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Abstract—Recent great progress has been made on Salient
Object Detection (SOD) by deep Convolutional Neural Networks
(CNNs). However, most SOD methods still suffer from scale
imbalance issue, which pays more attention on large salient
areas but ignores small salient areas though they belong to the
same object. To address this issue, this paper proposes a Scale
Balance Network (SBN) to accurately locate large salient areas
and recognize small salient areas. Firstly, a backbone network
specifically designed for object detection is adopted in this paper,
which captures larger resolution with more spatial features in
deeper layers. Secondly, to focus on the balance between the
large salient areas and the small salient areas, this paper pro-
poses a novel Connective Feature Pyramid Module (CFPM) for
sufficiently leveraging the multi-scale features and the multi-level
features, which includes Feature Coherence Enhancement (FCE)
and Feature Progressive Extraction (FPE). FCE is designed to
enhance the coherence between high-level and low-level features,
and FPE is designed to extract the progressive features in
different convolutional layers. Finally, an Edge Enhancement
Architecture with Various Kernels (EEAVK) is proposed to
refine the edge features. Experimental results on five benchmark
datasets show that the proposed method outperforms or achieves
consistently superior performance in comparison with other
methods under different evaluation metrics.

Index Terms—deep learning, salient object detection, scale
balance, edge enhancement

I. INTRODUCTION

Salient object detection aims to find the most important
objects in a natural image. It has various applications on
many visual tasks such as object detection, image captioning
and image retrieval. Currently, most of the state-of-the-art
saliency detection methods are based on deep learning models,
which extract high-level context features better than traditional
unsupervised stimuli-driven methods. However, there still two
key problems need to be solved further. On the one hand, the
interiors of the salient object may have various appearances
with different scales, so that only part of the whole object can
be detected. On the other hand, compared with the mainstay
of the salient object, the edges fail to minimize false positives
in the high texture background region.

Many researchers have made efforts to address the above
two issues. Early researches are mainly based on additional
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hand-crafted models. For example, super-pixels methods [1]
[2] are added to simplify the undesirable details. However,
super-pixels focus on low-level spatial features but neglect
the high-level context features, which may lose track of some
important information. In addition, the method of enforcing
spatial coherence with a Conditional Random Field (CRF) [3]
is also added to refine the results. Although postprocessing
methods can make the salient map better, the extra processing
steps are time-consuming.

Besides additional hand-crafted models, attention modules
methods and feature enhancement methods are introduced to
the saliency detection networks. Attention modules methods
generate an attention map via embedding contextual attention
mechanism, which include channel-wise attention [4], pixel-
wise attention [5] and pyramid feature attention [6]. Attention
mechanism helps the deep networks pay more attention on
the affinities of context features and refine the local region.
Nevertheless, the methods lack the ability to balance different
scale areas, which may excessive focus on the more salient
area such as large salient areas but ignores little salient
areas. Feature enhancement methods adopt a backbone feature
extractor such as ResNet [7] or VGGNet [8] with pretrained
weights from ImageNet, and involve extra stages to handle
the objects with various scales. Typical representatives are
edge enhancement models such as [9] [10] [11]. The methods
attempt to leverage the edge features to locate objects in an
image, especially their boundaries more accurately. However,
the backbone of ResNet or VGGNet is specially designed for
image classification, which adopts large down-sampling factor
to recognize the category of the object instances but ignores
of spatially locating the position.

To overcome the above issues, this paper proposes a novel
salient object detection method named Scale Balance Network
(SBN). In consideration of the gap between the image classi-
fication and object detection, a backbone network specifically
designed for object detection called DetNet [12] is adopted
first. Different from the original DetNet, we abandon one of
the successive down-sampling but only retain the operation of
maintaining spatial resolution and enlarging receptive field in
deeper layers. Therefore, the backbone is able to locate the
large objects more accurately and find the missing small ob-
jects. Furthermore, a novel connective feature pyramid module

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



(CFPM) is proposed for balancing the weights between large
scale salient areas and small ones. Different from existing
pyramid feature attention network [6] [11] or U-net structure
[13], CFPM not only focus on low-level features and high-
level features, but also consider the coherence between low-
level features and high-level features. In addition, in order to
refine the boundaries of salient areas, an edge enhancement
architecture with various kernels (EEAVK) is fused in low-
level features. Different from previous researches [9] [10] [11],
this paper proposed various kernels setting instead of single
kernel setting for better edge detection. Benefitting from the
ways of various kernels setting, EEAVK can extract more
sufficient shape details and complex various edge features.

In short, the main contributions of this work can be high-
lighted as follows:

• This paper adopts an effective backbone network de-
signed for object detection (DetNet) to obtain higher
spatial resolutions and larger receptive fields.

• A Connective Feature Pyramid Module (CFPM) is pro-
posed for sufficiently extracting the context information
in high-level features and accurately locating the salient
objects in low-level features by Feature Progressive Ex-
traction (FPE). The coherence between high-level fea-
tures and low-level features is also considered in CFPM
by Feature Coherence Enhancement (FCE).

• A novel Edge Enhancement Architecture with Various
Kernels (EEAVK) is proposed in this paper to learn more
accurate and subtle information of boundary features.

• Without any bells and whistles, the Scale Balance Net-
work (SBN) proposed in this paper achieves new state-
of-the-art results on several benchmark datesets.

II. RELATED WORKS

Over the past two decades, hundreds of salient object detec-
tion methods have been proposed. Earlier methods estimate the
salient maps using prior knowledge by hand-crafted features
such as color contrast [14], boundary background [15], center
prior [16] and so on. However, these methods only focus on
the low-level features and local texture information, which lack
the essential high-level context features.

In recent years, the methods based on Convolution Neural
Networks (CNNs) have made breakthroughs in saliency de-
tection. Early CNNs-based methods [17] [18] leverage deep
learning networks to generate the feature maps to calculate
saliency of image units. According to the image units, the final
salient map is generated by some extra-added algorithms such
as weighted sum and distance information. However, these
methods are easily limited by the performance of image units.
To refine the results, some pre-processing algorithms such as
super-pixels methods [2] and pro-processing algorithms such
as Conditional Random Field (CRF) [3] [19] are combined to
the CNNs though they are time-consuming.

After then, end-to-end deep learning networks become the
mainstream frameworks. Long et al. [20] firstly propose a
fully convolutional networks to predict the salient labels for
each pixel. Similar to their work, large numbers of pixel-wise

CNNs methods such as [20] [22] [23] are proposed. In this
two years, attention modules and feature enhancement have
been proved useful. In paper [6], Pyramid Feature Attention
Network(PFAN) is applied to extract high-level features and
low-level features. Another paper [24] proposes an output-
guided attention module with multiscale outputs instead of
applying the widely used self-attention module. In paper [17],
a progressive attention driven framework enhanced by multi-
path recurrent feedback is proposed, which intrinsically refines
the entire network through global semantic information from
the top convolutional layer. The paper [25] proposes reverse
attention to guide side-output residual learning in a top-down
manner. Though the above methods improve the quality of
significant results by extracting high-level and low-level fea-
tures, they ignore the coherence between deeper convolutional
layers and shallower convolutional layers. Moreover, these
methods mainly focus on the high-level features in the deeper
convolutional layers, which lack enough spatial information
and scale balance information because of adopting large down-
sampling factor.

Meanwhile, feature enhancement module is another effec-
tive model that attracts a lot of attention. In paper [9], the
authors propose an edge-guided non-local fully convolutional
neural network, which use the edge enhancement module to
generate the edge guided feature for accurate salient object
detection. To further integrate with FCNs and jointly optimize
through end-to-end training, Wu et al. [26] present a deep
guided filtering network for pixel-wise image prediction.

Compared with previous researches with attention module
[5] [6] [24] [25], a novel scale balance network is proposed
in this paper. SBN first maintains the spatial resolution and
enlarges the receptive field by adopting a backbone that
specially designed for object detection, aiming to find smaller
objects. Then different from previous researches, a novel con-
nective feature pyramid module is proposed for enhancing the
coherence by feature coherence enhancement and balancing
the scale by feature progressive extraction. Different from
previous researches with feature enhancement module [9] [10]
[26], an edge enhancement architecture with various kernels is
designed to refine the edge feature, which focus on the various
scale problem so that detects the boundary of salient objects
better. The experimental results verify our statement.

III. SCALE BALANCE NETWORK

In this paper, we propose a novel scale balance network,
which contains a backbone module to capture the larger
spatial features to detect smaller objects, a Connective Feature
Pyramid Module (CFPM) to enchance the coherence and
balance the scale between high-level and low-level features
by Eeature Coherence Enhancement (FCE) and feature Pro-
gressive Extraction (FPE), an Edge Enhancement Architecture
with Various Kernels (EEAVK) module to refine the edges of
salient objects. The overall architecture is shown in Fig. 1.



Fig. 1. Overall Architecture.CFPM: connective feature pyramid module. EEAVK: edge enhancement architecture with various kernels. Conv: Convolutional
layers. More details about CFPM are shown in Fig. 2. FCE: Feature Coherence Enhancement. FPE: Feature Progressive Extraction. FCE h: Reduce the
channels to half of FCE.

A. Backbone Network

Previous researches use a backbone network such as ResNet
[7] or VGGNet [8] with pre-trained weights on the ImageNet
classification dataset. The aim of classification is to recognize
the category of the objects while the aim of object detection
is to spatially localize the bounding-boxes. The large down-
sampling factors in VGGNet and ResNet can help the networks
recognize the objects fast and accurately. However, the over-
large down-sampling factor easily losses important spatial
information especially in deeper convolutional layers, which
brings the negative influence into saliency detection.

To this end, this paper adopts the backbone called DetNet
[12] that specially designed for object detection. On the one
hand, DetNet has exactly the same number of stages as the
detector used, so additional stages can be pre-trained in the
ImageNet dataset. On the other hand, DetNet maintains larger
spatial resolution than other backbone networks, which is
more powerful in locating the boundary of large objects and
finding the missing small objects. To obtain more sufficiently
boundary features, we change the beginning stride of 4 down-
sampling to 2 for larger receive fields, which is shown at the
DetNet part in Fig. 1.

B. Connective Feature Pyramid Module

Generally, shallow layers pay attention to the texture of ob-
jects while deep layers pay attention to the context of images,
which means shallow layers have smaller receptive fields and
deep layers have larger receptive fields. More importantly,
different layers should have the potential connections [27].
However, most existing methods only focus on one of them
but ignore the connective and distinctive between different
layers, leading to the wrong prediction. Moreover, previous

researches usually define the first two modules as the shallow
layers and the last two or three modules as the deep layers
[6] [28], which lack the interpretability. Therefore, connective
feature pyramid module is designed to extract features in
different convolutional layers, aiming to enhance coherence
among different layers and obtain multi-scale multi-receptive-
field features. In addition, edge supervision is also adopted to
constrain the boundary features. As shown in Fig. 2, different
from previous researches [6] [12] [29], different layers have
the operations with directly concatenating and connectively
passed. Different from previous researches [12] [13] [30],
CFPM do not distinct the shallow layers and deep layers
specifically but extract different layers features progressively
by gradually rising dilation convolution [31].

a) Feature Coherence Enhancement: As shown in Fig. 2,
to enhance the feature coherence between different layers, FCE
adopts more connection paths that include lateral transfer path
and upward transfer path. Lateral transfer path generates cross
layer connection, aiming to enhance the coherence between
non-nearest-neighbor layers. That is because features in deep
convolutions lack low-level features and spatial information,
which cannot distinct large-scale objects and precise struc-
tural edges. Upward transfer path generates adjacent layer
connection, aiming to enhance the coherence between nearest-
neighbor layers. That is because the features of adjacent layers
are similar, and adjacent layer connection can enhance the
expression of features. During the two paths, channels are
divided into half to keep the sum channels unchanged.

We take Conv2-3, Conv3-4, Conv4-6, Conv5-3, Conv6-3 of
DetNet to extract multi-scale features first. Conv1-1 is thrown
away because the convolution is too close to the input and the
receptive field is too small, and Conv2-3 is designed for edge



Fig. 2. Connective Feature Pyramid Module. FCE: Feature Coherence En-
hancement. FPE: Feature Progressive Extraction. Conv: Convolutional layers.
1 × 1: the kernel size of convolution is 1 × 1. 3 × 3: the kernel size of
convolution is 3× 3. r: the rate of dilated convolution.

extraction [23]. The above convolutions can be represented
as fD ∈ RW×H×C , where R denotes the convolution and
W,H,C denotes width, height and channel number of each R
respectively. Then, the five side paths in FCE can be denoted as
fFCE ∈ RW×H×C . According to the lateral transfer path, the
channels of fD are reduced to half, which are used for feature
progressive extraction and are denoted as fFPE ∈ RW×H×C

2 .
According to the upward transfer path, the channels of fFCE

are reduced to half, which are used for feature coherence
enhancement and are denoted as fFCEh ∈ RW×H×C

2 . Lastly,
fFPE and fFCEh are concatenated to fFCE . It should be noted
that fFCEh is changed to fD6 in sixth path. The progress can
be denoted as (1),

fFCEi =

{
σ(δ(Fout(Concat(fDh

6 , fFPEi ),Wo))), i = 5

σ(δ(Fout(Concat(fFCEh
i , fFPEi ),Wo))), i = else

(1)
where, fFCEi denotes the i-th path FCE features. Concat(·)
denotes concatenative operation, Fout ∈ RW×H×C refers
to the output convolution, Wo denotes the parameters in
convolution, δ(·) denotes ReLU function and σ(·) denotes
Sigmoid function. When i = 1, fFCEi denotes the edge
features, which can be represented as fFCEEdge as well. To better
refine the salient objects, as well. To better refine the salient
objects, fFCEi is exported to compare with the salient truth,
which is shown in Fig. 1.

TABLE I
DETAILS OF EACH CONVOLUTION WITH VARIOUS KERNEL

FEE C1 C2 C3

1 1,3 0,1 256 3,1 1,0 256 3,3 1,1 256
2 3,5 1,2 512 5,3 2,1 512 5,5 2,2 512
3 3,5 1,2 512 5,3 2,1 512 5,5 2,2 512
4 3,7 1,3 512 7,3 3,1 512 7,7 3,3 512

b) Feature Progressive Extraction: As shown in Fig.
2, to extract the different layer features progressively, FPE
adopts different dilation rates convolution in different layers,
aiming to capture multi-scale multi-receptive-field context
information. FPE follows a principle that shallow layers do
not need to have large receptive field but the deep layers
vice-versa. Previous researches usually adopts larger kernel
size or higher number of convolutional layers to obtain larger
receptive field but raise the parameters at the same time.
To keep the parameters and enlarge receptive field, dilation
convolution is adopted in FPE.

The larger the dilation rate is, the larger the receptive field
is. Therefore, from fFPE1 to fFPE5 , the dilation rates are set
to 2/3/4, 2/4/6, 3/4/5, 3/4/6 and 3/5/7 respectively. 1 × 1
convolution means that only the number of channels is turned
to one quarter, which keep part of the low-level features.
The progressive setting of dilation rates means that the final
extracted high-level features contain the features with scale
and shape invariances from the low-level features.

C. Edge Enhancement Architecture with Various Kernels

Compared with the mainstay of salient map, the boundary
features are sparse and less obvious. To overcome this issue,
EEAVK is proposed to refine the edges of salient objects.
Different from previous researches, various kernels in EEAVK
is designed to obtain different scale edges, which aims to
balance the scale between edge and mainstay of salient objects.
In addition, different from the edge supervision in CFPM,
EEAVK refines boundary features by specially designed net-
work but not the supervision constraint, which improves the
results further.

The four convolutional features of EEAVK are represented
as fEEi ∈ RW×H×C As shown in Fig. 1, the progress of
EEAVK can be represented as,

fEEi = FEE((fFCEi+1 + fFCEEdge),WE) (2)

where, FEE denotes the convolution with various kernel, and
WE is the parameters of FEE ,

fEEAVK = σ(δ(Fout(
4∑
i=1

fEEi ,Wo))) (3)

where, fEEAVK denotes the output features of EEAVK.
To better locate the boundary of salient objects, the various

kernels is proposed in EEAVK, which can be denoted as
Kv

′
∈ Kl1×l2×C and Kv

′′
∈ Kl2×l1×C where Kv denotes the

various kernel, l1 and l2 denote the length, l1 ∈ {1, 3, 3, 3}
and l2 ∈ {3, 5, 5, 7}. More specifically, the convolution with
various kernels are shown in Table 1. In Table 1, C denotes
three convolutional layers: C1, C2, C3 and three followed
ReLu layers. Each C includes the the kernel size, padding
and channel number.

D. Loss Function

In this paper, loss function is divided into saliency loss func-
tion and edge loss function. Similar to other methods, cross-
entropy loss is adopted to measure the similarity between the



final saliency map and the ground truth, which is represented
as follows,

LossSal = − 1

M ×N

M∑
i=1

N∑
j=1

(yij log ŷij+(1−yij) log(1−ŷij))

(4)
where, yij denotes the ground truth in the location (i, j),
ŷij denotes the final saliency map of SBN. Motivated by the
significant applications of IoU boundary loss [32], this paper
calculates the edge loss by IoU loss shown as follows,

IoU Loss = 1− 2|C
⋂

Ĉ|
|C|+ |Ĉ|

(5)

where, C and Ĉ denote the edge ground truth and final edge
saliency map of SBN respectively.

IV. EXPERIMENTAL RESULTS

A. Datasets

The performance of SBN is evaluated on five bench-
mark datasets: DUT-OMRON, DUTS, ECSSD, HKU-IS and
PASCAL-S. DUT-OMRON contains 5168 high quality im-
ages, each of which has challenging complex background
with one or more salient objects. DUTS contains 10553
images for training and 5019 images for testing. Following the
previous work [6] [32], 10553 images in DUTS-Test is used
for training in this paper. ECSSD contains 1000 meaningful
and complex semantic images. HKU-IS has 4447 images with
more than one disconnected salient objects. PASCAL-S has
5168 challenging images.

B. Evaluation Metric

Similar to most of the saliency detection methods, three
standard metrics are used for evaluation in this paper, which
include weighted F-measure (ωFβ) and mean absolute error
(MAE) to evaluate SBN and other state-of-the-art methods.
ωFβ is formulated as follows,

Fβ =
(1 + β2)Precision×Recall
β2 × Precision+Recall

(6)

where, precision and recall denote the ratio of salient pixels
under different threholds between generated salient map and
ground truth. β2 is set to 0.3 as other mtethods do. MAE can
be calculated by the following formula,

MAE =
1

M ×N

M∑
i=1

N∑
j=1

|yij − ŷij | (7)

C. Implementation Details

SBN is trained on DUTS-Test dataset followed by [6] [32].
We do not use the validation dataset suggested by [6]. The
weights of the rest part in SBN are initialized randomly. In the
period of training, the learning rate is set to 5e-5 and reduced
to one tenth for every 12 epochs. To reduce over-fitting during
training, weight decay set to 0.0005 is also adopted in SBN. In
addition, similar to other methods [6] [32], data augmentation

TABLE II
METRICS OF EACH THE ADDED MODULE ON ECSSD AND DUTS-TEST

DATASETS

Module ECSSD DUTS-Test
ωFβ MAE ωFβ MAE

ResNet 0.917 0.044 0.814 0.053
DetNet 0.925 0.041 0.815 0.053

DetNet+CFPM 0.936 0.039 0.835 0.042
DetNet+CFPM+EEAVK 0.944 0.038 0.863 0.040
It should be noted that the backbones are pre-trained in ImageNet.

techniques such as random rotating, random cropping, and
random horizontal flipping are also adopted in this paper. The
input image size is set to 256×256.

D. Effectiveness of Each Module

To demonstrate the effectiveness of backbone, CFPM and
EEAVK, we train backbone network, backbone with CFPM
and backbone with CFPM and EEAVK respectively on ECSSD
and DUTS-Test datasets in this section. As shown in Table
2, the result with each metric has a significant improvement.
Compared with the backbone of ResNet, DetNet increases
0.9% and 6.8% of ωFβ and MAE on ECSSD dataset, and
increases 0.1% of ωFβ on DUTS-Test dataset. Compared with
DetNet without any extra architecture, the added CFPM in
SBN increases 1.2% and 4.9% of ωFβ and MAE on ECSSD
dataset, and increases 2.5% and 17.0% of ωFβ and MAE
on DUTS-Test dataset. Compared with the added CFPM for
DetNet, the added EEAVK in SBN increases 0.9% and 2.6%
of ωFβ and MAE on ECSSD dataset, and increases 3.4% and
5.0% of ωFβ and MAE on DUTS-Test dataset. Results in
Table 2 show the effectiveness of each module.

E. Comparison with State-of-the-art Methods

We quantitatively compared our SBN method with several
state-of-the-art methods in recent three years: Pyramid Fea-
ture Attention Network (PFAN) [6], High-Resolution Salient
Object Detection (HRSOD) [28], Output-guided Attention
Module (OGNet) [24], Iterative and Cooperative Top-down
and Bottom-up Inference Network (ICTBI) [19], Short Con-
nections (DSS) [22], Embedding Attention and Residual Net-
work (EARN) [29], Pyramid Attention and Salient Edges
(PAGE) [4], Progressive Attention Guided Recurrent Network
(PAGRN) [17], Recurrent Localization Network (RLN) [30],
Reverse Attention Network (RAN) [25], Aggregating multi-
level convolutional features (Amulet) [23].

a) Visual Comparison: As shown in Fig. 3, we compare
SBN with other state-of-the-art methods. Obviously, the results
of SBN outperforms other methods, which are closer to
the ground truth in visual comparison. In detail, (1) SBN
model detects small salient areas more accurate benefitting
from the the application of DetNet instead of the traditional
backbone such as ResNet or VGGNet (see Fig. 3 the 1, 3
rows). (2) With the help of feature coherence enhancement
and feature progressive extraction in the connective feature
pyramid module, SBN balances the different scale salient areas



Fig. 3. Comparison with State-of-the-art Methods

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS

Methods ECSSD HKU-IS PASCAL-S DUT-OMRON DUTS-Test
ωFβ MAE ωFβ MAE ωFβ MAE ωFβ MAE ωFβ MAE

Amulet [23] 0.868 0.058 0.854 0.052 0.763 0.098 0.647 0.098 0.737 0.085
PAGRN [17] 0.891 0.064 0.886 0.048 0.803 0.092 0.711 0.072 0.788 0.055

RAN [25] 0.918 0.059 0.913 0.045 0.834 0.104 0.786 0.062 - -
DSS [22] 0.915 0.052 0.913 0.039 0.830 0.080 - - - -
RLN [30] 0.903 0.045 0.882 0.037 - - 0.709 0.063 0.768 0.051

OGNet [24] 0.916 0.047 0.916 0.041 - - 0.743 0.066 0.807 0.047
HRSOD [28] - - 0.891 0.037 - - 0.732 0.065 0.796 0.051
EARN [29] 0.921 0.057 0.916 0.040 0.845 0.095 0.802 0.061 0.844 0.059
PAGE [4] 0.924 0.042 0.918 0.037 0.835 0.078 0.770 0.066 0.815 0.051

ICTBI [19] 0.921 0.041 0.919 0.040 0.847 0.073 0.770 0.060 0.830 0.050
PFAN [6] 0.931 0.038 0.926 0.032 0.892 0.068 0.855 0.041 0.870 0.041

SBN 0.944 0.038 0.936 0.028 0.848 0.066 0.812 0.059 0.863 0.040
The best three results are shown in red, blue and green respectively.

better than other methods. For example, in Fig. 3 the 1, 3,
5 rows, SBN detects the small areas such as the feet of the
ducks in the row 1 better than other methods. (3) By the aid of
the edge enhancement architecture with various kernels, SBN
locates the boundary information and extract the edge features
more accurate than other methods (see Fig. 3 the 4, 6 rows).
(4) Even though in the images with complex background, SBN
generates the final salient maps more accurate and complete
in form than other methods (see Fig. 3 the 1, 5, 7 rows).
(5) Compared with other method, SBN highlights the salient
object and suppresses the background regions better.

b) Quantitative Comparison: As shown in Table 3, SBN
are compared with eleven state-of-the-art methods on five chal-
lenging datasets in terms of ωFβ and MAE. It can be seen that
our SBN model wins on most datasets under the metrics and
gets the best two results on all the datasets, which demonstrate
our method is useful and effective. To be specific, test on
ECSSD and HKU-IS datasets, SBN outperforms all of the
other methods. On DUTS-Test dataset, SBN gets competitive
results compared with PFAN but preforms much better than
other methods. On PASCAL-S dataset, the ωFβ index of SBN
is less than PFAN but the MAE is better, which means the
confidence values of SBN is higher. However, though SBN



gets a great improvement on very difficult and challenging
DUT-OMRON dataset compared with other methods except
PFAN, SBN still needs to be improved further on complex
background images. In a word, according to the results in
Table 3, the proposed model SBN is an effective and accurate
network, which is able to detect salient objects well and make
the network focus on the balance between different scale
salient areas.

V. CONCLUSION

In this paper, a novel Scale Balance Network is proposed
for locating large salient areas and recognizing small salient
areas. In consideration of the over-large down-sampling factor
in previous backbone networks, this paper adopts a specially
designed backbone network for object detection called DetNet,
which captures larger spatial resolution in deeper layers.
Furthermore, a novel connective feature pyramid module is de-
signed for balancing the scale between large salient areas and
small salient areas, in which feature coherence enhancement
improves the coherence between different convolutional layers
and feature progressive extraction sufficiently leverages multi-
scale and multi-level features. Besides, to refine the edge fea-
tures, an edge enhancement architecture with various kernels
is designed for locating better boundary features. Experimental
results on each module added show the effectiveness of our
proposed model. Our model outperforms other methods on
ECSSD dataset and HKU-IS dataset, and achieves consistently
superior performance in comparison with other state-of-the-
art methods on other widely used datasets under different
evaluation metrics.

REFERENCES

[1] G. Lee, Y. W. Tai, and J. Kim. Deep saliency with encoded low level
distance map and high level features. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 660668,
2016.

[2] Y. K. Hua, X. D. Gu. Group Loss: an efficient strategy for salient object
detection. Communications in Computer and Information Science , 2019,
1142, 104111.

[3] L. C. Zhou, X. D. Gu. Embedding topological features into convolutional
neural network salient object detection. Neural Networks. 2019

[4] W. Wang, S. Zhao, J. Shen , et al. Salient Object Detection With Pyramid
Attention and Salient Edges. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2019. pp: 1448-1457.

[5] N. Liu, J. Han, M.H. Yang. Picanet: Learning pixel-wise contextual
attention for saliency detection. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018. pp: 30893098

[6] T. Zhao, X. Wu. Pyramid Feature Attention Network for Saliency
Detection. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2019. pp: 3085-3094.

[7] K. M. He, X. Zhang, S. Q. Ren, J.Sun. Deep residual learning for image
recognition. Proceedings of the IEEE Conference on Computer Vision,
2016. pp: 770778.

[8] S. Karen, Z. Andrew. Very deep convolutional networks for large-scale
image recognition. International Conference on Learning Representa-
tions, 2015.

[9] Z. Tu, Y. Ma, C. Li, et al. Edge-guided Non-local Fully Convolutional
Network for Salient Object Detection. arXiv preprint arXiv:1908.02460,
2019.

[10] J Su, J Li, Y Zhang, et al. Selectivity or invariance: Boundary-
aware salient object detection. Proceedings of the IEEE International
Conference on Computer Vision. 2019. pp:3799-3808.

[11] W. Wang, S.Zhao, J. Shen, et al. Salient Object Detection With Pyramid
Attention and Salient Edges. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2019. pp: 1448-1457.

[12] Z Li, C Peng, G Yu, X Zhang, Y Deng, J Sun. Detnet: A backbone
network for object detection. European Conference on Computer Vision.
2018.

[13] O. Ronneberger, P. Fischer, T. Brox. Unet: Convolutional networks for
biomedical image segmentation. In International Conference on Medical
image computing and computer-assisted intervention, Springer, 2015.
pages: 234241.

[14] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S.-M. Hu. Global
contrast based salient region detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2015. pp:569582.

[15] C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang. Saliency
detection via graph-based manifold ranking. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2013, pages
31663173.

[16] Z. Jiang and L. S. Davis. Submodular salient region detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2013, pages: 20432050.

[17] X. Zhang, T. Wang, J. Qi, H. Lu, and G. Wang. Progressive attention
guided recurrent network for salient object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pages: 714722.

[18] G. Li , Y. Yu. Visual saliency based on multiscale deep features.
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015. pp:5455-5463.

[19] W. Wang, J. Shen, M. M. Cheng, et al. An Iterative and Cooperative Top-
down and Bottom-up Inference Network for Salient Object Detection.
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019. pp: 5968-5977.

[20] J Long, E Shelhamer, T Darrell. Fully convolutional networks for se-
mantic segmentation. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2015. pages: 34313440.

[21] Q Hou, M.M. Cheng, X Hu. Deeply supervised salient object detec-
tion with short connections. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017. pp: 3203-3212.

[22] Q. Hou, M. Cheng, X. Hu, A. Borji, Z. Tu, and P. H. S. Torr. Deeply
supervised salient object detection with short connections. IEEE Trans.
Pattern Anal. Mach. Intell. 2019.

[23] P Zhang, D Wang, H Lu, H Wang. Amulet: Aggregating multi-level
convolutional features for salient object detection. Proceedings of the
IEEE International Conference on Computer Vision. 2017. pp: 202-211.

[24] S Zhu, L Zhu. OGNet: Salient Object Detection with Output-guided
Attention Module, IEEE Transactions on Circuits and Systems for Video
Technology. 2019.

[25] S Chen, X Tan, B Wang, X Hu. Reverse attention for salient object
detection. Proceedings of the European Conference on Computer Vision
. 2018. pp: 234-250.

[26] H Wu, S Zheng, J Zhang. Fast end-to-end trainable guided filter.
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018. pp: 1838-1847.

[27] G Huang, Z Liu, L Van Der Maaten. Densely connected convolutional
networks. Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017. pp: 4700-4708.

[28] Y Zeng, P Zhang, J Zhang, Z Lin. Towards High-Resolution Salient
Object Detection. Proceedings of the IEEE International Conference on
Computer Vision. 2019. pp: 7234-7243.

[29] S Chen, B Wang, X Tan, X Hu. Embedding Attention and Residual
Network for Accurate Salient Object Detection. IEEE Transactions on
Cybernetics. 2019.

[30] T Wang, L Zhang, S Wang, H Lu. Detect globally, refine locally: A novel
approach to saliency detection. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018. pp: 3127-3135.

[31] F Yu, V Koltun. Multi-scale context aggregation with dilated convolu-
tions. International Conference on Learning Representations. 2016.

[32] Z Luo, A Mishra, A Achkar. Non-local deep features for salient object
detection. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2017. pp: 6609-6617.




