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Abstract—Although face recognition has achieved fairly re-
markable results in recent years, it heavily relies on large-
scale labeled data to train the high-capacity deep convolutional
neural networks. It is unrealistic to collect larger labeled datasets
to further boost the performance, which requires burdensome
and expensive annotation efforts. Meanwhile, there exist nu-
merous unlabeled face images. It is challenging but promising
to jointly utilize limited labeled and abundant unlabeled data
to obtain higher performance gain, which is the target of
semi-supervised learning. In this paper, we propose a bottom-
up method, Neighborhood-Aware Attention Network (NAAN),
for semi-supervised face recognition. It clusters unlabeled face
images by collaboratively predicting pairwise relations based
on their neighborhood information, where the neighborhood is
defined as a k-hop ego network centered in the given sample
called “ego”. Considering the different importance of neighbors,
we employ the graph attention network to learn the ego’s
representation. We evaluate our model on two face recognition
datasets MegaFace and IJB-A, and it yields favorably comparable
performance to the fully-supervised results.

Keywords—Semi-supervised Learning, K-hop Ego Network,
Face Recognition

I. INTRODUCTION

Face recognition is one of the most important topics in
the area of biometrics research. The research focuses on
face recognition mainly lie in several directions, such as
the designs of loss functions and network structures. Loss
functions have evolved to ones with more discriminative and
generalization ability, such as contrastive loss [1], [2], and
variants of both triplet loss [3]–[7] and softmax loss [8]–[11].
At the same time, many general deep convolutional neural
networks (DCNNs) for image recognition, including AlextNet
[12], ResNet [13] and DenseNet [14], have also been proposed
to improve the performance on accuracy, speed and model size.
Benefiting from the rapid developments, face recognition has
made tremendous strides [11], [15]–[18]. However, it requires
large-scale labeled images to train high-capacity networks. In
fact, the annotated data are limited due to high labeling costs,
but we can easily collect numerous unlabeled face images. In
order to get rid of blindly relying on the exponential growth
of labeled face images to further improve performance, it is
desirable to learn better networks with limited labeled data
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and abundant unlabeled data, which is the target of semi-
supervised learning.

In the early stages, many previous methods [19]–[21] for
semi-supervised face recognition are based on the common
assumption that the label space is shared between labeled and
unlabeled data. They either propose a self-training method to
increase the labeled dataset by adding unlabeled samples clas-
sified with the highest confidence using the trained PCA-based
classifier [20], or propose a semi-supervised gallery dictionary
learning to model both linear and non-linear variation and
leverage the unlabeled data to learn a more precise gallery dic-
tionary [19]. However, the assumption is inconsistent with the
real-world scenarios where the environment of data acquisition
is complex, such as the Internet and video surveillance. We can
collect numerous unlabeled data while they are independent
with the labeled samples without any identity overlapping. On
this premise, face recognition has developed from the early
closed-set problem, assuming that the labeled data contain
identities of subjects that are enrolled in the unlabeled data,
to the recent open-set problem, making no assumption on the
relationships between labeled and unlabeled samples.

Some works [22]–[24] have noticed the shift towards the
open-set setting. They do not assume data distribution in
advance, and can naturally adapt to various situations. Al-
though adopting different designs to cluster face images, these
methods are applicable to the semi-supervised face recognition
task. They can be divided into two different categories, the
top-down methods and the bottom-up ones. The top-down
approaches take a global perspective to cluster faces based
on the data distribution. Li et al. [23] propose a framework to
combine a detection and a segmentation module to pinpoint
face clusters, which is inspired by Mask R-CNN [25]. It
provides an insight to perform top-down face clustering but
its two-stage implementation is too complex to deploy. The
bottom-up approaches are able to perceive local data struc-
tures and cluster faces by predicting pairwise relations. CDP
[22] proposes a mediator to aggregate opinions of pairwise
relations derived from a committee formed by several models.
Wang et al. [24] propose the Instance Pivot Subgraphs (IPS)
constructed with the residual vectors between features of pivot
and its neighbors. It performs the graph convolution network
to predict the pivot-neighbor relations. They either aggregate
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the neighborhood information with hand-crafted features (e.g.,
the mean and variance vector of neighbors), or use only pre-
defined vector differences in pairwise relation modeling.

In this paper, we propose a Neighborhood-Aware Attention
Network (NAAN) for semi-supervised face recognition, which
aims at jointly making use of labeled and unlabeled data to
further improve model performance trained using only limited
labels. The point lies in how to pinpoint each face cluster
among unlabeled data and assign pseudo-labels for them to
expand the labeled training set. Different from the bottom-
up methods above, our method learns to make collaborative
link predictions between unlabeled pairs in a data-driven way,
without any pre-design to model the relations. Firstly, we
construct k-hop ego networks for all unlabeled samples. The
k-hop ego network for the target node consists of the node
(named “ego”) itself and all its neighbors (and edges) within k
hops. Then the candidate pairs are derived from the ego nodes
and all their one-hop neighbors. In order to predict relations
of candidate pairs, NAAN applies the graph attention network
on the ego networks. It obtains egos’ representations by
assigning different attention scores to nodes in the neighbor-
hood according to their importance. The collaborative relation
prediction is conducted with the representations, containing
the neighborhood information from two samples. We further
merge positive pairs gradually to cluster unlabeled faces and
perform pseudo label propagation. Finally, NAAN trains the
DCNN with both labeled and pseudo-labeled data in a multi-
task fashion.

In summary, the main contribution of our work is the
proposed unified Neighborhood-Aware Attention Network
(NAAN) for semi-supervised face recognition. By col-
laboratively inferring pairwise relations with the learned
neighborhood-aware representations, NAAN performs pseudo
label propagation in unlabeled face images. The representation
of each sample is derived from performing feature smoothing
with the graph attention network, where the neighborhood is
defined as the k-hop ego network around the center sample.
Our experimental results on two face datasets MegaFace and
IJB-A demonstrate the superiority of our proposed model.

II. RELATED WORK

Our method aims at solving the problem of semi-supervised
face recognition to bridge the gap between learning with
all labeled data and partially labeled data. With numerous
unlabeled data, recent works often construct local sub-graphs
and apply graph convolutional networks to infer relations
between unlabeled samples.

A. Semi-supervised Face Recognition

Semi-supervised learning (SSL) [26]–[28] has been proven
to be powerful to learn a better prediction rule with labeled
and unlabeled data together than based on labeled data alone,
mitigating the reliance on large labeled datasets. There exist
various methods to boost the performance of SSL. Generative
modeling [29]–[31] makes efforts to generate new data by
fitting the original data distribution. Co-training [32]–[35] and

tri-training [36], [37] are the representatives of disagreement-
based methods which train multiple learners and exploit the
disagreements to classify unseen instances. Graph-based meth-
ods [38]–[40] are proposed to propagate pseudo-labels on
the naturally existed graphs (e.g., social networks) or human
established graphs (e.g., k-nearest neighbors graphs).

In terms of face recognition, it has achieved remarkable
results in recent years. However, the development is limited
due to the difficulties of collecting larger labeled datasets.
Some recent approaches [22]–[24] adopt the more realistic
open-set setting to utilize unlabeled face images. CDP [22] is
formed with two modules, the committee and the mediator,
which selects positive face pairs by carefully aggregating
multi-view information from various DCNNs. Wang et al.
[24] propose to formulate the problem of face clustering as
a linkage prediction problem. By constructing the Instance
Pivot Subgraphs (IPS), it performs reasoning to predict the link
between two unlabeled samples with the graph convolution
network (GCN). Li et al. [23] formulate face clustering as a
detection and segmentation pipeline based on GCN. It learns
to cluster faces instead of relying on hand-crafted criteria.

B. Graph Convolutional Networks

Since the convolutional neural network (CNN) was pro-
posed, it has been widely used in many fields, such as
image classification and video processing, where data are
typically presented as regular grids in the Euclidean space.
In contrast, there many non-Euclidean structure data naturally
exist in the real-world applications, such as social analysis
[41]–[43], fraud detection [44], [45], traffic prediction [46]
and computer vision [23], [24], [47]. These non-grid data are
usually presented in the form of graphs. CNN cannot directly
deal with them because of the various and complex structures
of graphs. Graph convolutional networks (GCNs) are natural
extensions of CNNs on the graph domain to explore relations
and interdependency between objects in graphs.

Many efforts have been devoted to generalizing convo-
lutional operations on the graph domain, which has been
intensely studied mainly in two ways, the spectral-based GCNs
[48]–[50] and the spatial-based GCNs [51], [52]. The former
ones define the convolution operation in the spectral domain
based on the graph Fourier transform, an analogy with 1-
D signal Fourier transform. The latter ones directly define
convolution operations in the graphs with nodes and their
neighbors. They both take advantage of the rich neighborhood
information to obtain node representations. Besides, attention
mechanism recently has gained popularity and been applied to
various applications. It has been introduced into GCNs to focus
on the most informative parts of the input. Many methods [44],
[51] have validated the efficacy of paying different attention
to neighbors.

In this paper, we construct a nearest neighbor graphs based
on the cosine similarity of representations. In order to control
the information flows to aggregate message to the target nodes,
GCN together with the attention mechanism are introduced to
perform feature smoothing on the constructed graphs.
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Fig. 1. The pipeline of our proposed Neighborhood-Aware Attention Network (NAAN) for semi-supervised face recognition. It consists of three modules,
(a) supervised initialization for a DCNN with labeled data, (b) pseudo label propagation in unlabeled data after exploring pairwise relations with the graph
attention network, (c) joint training with the labeled and pseudo-labeled data.

III. METHOD

In this section, we will present an overview of our proposed
Neighborhood-Aware Attention Network (NAAN) for semi-
supervised face recognition. As shown in Fig. 1, given labeled
data, we first use them to initialize a DCNN and other param-
eters in a fully-supervised manner. We then extract features of
unlabeled data with the pre-trained DCNN to construct a k-
hop ego network for each sample. By applying neighborhood
aggregation with the graph attention network, we generate
neighborhood-aware embeddings. After collaborative predict-
ing pairwise relations and merging positive pairs, the faces are
clustered to perform pseudo label propagation for all unlabeled
data. Finally, we jointly train labeled and unlabeled data in a
multi-task fashion.

Next, we will introduce details of our proposed method from
the following aspects: 1) supervised initialization, 2) pseudo
label propagation, 3) joint training.

A. Supervised Initialization

In the large-scale semi-supervised learning scenario, only a
small portion of data are labeled and a large number of data
are without annotations. It is notable that there is no identity
overlapping between labeled and unlabeled parts. We first train
a DCNN equipped with the advanced ArcFace [11] serving as
the loss function in a fully-supervised manner. The introduced
ArcFace is proposed to obtain highly discriminative features
for face recognition. With the trained DCNN, we then extract
features for unlabeled data.

(a) Data Collection(a) Data Collection (b) 2-hop ego network(b) 2-hop ego network

Fig. 2. The construction process of a 2-hop ego network. (a) The collection
of features for unlabeled samples. (b) The 2-hop ego network centered in the
ego node ui. In the sub-figure (b), solid lines are used to represent the 1-hop
neighborhood and dashed lines to present the second-order one for ui. In the
figure, we set k1=5 and k2=2, where k1 is the number of 1-order neighbors
and k2 is the number of 2-order neighbors.

B. Pseudo Label Propagation

Inspired by the previous methods [22], [24], it is sufficient
to predict the linkage likelihood between each sample and
its nearest neighbors rather than all pairs to achieve a fairly
good result. We adopt the same protocol to predict pairwise
relations and assign a unique pseudo-label to each connected
component. The pairwise relations are decided by comparing
representations of two samples, which contain the local neigh-
borhood information.
Construction of K-hop Ego Networks. We feed the trained
DCNN with unlabeled images Du as input and extract fea-



(a) Update from the second layer to the first layer

(b) Update from the first layer to the ego

Fig. 3. An illustration of the attentional modulation process between ui and
its neighborhood. It takes two steps to update the ego’s representation. In this
figure, the number of heads is set to three. Different line and arrow colors
denote independent attention computations across multi-head attention. (a)
Update from the second layer to the first layer. The 1-hop neighbors of ui
fuses information from their 1-hop neighborhood, respectively. (b) Update
from the first layer to the ego. The final representation of ui is concatenated
or averaged the outputs of multi heads, which contains information from the
whole neighborhood. The message aggregation flows from the outermost layer
to the target node ui.

tures, forming a set U = {ui ∈ Rd|i = 1, . . . , Nu}, where d
is the dimension of features and Nu is the number of unlabeled
images. For the convenience of description, ui represents both
the extracted feature and the image itself in the following
sections. For each unlabeled sample ui, we introduce the
construction of its k-hop ego network in detail. The ego
network is the collection of nodes and their connected edges,
where nodes include the focal one named “ego” and others that
have connections to the ego. It usually refers to the one-hop
ego network containing ego and nodes directly connected to it.
In this paper, we extend the original definition to the k-hop ego
network, containing the ego and all its k-hop neighbors. The
k-hop neighbors range from 1-order ones to k-order ones of ui.
Specifically, we find the k1 nearest neighbors for ui, forming
the one-hop neighborhood u1

i = {ui1, ui2, . . . , uik1}. In terms

of each sample uij ∈ u1
i , we then find its k2 nearest neighbors

u2
ij = {uij1, uij2, . . . , uijk2}. Together with others, the 2-order

neighborhood of ui is formed as u2
i = {u2

i1, . . . ,u2
ik1
}. Simi-

larly, we obtain the neighborhood from the 1-order one to the
k-order one. All of them form the k-hop neighborhood of ui as
ui = {u2

i , . . . ,uk
i }. In Fig. 2, we provide an illustration of the

construction of a 2-hop ego network centered in ui. Actually,
we set k = 2 in our experiments as some similar works [24],
[44] to fully utilize the rich neighborhood information.
Attentional Modulation on Ego Networks. In order to infer
on pairwise relations, we should first aggregate the neighbor-
hood information and obtain representations of all unlabeled
images. We adopt the idea of [51] to apply the graph attention
network on the 2-hop ego networks centered in ui. As shown
in Fig. 3, it needs two steps to obtain the final representation.
The message aggregation starts from the outermost layer to the
target node ui. In the first step, representations of the 1-hop
neighbors of ui are updated by their 1-hop neighbors, which
are also the 2-order neighbors of ui. We take the updating
process of uij for example. The attention coefficient between
uij and its 1-hop neighbor uijt is defined as:

e(uij , uijt) = f(Wuij ,Wuijt), (1)

where W ∈ Rd′×d is the parameter matrix to project
the original embeddings and f(·) is the attention function.
e(uij , uijt) computes the importance of node uijt to uij .
In our experiments, f(·) is a fully-connected layer with the
parameter matrix Pa ∈ R2d′ . Equation (1) is updated as:

e(uij , uijt) = LeakyReLU(Pa[Wuij ||Wuijt]), (2)

where LeakyReLU(·) is the activation function and || repre-
sents the vector concatenation operation. To make coefficients
easily comparable across different nodes, we introduce the
softmax function to perform normalization as:

α(uij , uijt) =
exp(e(uij , uijt))∑k2

m=0 exp(e(uij , uijm))
, j ∈ [0, 1, ..., k2]

(3)
where uij0 is the neighbor with index 0 in the 1-hop neigh-
borhood of uij , which is the node uij itself. In a sense,
the attention coefficient e(uij , uij0) can be interpreted as one
kind of neighborhood information derived from itself. By
computing weighted combination of the 1-hop neighbors of
uij , the representation is updated as:

u′ij = σ(

k2∑
t=0

α(uij , uijt)Wuijt), (4)

where σ(·) is the activation function. We extend to use multi-
head attention to stabilize the process of self-attention as:

u′ij =
1

Nh1

Nh1∑
l=1

σ(

k2∑
t=0

αl(uij , uijt)Wluij), (5)

where Nh1
is the number of heads. It uses average pooling

between different heads and the concatenation operation is
another choice. Similarly, other 1-hop neighbors of ui are
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Fig. 4. The framework of joint training. The parameters of DCNNs for
extracting features are shared in the two streams. The fully connected layers
for training labeled and pseudo-labeled data are independent. The final
objective function is the weighted combination of loss functions in the two
streams.

updated their representations by incorporating the information
of their k2 nearest neighbors, respectively. The 1-hop neigh-
borhood is updated as (u1

i )
′ = {u′i1, u′i2, . . . , u′ik1}.

The second step is to perform attentional modulation be-
tween ui and its updated neighborhood (u1

i )
′. Finally, the

representation of the ego ui is written as follows:

u′i =
1

Nh2

Nh2∑
l=1

σ(

k1∑
j=0

αl(ui, u
′
ij)Wlu

′
ij), (6)

where the attention coefficient αl(ui, u′ij) is computed as
follows:

αl(ui, u
′
ij) =

exp(e(ui, u
′
ij))∑k1

m=0 exp(e(ui, u
′
im))

. (7)

In the updating process, we leverage the attention mech-
anism to identify informative neighbors. It calculates the
optimal coefficients and adaptively adjusts the contribution
of different neighbors. The new representation encodes the
information of the whole neighborhood in the 2-hop ego
network.
Inference on Pairwise Relations and Assignment of Pseudo-
labels. Different from the previous methods [22], [24], we
do not use the pre-defined designs on the 1-hop (i.e. k1
nearest neighbors) or 2-hop neighborhood to predict relations
between two unlabeled samples. We make the collaborative
prediction about pairwise relations based on both of their
neighborhoods. In other words, the relation prediction of any
two unlabeled samples is to compare their representations
obtained by integrating their respective 2-hop ego network
information. Actually, considering the computation efficiency,
the candidate pairs are limited to nodes and its kβ nearest
neighbors, where kβ is a hyper-parameter selected on the
validation set. We only use the decision-maker to predict
pairwise relations of candidate pairs. The decision-maker is
formulated as a 2-layer MLP classifier to predict the link
likelihood of each pair, which is trained in the labeled data
in an end-to-end manner.

The data collection has as many egos as it has samples. We
loop over all samples and follow the same process described
above to obtain candidate pairs with linkage likelihood. Instead
of setting a threshold and cutting all edges below it, we
follow the same strategy as [22], [24] to perform pseudo
label propagation. It uses all edges to form connected clusters
and add them to a queue. Then it cuts off low-score edges
if the size of connected cluster is larger than a fixed size
and we re-add it to the queue. The low-score edges are
those lower than the given threshold, which increase by the
parameter η at each iteration. We will discuss the setting of
η in the following sections in detail. The connected clusters
with satisfying size are assigned unique pseudo-labels. The
iterations are not finished until the queue is empty.

C. Joint Training

As shown in Fig. 4, we train labeled and pseudo-labeled
data in a multi-task manner, which share parameters in feature
extraction layers, i.e., DCNNs. The fully-connected layers
are different for non-overlapping classes between labeled
data Xl = {(li, yi)|i ∈ [1, Nl]} and pseudo-labeled data
Xu = {(ui, pi)|i ∈ [1, Nu]}. The joint loss function can be
written as:

L = γLlabeled + (1− γ)Lpseudo

= γ

Nl∑
i=1

c(li, yi) + (1− γ)
Nu∑
i=1

c(ui, pi),
(8)

where γ ∈ (0, 1) is a weighting parameter to balance two tasks
and c(·) is the loss function. In our experiments, we adopt the
same loss function ArcFace [11] as in supervised initialization
stage.

IV. EXPERIMENTS

A. Datasets and Metrics

Training set. We trained our proposed network on the MS-
Celeb-1M dataset [53], which is one of the largest face recog-
nition datasets containing 98,685 celebrities and 10 million
images. Since the original dataset contains annotation noises,
it is cleaned based on the annotations from ArcFace [11].
There are 5.8M images from 86k identities remaining. We
follow [23] to split the dataset into 10 parts with an almost
equal number of identities. Each part contains 8.6K identities
with around 580K images, without any identity overlapping
between different parts. The supervised initialization uses only
one part as labeled data. These face images are horizontally
flipped for data augmentation. The other nine part are regarded
as unlabeled data. We randomly select one part as the valida-
tion set and adopt different experimental settings with 1, 3, 5,
7, 9 parts of unlabeled data as part of training set, respectively.
Testing set. We evaluate our network on two face recognition
dataset MegaFace [54] and IJB-A [55]. MegaFace is the largest
publicly available dataset for face recognition. It includes a
gallery set with 1M images and a probe set from FaceScrub
[56] with 3,530 images. Considering the noisy labels in



(a) MegaFace top-1 identification rate@1M (b) IJBA TPR@FPR=0.001

Fig. 5. Comparison with other methods on MegaFace identification protocol and IJB-A verification protocol. In both sub-figures, all methods start from the
same leftmost point where we only perform supervised initialization with labeled data. The upper bound refers to fully-supervised learning with corresponding
numbers of labeled samples.

MegaFace, we follow ArcFace [11] to refine the dataset. IJB-A
contains 5,712 images of 500 identities.
Evaluation Metrics. We adopt face identification benchmark
and face verification protocol in MegaFace and IJB-A, re-
spectively. The top-1 identification rate is used in MegaFace
benchmark, which is the percentage of ground truth data
appearing in the top-1 lists. For IJB-A benchmark, we use the
true positive rate under the condition that the false positive
rate is 0.001. Besides, in order to evaluate the performance of
unlabeled samples in the training set, we introduce a widely
used measurement, F-score, to take into account both pairwise
precision P and recall Q. It is defined as F = 2PR

P+R .

B. Implementation Details

We update nodes in the k-hop ego networks with two graph
attention network layers. The first layer consists of 4 attention
heads, following the second layer with 2 attention heads. The
GCN layers and the 2-layer classifier are trained end-to-end
and the Adam optimizer [57] is employed for optimization.

C. Experimental Comparison

1) Baseline Methods: In our experiments, we compare our
proposed method with the following baselines, including both
traditional methods and a recently published one.
• DCNN+K-Means Clustering [58]. K-Means clustering

is a popular clustering method, which partitions features
extracted with the trained DCNN into k clusters by
minimizing total within-cluster variances.

• DCNN+HAC [59]. Hierarchical agglomerative clustering
(HAC) seeks to build a hierarchy of clusters, which relies
on a linkage criterion which specifies the dissimilarity of
sets.

• LTC [23]. LTC adopts a pipeline similar to the Mask
R-CNN [25], combining a detection and a segmentation

module to pinpoint face clusters. It is a two-stage version,
where GCN-S is introduced to refine the output of GCN-
D. GCN-S detects and discards noises inside clusters.

• NAAN-1. It is the implementation of our proposed model
with singleton clusters (isolated points).

• NAAN-2. It is the version of NAAN removing singleton
clusters after performing pseudo label propagation.

2) Results: As shown in Fig. 5, our proposed model has
fairly good results on both benchmarks. We can observe
that our method obtains significant and steady performance
gain compared to the leftmost points where the supervised
initialization process is conducted without unlabeled data. It
verifies the effectiveness of the pseudo label propagation to
cluster unlabeled face images. Both NAAN-1 and NAAN-
2 surpass the traditional methods K-Means and HAC by a
large margin. With a limited number of unlabeled data, K-
Means even falls into performance degradation due to noisy
pseudo-labels. We can see that our model outperforms the
recent method LTC [23] and further improves the performance
by 1.4% on MegaFace dataset with all unlabeled data. After
removing singleton clusters, NAAN-2 performs better than
NAAN-1 with higher recall scores. It is notable that NAAN-2
is close to the upper bound which is fully-supervised trained
with corresponding numbers of labeled samples.

D. Ablation Study

In this section, we conduct ablation studies to quantify
the effects of our proposed NAAN with different choices
of pairwise prediction and various thresholds chosen in the
pseudo label assignment process.
Different choices of pairwise prediction. In the training
phase, we set k1 = 100 and k2 = 5 to obtain enough neigh-
borhood information to distinguish the informative neighbors
from mistaken ones. The parameter kβ is the number of



(a) Different choices of ego networks

(b) Different choices of kβ

Fig. 6. Ablation studies on kβ , k1 and k2. (a) With the fixed value kβ = 20,
the influence of the range of neighbors in ego networks. (b) With various
settings of ego networks, the influence of kβ to provide different numbers of
candidate pairs.

candidate pairs. Considering the generalization ability, kβ is
set to 100 to guarantee a relatively balanced sampling of
negative and positive pairs. In the testing phase, we investigate
the influences brought by different choices of kβ and ego
networks, especially the settings of k1 and k2. Fig. 6 (a)
indicates k1 has a greater impact on the results compared with
k2, because the 1-hop neighbors are directly involved in the
representation computation of the ego node in the second step
of attentional modulation. NAAN achieves better performance
with k1 = 50 and k2 = 3. As shown in Fig. 6 (b), higher
kβ results in more candidate pairs, which include more false
pairs to lower the precision scores but bring in more positive
ones to improve the performance of recall scores. Besides,
kβ is directly related to the computational costs. We find
that kβ = 20 provides a relatively good trade-off between
efficiency and performance. We finally take the setting of
k1 = 50, k2 = 3 and kβ = 20 in the testing phase.
The influence of parameter η. The increasing factor η is to
control the threshold to cut off low-score edges in the pseudo
label assignment process. With various values of η, we report
the number of clusters, pairwise precision, pairwise recall and
F-score in Table I. With a larger value of η, the assignment
will cut off more edges when the size of connected component

TABLE I
EVALUATION FOR DIFFERENT THRESHOLDS W/WO SINGLETON CLUSTERS

ON MS-CELEB-1M.

#clusters precision recall F-score discard ratio
with singleton clusters

η=0.1 22756 73.6 91.0 81.3 -
η=0.2 23963 76.2 90.7 82.8 -
η=0.4 26585 80.4 90.2 85.0 -
η=0.6 30645 85.7 89.4 87.5 -
η=0.8 36417 89.8 88.0 88.9 -

without singleton clusters
η=0.1 9087 73.0 94.8 82.5 2.3
η=0.2 9533 75.6 94.8 84.2 2.5
η=0.4 10338 79.8 94.8 86.7 2.8
η=0.6 11346 85.3 94.8 89.8 3.3
η=0.8 12626 89.4 94.6 91.9 4.1

is larger than the given number. It often leads to more clusters
especially the singleton ones, which can be inferred from the
comparison between the first and second group in Table I.
We can see a trade-off between pairwise recall and pairwise
precision from Table I. With the increase of η, edges with
higher scores are preserved, leading to higher precision scores.
At the same time, the pruning strategy will introduce some
limited number of isolated points without any connection with
other samples. Compared to the huge performance gain in
pairwise precision, the performance degradation of pairwise
recall is rarely small. As shown in the second group of Table
I, after removing singleton clusters, the pairwise recall scores
become steady and our method still selects high-precision pairs
with different values of η. Despite discarding some samples,
our model obtains purer pseudo-label clusters.

V. CONCLUSION

In this paper, we propose a unified Neighborhood-Aware
Attention Network (NAAN) for semi-supervised face recog-
nition to bridge the gap between learning with fully labeled
data and partially labeled data. By applying graph attention
network on the constructed k-hop ego networks, the context-
aware representations of egos are derived from fully utilizing
local sub-graph information. The pseudo label propagation
is conducted after the collaborative prediction on pairwise
relations of the learned representations of unlabeled data. Our
model demonstrates its effectiveness by achieving comparable
results when compared to the fully-supervised training on the
datasets IJB-A and MegaFace.

As for the future work, we plan to extend our proposed
method to perform semi-supervised learning on the general
image recognition task.
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Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[52] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in NeurIPS, 2016, pp. 1993–2001.

[53] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “Ms-celeb-1m: A dataset
and benchmark for large-scale face recognition,” in ECCV, 2016, pp.
87–102.

[54] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and E. Brossard,
“The megaface benchmark: 1 million faces for recognition at scale,” in
CVPR, 2016, pp. 4873–4882.

[55] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen,
P. Grother, A. Mah, M. J. Burge, and A. K. Jain, “Pushing the frontiers of
unconstrained face detection and recognition: IARPA janus benchmark
A,” in CVPR, 2015, pp. 1931–1939.

[56] H. Ng and S. Winkler, “A data-driven approach to cleaning large face
datasets,” in ICIP, 2014, pp. 343–347.

[57] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[58] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Infor-
mation Theory, vol. 28, no. 2, pp. 129–136, 1982.

[59] R. Sibson, “SLINK: an optimally efficient algorithm for the single-link
cluster method,” Comput. J., vol. 16, no. 1, pp. 30–34, 1973.




