
Multi-STGCnet: A Graph Convolution Based
Spatial-Temporal Framework for Subway Passenger

Flow Forecasting
Jiexia Ye, Juanjuan Zhao*, Kejiang Ye

Shenzhen Institutes of Advanced Technology
Chinese Academy of Sciences

Shenzhen, China
University of Chinese Academy of Sciences

Beijing, China
Email: {jx.ye,jj.zhao,kj.ye}@siat.ac.cn

Chengzhong Xu
Faculty of Science and Technology

University of Macau
Macau,China

Email: {czxu}@um.edu.mo

Abstract—Subway passenger flow forecasting, an essential
component of intelligent transportation system, is critical for
traffic management, public safety, urban planning. However, it
is very challenging due to the high nonlinearities and complex
dynamic spatio-temporal dependencies of passenger flows. In this
paper, we model the subway system as a directed weighted graph
and propose a novel spatio-temporal deep learning framework,
Multi-STGCnet, for forecasting short-term subway passenger
flow at a station level. Specifically, Multi-STGCnet is mainly
composed of two components, temporal component and spatial
component. (1) The temporal component employs three long
short-term memory network (LSTM)-based modules to capture
three temporal properties of the target station, which are the
interval closeness, daily periodicity, weekly trend. (2) The spatial
component designs three spatial matrixes to extract spatial
correlation of a target station with all other stations classified
as near neighbors, middle neighbors and distant neighbors.
Respectively, it adopts three graph convolution network (GCN)
and LSTM combined modules to capture the spatio-temporal
influences from different neighbors. Finally, the outputs of the
two components are fused with different weights to generate
prediction. We evaluate Multi-STGCnet on a real world dataset
from the metro system in Shenzhen, China. Experiment results
demonstrate that our model outperforms multiple baselines.

Index Terms—Passenger flow forecasting, GCN, LSTM,
Spatial-Temporal Forecasting

I. INTRODUCTION

Over the last few decades, subway has experienced a rapid
development around the world due to its capacity to solve
traffic congestion. The automatic fare collection system (AFC)
in subway system has generated very large amount of trip data
and offers new opportunities for passenger flow prediction.

In this paper, we predict the short-term passenger flow of
each subway station with historical observed data collected
by AFC. However, it is very challenging due to the complex
spatio-temporal correlations between the passenger flows of
different stations during different time in whole metro system.

*Corresponding author: Juanjuan Zhao

Fig. 1. The proportion of trips vs. time cost on historical AFC Data

(1) Spatial correlations. The inflow of the target station
originates from the outflows of other stations and the mutual
influence between any two stations is related to the distance
between them. As shown in Fig. 1, the proportion of trips
decreases as the time cost increases, indicating that passengers
are more inclined to go to nearby stations than the far ones.
This is consistent with the Tobler’s first law of geography,
which states that everything is related to everything else, but
near things are more related to each other.

(2) Temporal correlations. From historical AFC data, we
observe that the passenger flow of a station is related to its
own historical observation, which can be summarized in three
aspects: interval closeness, daily periodicity, weekly trend.
Closeness refers that the previous flow will affect the current
flow because the formation and dispersion of passengers are
gradual. Daily periodicity indicates that the passenger flow is
similar on consecutive days. Weekly trend indicates that there
is a long term trend of the flows at the same time interval on
the same day of weeks in a year.

Over the past few decades, there are many studies in traffic
flow prediction. Time series methods such as Autoregressive
Integrated Moving Average model (ARIMA) [1] are limited
because they assume linear relationships among time lagged
variables. Some tradition machine learning methods such
as random forests, Support Vector Machine (SVM) [2], K-
Nearest Neighbors (KNN) are able to model high-linearity
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in the traffic flow. However, they are sensitive to feature en-
gineering and can’t capture spatio-temporal dependencies. In
recent years, frameworks based on deep learning have shown
promising results for traffic flow prediction. The convolutional
neural network (CNN) is usually employed to model the
spatial properties of the traffic network through grid-based
map segmentation. However, the subway system is a graph
based structure in nature. Recently graph convolution networks
(GCNs) have been developed to model such structured datasets
[3]. However, they usually employ Laplacian matrix in GCN to
extract the spatial dependency and it can’t distinguish spatial
properties of different regions with different distance.

In order to tackle these challenges, we model the subway
network as a directed weighted graph and propose a novel deep
learning framework Multi-STGCnet for predicted the outflow
of the target station. Our main contributions are summarized
as follows.
• Multi-STGCnet mainly consists of two components, a

temporal component designed for modeling the temporal
dependencies of passenger flows of the target station
needed to predict, and a spatial component designed to
capture the spatio-temporal impacts of all other stations
on the target station.

• The temporal component summarizes the temporal de-
pendencies related with the target station into the interval
closeness, daily periodicity and weekly trend. It employs
three LSTM based modules to model these temporal
properties.

• The spatial component divides all other stations into near
neighbors, middle neighbors and distant neighbors to
distinguish different influence degrees on the target sta-
tion. It adopts three GCN and LSTM combined modules,
first extracting the spatial correlation with each kind of
neighbors and then capturing the temporal dependencies
based on historical observations of these neighbors.

• We novelly define a spatial matrix to replace the Lapla-
cian matrix in traditional GCN. The spatial matrix is
designed to represent the spatial structure of each kind
of neighbors.

• We evaluate our approach using AFC data of Shenzhen
metro system. The results demonstrate the advantages
of our approach compared with other baselines. The
codes of Multi-STGCnet are publicly available from
https://github.com/start2020/Multi-STGCnet.

II. RELATED WORK

There are many different tasks on the domain of traffic
prediction, such as subway passenger flow forecasting [4],
taxi demand prediction [5] and citywide crowd flow prediction
[6]. Though the datasets used by these tasks are variant,
they all aim to predict the future traffic condition based
on historical observation. Related works on traffic prediction
provide references for our paper.

Time series methods such as HA, ARIMA [7], VAR [1]
perform poorly on modeling high non-linearity problems. Tra-
ditional machine learning [8] including maximum likelihood

estimation [4], KNN [9], SVM [10] are sensitive to feature
engineering and can’t achieve high accurate prediction. Deep
learning with superior capacity to learn high non-linear proper-
ties without much domain knowledge has inspired researchers
in transportation domain. Convolutional neural network (CNN)
[6] [5] is widely used to capture the spatial correlation in
traffic data by partitioning traffic network into a grid map.
However, CNN is designed for grid based structure, which
is not suitable for graph based structure, such as subway
networks and highway networks, and it can not extract spatial
dependencies of these networks accurately.

The recently developed graph convolutional network (GCN)
is successfully adopted to generalize the tradition convolution
to graph-structured data. Bruna et al. in 2014 [11] defined the
filter of a graph in the Fourier domain, connecting spectral
graph theory to deep learning. Defferrard et al. [12] in 2016
proposed fast localized convolutional filters on graphs to
improve computational efficiency. The pilot work of Kipf and
Welling [13] made a remarkable success in semi-supervised
classification by using GCN. Yu et al. [3] proposed STGCN for
traffic prediction on sensor network. One of the limitation of
these works is that their models are constructed on undirected
graph. There are some other works based on directed graph.
Li et al. [14] proposed DCRNN on road network. Guo et al.
[15] proposed ASTGCN to solve the highway flow forecasting.
They can extract the temporal and spatial correlations on a
road network. However, we argue that they overlook the dif-
ferent influence degree between regions with different distance
when capturing spatial dependency.

Our proposed model is different from existing methods due
to our problem setting. We investigate the subway traffic flow
pattern and identify its unique spatiotemporal correlations. We
model the subway network as a directed and weighted graph
and define a spatial matrix based on the shortest path between
stations to replace the Laplacian matrix of existing versions
of GCNs, furthermore differentiating the mutual influence
degrees between stations according to their distance.

III. PRELIMINARIES

In this section, we briefly define a subway network and
formalize the subway passenger flow forecasting problem.

A. Subway Network

A subway network is a directed graph G = (V,E,A),
where V = {v1, v2, · · · , vN} is a set of nodes representing
all stations in a subway, and E is a set of directed edges
referring the connectivity between two stations. If two nodes
are two adjacent stations of a metro line, there is an edge
between them. A ∈ RN×N is the adjacency matrix of graph
G. The weight between two nodes represents the time taken
by passengers to travel between the two stations. The weight
of the edge between node i and node j is wij , representing
the time needed to take traveling from station i to station j.
B. Formulation of Subway Passenger Flow Forecasting

We can observe two traffic features (inflow and outflow) of
each node on the network at each time slice. Let us denote
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Fig. 2. Formulation of Subway Passenger Flow Prediction

the two features of node i during t time interval as xit =
{xi,1t , xi,2t }, xit ∈ R2. During t time interval, all features of
the whole network can be denoted as a tensor Xt ∈ RN×2.

Problem formulation: Given historical observations
of the whole network over past P time slices
Xt−P , · · · ,Xt−2,Xt−1, we predict the subway passenger
flow of any target station in the next time slice t (as shown
in Fig.2).

[Xt−P , · · · ,Xt−1]−→xt (1)

IV. SOLUTION
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Fig. 3. The architecture of Multi-STGCnet. GCN: Graph Convolution
Network; LSTM: long short-term memory network; FC: Fully connected layer.

Multi-STGCnet is composed of two components: temporal
component and spatial component as shown in Fig.3. The
former is designed to extract temporal dependencies from the
historical observation of the target station need to predict such
as interval closeness, daily periodicity, weekly trend. The latter
aims to model spatial influences from the near, middle, and
distant neighbors of the target station.

Temporal component consists of three temporal blocks with
the same structures. Each block is fed with the observed
traffic flows of the target station on different time fragments
and utilizes a long short-term memory network to capture
the temporal correlation. The outputs of three blocks are
merged by one fully connected layer. Spatial component is

composed of three spatial-temporal blocks, which share the
same structure but are fed with different spatial matrixes
and traffic flows of different types of neighbors. Each block
is composed of a graph convolution network modeling the
spatial dependency and a long short-term memory network
capturing the influence of historical traffic flows of each kind
of neighbors on the target station. A fully connected layer is
stacked to merge the outputs of three blocks. In the end, the
outputs of the two components are further fused based on a
parameter matrix to obtain the final result. The spatial matrixes
and time fragments fed into Multi-STGCnet are defined as
follows.

1) Spatial Matrixes: Intuitively, a nearby station is likely
to have a larger impact than a distant station on the predicted
target station. For simplicity, we divide all other stations into
three kinds of neighbors according to their distances to the
target station, which are near neighbors, middle neighbors and
distant neighbors. We assume that different kinds of neighbors
have different influence degrees on the target station and
stations belonging to the same kind neighbor share similar
impact. In addition, we define the distance between any two
stations as the length of their shortest path for that most metro
passengers tend to choose the path with distance as short as
possible to save time.

Dijkstra algorithm is employed to find the shortest path with
minimum time between each of other stations and the target
station on the directed graph G. The set of length of all the
shortest paths is defined as L = {lj |j ∈ (1, ..., n)}, where n
is the number of stations and lj is the time cost of a shortest
path between station j and the target station. The minimum and
maximum value in the set is denoted as Lmin = argmin(L)
and Lmax = argmax(L). We cut the difference between the
maximum and minimum value into three equal parts as shown
in Fig.4 (a), each part with the length η = (Lmin−Lmax)/3.
A station with l ∈ (Lmin, Lmin + η) is regard as a near
neighbor of the target station O. We use a n dimension vector
VO = [1, 0, 1, ..., 1]n×1 to represent all the near neighbors of
station O , where i-th element vOi = 1 refers that station i is a
near neighbor of station O and vOi = 0 refers there is no near
neighbor relationship between the two stations. Since each
station has its own vector, we stack them together to define a
Near Matrix, which contains the near neighbors information
of the whole network. The Near matrix is denoted as follow:

Snear = [V1, V2, ..., Vn] =

 v11 ... v1n
... ... ...
vn1 ... vnn

 (2)

where vij = 0 or vij = 1.
A station with l ∈ (Lmin + η, Lmin + 2η] is regard as a

middle neighbor of the target station O. Similarly, we define
the Middle Matrix Smiddle which contains all the middle
neighbors information of the whole network. A station with
l ∈ (Lmin + 2η, Lmin + 3η] is regard as a distant neighbor
of the target station O and we can denote the Distant Matrix
Sdistant representing the distant neighbors information of the



whole network. These three spatial matrixes can extract spatial
properties of the subway network in different spatial aspects.
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Fig. 4. Spatial Temporal Features

2) Time Fragments: We divide one day into K time in-
tervals. Given a station, its passenger flow at the predicted
time interval t of a day, denoted as xt, is correlated with
its historical observations, which can be divided into three
categories as shown in Fig.4 (b). (1) The interval frag-
ment, refers to the flows at past P time slices, defined as
xinterval =

[
x(t−P ), · · · ,x(t−1)

]
. It represents the interval

closeness property in traffic data. For instance, the traffic
flow in 9am is inevitably influenced by previous intervals.
Accordingly, we define the interval fragment of the whole
network as Xinterval =

[
X(t−P ), · · · ,X(t−1)

]
. (2) The

daily fragment is the passenger flows at the same time in-
terval as the predicted one on the past D days, denoted as
xdaily =

[
x(t−D∗K), · · · ,x(t−K)

]
. It represents the daily

periodicity of traffic flows. For example, the peak hours
are similar for workdays. (3) The weekly fragment refers
to the flows at same time interval as the forecasting period
in W historical days with same week attributes, denoted as
xweekly =

[
x(t−K∗7∗W ), · · · ,x(t−K∗7)

]
. It represents the

weekly trend property in traffic data. Intuitively, there is a
long-term trend of passenger flow in a year.

A. Structure of Spatial Component

1) GCN for Spatial Dependency Modeling: Graph convo-
lution network (GCN) is one of the state-of-art techniques
for handling graph-based structure data, which generalizes
classical convolutional neural network to the graph domain.
GCN is defined as a graph G = (V, E), where V is the set of all
vertices and |V| = n and E is the edge set. The graph structure
is represented by a adjacency matrix A = [aij ] ∈ Rn×n,
representing the connections between vertices. The degree
matrix is denoted as D = diag (d1, d2, . . . , dn) ∈ Rn×n,
where di =

∑
j aij reflects the number of each node’s

neighbors.
In the spectral analysis, the properties of a graph can be

represented by a Laplacian matrix, defined as L = D − A ∈
Rn×n. It has two versions of normalized form, which are de-
fined as Lsym = D−

1
2LD−

1
2 and Lrw := D−1L respectively.

As Laplacian matrix is symmetric and semidefinite, it has a
complete set of orthonormal eigenvectors {ul}n−1l=0 ∈ Rn with
its associated set of eigenvalues, {λl}n−1l=0 ∈ Rn. Thus, its
eigenvalue decomposition is that L = UΛUT where Λ =
diag ([λ0, . . . , λn−1]) ∈ Rn×n, U = [u0, . . . , un−1] ∈ Rn×n.
As we can not apply the traditional convolution operator on

a graph in vertex domain, the spectral theory defines the
graph convolution operator in the Fourier domain [16]. The
graph Fourier transform (GFT) of a spatial signal x ∈ Rn
is defined as x̂ = UTx ∈ Rn, and its inverse as x = Ux̂
. The convolution operator on graph ∗G is defined x ∗G y =
U
((
UTx

)
�
(
UT y

))
, where � is the Hadamard product. It

follows that a graph convolution operation can be defined by:

y = σ (gθ ∗G x) = σ
(
U
((
UT gθ

)
�
(
UTx

)))
(3)

y = σ
(
Ugθ(Λ)UTx

)
(4)

where gθ(Λ) = diag(θ) and θ ∈ Rn is a vector of Fourier
coefficients. However, it has to compute the eigenvalue de-
composition of Laplacian matrix which is intolerable for the
large scale graph. Another limitation is that it considers all
the nodes in the graph during convolution and can’t extract
spatial localization. The limitation can be overcome by the
replacement gθ(Λ) =

∑K
k=1 θkΛk. The transform of the

convolution is as follow:

y = σ

(
U

K∑
k=1

θkΛkUTx

)
= σ

(
K∑
k=1

θkL
kx

)
(5)

The Kth order polynomials of the Laplacian are K-localized
[12]. Consequently, it is able to extract the information of 1 to
Kth order neighbors surrounding each node. Kpif and Welling
in 2017 limited K=1 to produce the simplest graph convolution
operation y = σ (θLx). To rewrite it as a convolution layer,
we can have

Xl+1 = σ
(
LX lW

)
(6)

where X l denotes the l-th layer, L is the Laplacian matrix, W
is the trainable parameters, σ is the activation function, e.g,
the sigmoid function or the ReLU function.

The subway network proposed in our paper is essentially
a non-Euclidean graph structure. Therefore, we use GCN
to model the spatial properties in the subway network. For
scaling down the parameter spaces of our model, we divide
all other stations into three categories: near, middle and distant
neighbors. We want to aggregate the influence of stations in
the same neighbors set and assign different weights to different
neighbors set.

The matrix in GCN decides the scope of information that
it can aggregate directly. However, the 1th Laplacian matrix
proposed by Kpif focuses on aggregating the information
from the adjacent nodes. TheKth power of Laplacian matrix
proposed by Defferrard et al. is based on connectivity instead
of the shortest path [12]. Both of them are unsuitable for our
task. In this paper, we need a matrix which can aggregate the
neighbors information with different distance based on shortest
path theory.

We novelly define some spatial matrixs based on the short-
est path algorithm (see its definition above) to replace the
Laplacian matrix in GCN. The Near matrix is defined to
represent the spatial structure of near neighbors of the target
station. GCN with the Near matrix focuses on aggregating
the information from the near neighbors directly. Likewise,



GCN with the Middle matrix and Distant matrix focus on
aggregating the information from the middle neighbors and
distant neighbors respectively. We rewrite the GCN version
proposed by Kipf and Welling as follow:

X l+1
n×m = ReLU

(
Sn×nX

l
n×cWc×m

)
(7)

whereX l
n×c denotes the l-th layer with c features, X l+1

n×m
denotes the next layer with m features, Sn×n can be the near
matrix Snear, the middle matrix Smiddle or the distant matrix
Sdistant , Wc×m is the trainable parameters, ReLU is the
activation function.

The input of each block of the spatial component is a spatial
matrix S and an interval fragment Xinterval. The output of
GCN in each block represents the aggregated information of
each kind of neighbors.

2) LSTM for Temporal Dependency Modeling: The graph
convolution operations extract spatial dependencies of the
subway network in three different angles at each time slice,
the output is further fed into LSTM to merge the information
at the neighboring time slices of each kind of neighbors.

Long short-term memory network is a special type of Recur-
rent Neural Network(RNN), initially introduced by Hochreiter
and Schmidhuber in 1997. It can overcome the exploding or
vanishing gradient problem of RNN and exhibits the superior
capability for time series prediction with long temporal de-
pendency [17]. LSTM is composed of one input layer, one
recurrent hidden layer and one output layer. The core of the
hidden layer is a memory cell. We denote the state of the
memory cell at time interval t as Carryt, which carries an
accumulation of previous sequential information. In addition,
there are three gates in the memory cell, namely input gate,
forget gate and output gate. The input gate denoted as Int
is used to input information at time interval t to the network.
The forget gate denoted as Forgett can forget some irrelevant
information from the previous cell state Carryt−1, while
the output gate denoted as Outt controls the output of the
memory cell. The structure of the memory cell in LSTM can
be summarized as Euqation8, Where ⊗ denotes the Hadamard
Product; [Wi, Ui, bi], i ∈ {forget, in, out, new, y} are all
learnable parameters; Xt is the features collected at time t.
Yt is the output at time t.

Forgett =σ(WforgetHiddent−1+UforgetXt+bforget)

Int = σ (WinHiddent−1 + UinXt + bin)

Outt = σ (WoutHiddent−1 + UoutXt + bout)

Newt = σ (WnewHiddent−1 + UnewXt + bnew)

Carryt = Forgett ⊗ Carryt−1 + Int ⊗Newt
Hiddent = Outt ⊗ tanh (Carryt)

Yt = ReLu (WyHiddent + by)

(8)

LSTM’s main objective is to model sequential dependen-
cies and process arbitrary time lags for time series. These
features are especially desirable for traffic prediction in the
transportation domain. It can capture the influence of historical
observation of different neighbors.

In conclusion, the spatial component is made up of three
blocks to model the spatiotemporal impact from near, middle,
distant neighbors. Each block first captures the spatial features
and afterwards merges the influence of the historical observa-
tion from three kinds of neighbors in the subway network.
The outputs of the near, middle, distant blocks are Ynear,
Ymiddle, Ydistant respectively. Finally, a fully connected layer
with an activation function as ReLu is employed to merge the
information of the three blocks, generating the output denoted
as YS .

B. Structure of Temporal Component

The temporal component aims to model the temporal depen-
dencies of a target station from its own historical observation.
It is composed of three temporal blocks in charge of capturing
the impact of interval closeness, daily periodicity and weekly
trend. Every temporal block employs LSTM to predict the
passenger flow during the next time interval based on the
previous passenger flow.

In a subway network, three temporal patterns can be
observed explicitly in the passenger flow. (1) The interval
closeness pattern refers that the current passenger flow is
influenced largely by the passenger flow of its adjacent
previous intervals instead of a distant interval. As shown
in Fig. 5, the passenger flow at 19.5pm is more relevant
to that at 18.5pm, rather than that at 12.5pm. The interval
block is designed to model the interval closeness impact with
interval fragment xinterval =

[
x(t−P ), · · · ,x(t−1)

]
as input.

(2) The daily periodicity impact implies that the passenger
flows of the same time period in the past few days and the
predicted period are similarly. The daily block captures the
daily periodicity impact and its input is the daily fragment
xdaily =

[
x(t−D∗K), · · · ,x(t−K)

]
. (3) The weekly trend

impact describes the flow pattern of the same interval of the
same working day or weekend from previous weeks. As shown
in Fig. 5, there is an increasing trend of the passenger flow
at 18.5pm on all Mondays from March to October. The trend
block can model such impact, of which the input is the weekly
fragment xweekly =

[
x(t−W∗K∗7), · · · ,x(t−K∗7)

]
.

The output of the three temporal blocks are Yinterval, Ydaily,
Yweekly respectively. A fully connected network is appended
to merge the three outputs. The output of this component is
YT .

C. Fusion

This section aims to discuss how to integrate the outputs
of the spatial component and the temporal component. If a
target station is a transfer station, its passenger flow is largely
depended on other stations, especially those directly connected
with it. However, if a station is located at residential areas, it
can expected that the majority of passengers enter or exit this
station are those who live nearby. Thus its passenger flow is
influenced more largely by its historical observation than that
of other stations. Consequently, the influence degree of the
two components are different for each station.

X̂t = WS �YS + WT �YT (9)
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Fig. 5. Passenger Flow Patterns

where � is the Hadamard product. WS , WT are learning
parameters, YS is the output of the spatial component, YT
is the output of the temporal component, X̂t is the prediction.

V. EXPERIMENTS

We carry out experiments on one real-world subway dataset
from Shenzhen, one of first-tier cities in China, and evaluate
performances of our model and other approaches.

A. Datasets

The dataset used is collected by automatic fare collection
system(AFC). The subway data is aggregated into every half
an hour from the raw data for the reason that a horizon of 30
min is widely used in the analysis of transportation operations.
The subway system in Shenzhen has 117 stations. The metro
lines information and map are from Shenzhen Metro Group.
The traffic measurements considered in our experiments are
passengers inflow and passengers outflow. The time span of
this dataset is from January to December in 2014, which is
totally 12 months. We divide the first two weeks of each month
into training set, the third week into validation set and the rest
into test set, which guarantees an unbiased result.

B. Baselines

We compare our model with the following methods.
HA: Historical average predicts the air quality of a station

at a time interval by averaging the passenger flow of previous
intervals for prediction.

ARIMA: Autoregressive integrated moving average is a well-
known model for predicting time series data(Williams et al.
2003) [7] , it predicts the future passenger flow based on the
previous passenger flow information based on the passenger
flows of the station.

LR: Linear Regression is a simple model to extract linear
correlation between variables.

GBDT: Gradient Boosting Decision Tree (Friedman et al.
2001) [18] is an ensemble learning method composing of many
regression decision trees sequentially.

XGBoost: XGBoost (Chen et al. 2016) [19] is conceptually
similar to GBDT but also differs in many aspects. It can handle
with linear and non-linear features and leads to a very good
generalization.

RF: Random Forest (Breiman et al. 2001) [20] is a combi-
nation of many regression tree predictors whose prediction is
the average prediction of all the trees.

ANN: The Artificial Neural Network in our paper is a three
fully connected layers with 32, 12, 1 units respectively.

GCN: Graph convolution network (Defferrard et al. 2016)
[12] successfully generalizes CNN to graph-structured data.

GRU: Gated Recurrent Unit (Chung et al. 2014) [21] is a
simplified version of LSTM but is less likely to overfit.
C. Loss Function and Evaluation Metrics

We choose MAE (mean absolute error) as the loss function.
MAE, RMSE (root mean square error) and MAPE (mean
absolute percentage error) are the metrics to asses model
performances. Their definitions are as follows, where y is the
ground truth, ỹ is the prediction.

MAPE =
1

n

n∑
i=1

|ỹi − yi|
yi

∗ 100% (10)

MAE =
1

n

n∑
i=1

|ỹ − yi| (11)

RMSE =

√√√√ 1

n

n∑
i=1

(ỹ − yi)2 (12)

Prediction is made on station level and the metrics are
computed as the average performance of all the stations.

D. Experiment Results

TABLE I
AVERAGE PERFORMANCE COMPARISON WITH VARIOUS APPROACHES

Model MAE MAPE RMSE
HA 387.523174 0.843366 740.087909

ARIMA 224.554015 0.501994 395.194652
LR 218.807822 0.403183 389.382387

XGB 74.084914 0.157338 117.887879
GBDT 60.523768 0.104170 104.813541

RF 56.736383 0.089223 99.209742
ANN 68.836687 0.134655 117.765380
GCN 63.749587 0.131476 112.284874
GRU 50.303431 0.095632 84.426589

Multi-STGCnet 46.344920 0.072743 69.836269

We compare Multi-STGCnet with various methods in terms
of metrics MAPE, MAE, RMSE. The best performance are
highlighted with bold font. As can be seen from Table I,
our proposed Multi-STGCnet has the lowest MAE (46.34),
the lowest MAPE (0.072) and the lowest RMSE (69.83)
among all the methods. More specifically, it can be observed
that traditional statistical methods such as HA, ARIMA, LR
have the worst performances, as they lack the capacity to



extract complex non-linearity in subway data. On the other
hand, ensemble methods of machine learning including XGB,
GBDT, RF achieve much better performances, proving that
they can capture the non-linear correlation between the current
passenger flow and its historical observation. Among the deep
learning method, GRU achieves a lower MAE (50.30), a lower
RMSE (84.42) and a lower MAPE (0.095) than the other
two deep learning methods ANN and GCN. ANN can not
extract the sequential pattern of time series data while GRU
has the superior capability for time series prediction with
long temporal dependency. This demonstrates that there is a
long temporal dependency in subway data. GCN focuses on
modeling spatial dependencies of the subway network. The
fact that its performance is worse than GRU largely indicates
that the dependency in temporal dimension is stronger than
the dependency in spatial dimension.
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Fig. 6. Comparison of absolute predict error among top three approaches for
one day
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Fig. 7. Prediction of passenger flow for one week by Multi-STGCnet

Compared with GRU modeling only temporal correlation
from historical observation of the target station and GCN only
modeling spatial correlation from surrounding stations, our
model has the capability of capturing both spatial and temporal
correlation of the whole network. We compare our model
with the best machine learning method RF and the best deep
learning model GRU in our paper by absolute predict error,
as shown in Fig. 6. We find that both RF and GRU behave
worse in the evening, specifically, from 17.5pm to 23pm
while STSP-MGCN has an ideal prediction of these hours.
Finally, Multi-STGCnet not only significantly outperforms all
the other methods but also achieves an accurate passenger flow
prediction. For example, it can observed that the prediction of
Multi-STGCnet is very close to the ground truth in one week
on November(as shown in Fig.7).

E. Model Component Analysis

Multi-STGCnet is composed of two independent compo-
nents and each component consists three blocks. Every block is
in charge of extracting different spatial temporal features from
subway traffic data. In order to measure the contribution of
each block for subway passenger flow prediction, we evaluate
each component and each block independently.

(1) Interval block: This block is responsible to extract the
temporal dependencies from historical flow of the target station
during the past P interval time.

(2) Daily block: This block aims to model the temporal
correlation of passenger flow at the same intervals during the
past D days of the target station.

(3) Weekly block: This block is in charge of capturing
the long term trend in passenger flow. We use the previous
observation of the same period on the last W weeks for
prediction.

(4) Multi-STGCnet-T: The temporal component is a combi-
nation of interval block, daily block, weekly block. It extracts
the dependencies from the historical observation of the target
station in three temporal dimension aspects, including the
interval closeness, daily periodicity and weekly trend.

(5) Near block: This block can extract spatial temporal
dependencies from near neighbors of the target station.

(6) Middle block: This block is able to model the influence
from middle neighbors in both spatial and temporal dimension.

(7) Distant block: This block models the impact of passen-
ger flow from distant neighbors.

(8) Multi-STGCnet-S: The spatial component is designed to
merge the spatiotemporal influence from the all other stations
on the target station.

TABLE II
PERFORMANCE COMPARISON AMONG DIFFERENT BLOCKS OF

MULTI-STGCNET

Model MAE MAPE RMSE
Interval block 48.598836 0.078841 79.409736
Daily block 64.530737 0.124871 99.247472

Weekly block 51.352493 0.076651 83.758802
Multi-STGCnet-T 46.879129 0.084599 77.280309

Near Block 50.266971 0.085582 82.086010
Middle Block 55.571977 0.090005 91.010304
Distant Block 68.961511 0.087172 115.447569

Multi-STGCnet-S 50.049825 0.079537 79.859913
Multi-STGCnet 46.344920 0.072743 69.836269

Table II shows the performances of Multi-STGCnet and its
components and blocks. On one hand, it can be observed that
interval block achieves a lower MAPE and RMSE than daily
block and weekly block. It demonstrates that the historical
passenger flow of the adjacent previous intervals has a larger
impact on the current flow than those on previous days. In ad-
dition, daily block performs worse than weekly block on every
metric, proving that passenger flow pattern is more related with
the historical days which have the same week attribute. For
instance, the traffic pattern on Monday is usually more close
to that on historical Mondays than that on other weekdays or



weekends. Comparatively, the performance achieves the best
when the three blocks are combined, which demonstrates the
effectiveness of considering impact of interval closeness, daily
periodicity and weekly trend together.

On the other hand, in terms of MAE and RMSE, near block
outperforms middle block while middle block performs better
than distant block. It indicates further that the mutual influence
degree between two stations changes as their distance changes
The results indicates further that the mutual influence degree
between two stations is negative correlated with the distance
between them. When the impact from all the rest stations is
considered, the performance achieves best and it demonstrates
the effectiveness of the spatial component. Finally, the combi-
nation of Multi-STGCnet-T and Multi-STGCnet-S has the best
performance on all the metrics and it proves that our elaborate
model has a superior capacity of modeling the dependencies
in both spatial and temporal dimension.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study the passenger flow prediction at
a station level on a graph-based subway network. We nov-
elly propose a graph convolution based spatial-temporal deep
learning framework, Multi-STGCnet. In our model, we adopt
LSTM based modules to extract temporal correlation between
historical observation of the target station and its current flow
in three aspects, namely interval closeness, daily periodicity
and weekly trend. We employ GCN-LSTM based modules
to capture the spatiotemporal dependencies from all other
stations in the subway network. What’s more, we distinguish
the mutual influence degree between the target station and all
other stations by dividing them into near neighbors, middle
neighbors and distant neighbors according to their shortest
distance to the target station. In addition, we novelly define
a spatial matrix to represent the spatial features of each
kind of neighbors, replacing the Laplacian matrix in GCN.
The evaluation on Shenzhen metro dataset demonstrates the
superiority of Multi-STGCnet.

External factors such as special events, weather also have
complex correlation with the subway passenger flow. In the
future, we would like to consider these factors to improve
the accuracy of prediction. Multi-STGCnet is a general model
designed for spatiotemporal forecasting on a graph-based
network, which is a reference for any application shares the
same demand.
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