) initialised in the [−1, 1] range
for the MNIST problem.

valleys, and their relation to the global attractor, can be studied.
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