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Abstract—Recent neural sequence to sequence models have
provided feasible solutions for abstractive summarization. How-
ever, such models are still hard to tackle long text dependency
in the summarization task. A high-quality summarization system
usually depends on strong encoder which can refine important
information from long input texts so that the decoder can
generate salient summaries from the encoder’s memory. In
this paper, we propose an aggregation mechanism based on
the Transformer model to address the challenge of long text
representation. Our model can review history information to
make encoder hold more memory capacity. Empirically, we
apply our aggregation mechanism to the Transformer model and
experiment on CNN/DailyMail dataset to achieve higher quality
summaries compared to several strong baseline models on the
ROUGE metrics.

I. INTRODUCTION
The task of text summarization is automatically com-

pressing a long text to a shorter version while keeping the
salient information. It can be divided into two approaches:
extractive and abstractive. The extractive approach usually
selects sentences or phrases from the source text directly.
On the contrary, the abstractive approach first understands
the semantic information of the source text and generates
novel words not appeared in the source text. Extractive sum-
marization is easier, but abstractive summarization is more
like the way humans process text. This paper focuses on the
abstractive approach. Unlike other sequence generation tasks
in NLP(Natural Language Processing) such as NMT(Neural
Machine Translation), in which the lengths of input and output
text are close, the summarization task exists severe imbalance
on the lengths. It means that the summarization task must
model long-distance text dependencies.

As RNNs can tackle time sequence text, various sequence-
to-sequence models [6] based on them have emerged on a
large scale and these models can generate promising results.
To solve the long-distance text dependencies, [7] first proposes
the attention mechanism which allows each decoder step
to refer to all encoder hidden states. [36] first incorporates
attention mechanism to summarization task. There are also
other attention-based models to ease the problem of long input
texts for summarization task, like Bahdnau attention [2], hi-
erarchical attention [4], graph-based attention [11] and simple
attention [44]. [8] segments and encodes text independently
then broadcasts their encoding to others. Though these systems
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are promising, they exhibit undesirable behaviors such as
producing inaccurate factual details and repeating themselves
as it is hard to decide where to attend and where to ignore for
one-pass encoder.

Modeling an effective encoder for representing a long text
is still a challenge in previous work, and we are committed
to solving long text dependency problems by aggregation
mechanism. The key idea of the aggregation mechanism is
to collect history information to improve the expressiveness
of the encoder by attention mechanism. It suggests that the
encoder can read long input texts a few times to understand
the text clearly. We build our model by reconstructing the
Transformer model [1] by incorporating our novel aggregation
mechanism. Empirically, we first analyze the features of sum-
marization and translation dataset. Then we experiment with
different encoder and decoder layers and the results reveal
that the ability of the encoder layer is more important than
the decoder layer, which implies that we should focus more
on the encoder. Finally, we experiment on CNN/DailyMail
dataset, and our model generates higher quality summaries
compared to strong baselines on ROUGE metrics and human
evaluations.

The main contributions of this paper are as follows:
• We put forward a novel aggregation mechanism to col-

lect history information and apply it to the Transformer
model.

• Our model outperforms about 1 ROUGE scores on
CNN/DailyMail dataset and 5 ROUGE scores on our Chi-
nese news dataset compared to the Transformer model.

II. RELATED WORK

In this section, we first introduce extractive summarization
then introduce abstractive summarization.

A. Extractive Summarization

Extractive summarization aims to select salient sentences
from source texts directly. This method is always mod-
eled as a sentence ranking problem via selecting sentences
with high scores [21], sequence labeling(binary label) prob-
lem [26] or integer linear programmers [22]. The models
above mostly leverage manually engineered features, but
they are now replaced by the neural network to extract
features automatically. [9] gets sentence representation using

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



CNN(convolutional neural network) and document represen-
tation using RNN(recurrent neural network) and then selects
sentences/words using hierarchical extractor. [3] treats the
summarization as a sequence labeling task. The model gets
sentence and document representations using RNNs and after
a classification layer, each sentence will get a label which indi-
cates whether this sentence should be selected. [35] presents a
model for extractive summarization by jointly learning score
and selecting sentences. [41] puts forward a latent variable
model to tackle the problem of sentence label bias.

B. Abstractive Summarization

Abstractive summarization aims to rewrite source texts
with understanding semantic meaning. Most methods of this
task are based on sequence to sequence models. [36] first
incorporates the attention mechanism to abstractive summa-
rization and achieves state of the art scores on DUC-2004 and
Gigaword datasets. [10] improves the model performance via
RNN decoder. [4] adopts a hierarchical network to process
long source text with hierarchical structure. [16] is the first
to show that a copy mechanism can take advantage of both
extractive and abstractive summarization by copying words
from the source text (extractive summarization) and generating
original words (abstractive summarization). [2] incorporates
copy and coverage mechanisms to avoid generating inaccurate
and repeated words. [8] splits text to paragraph and applies
encoder to each paragraph, then broadcasts paragraph encod-
ing to others. Recently, [1] gives a new view of sequence to
sequence model. It employs the self-attention to replace RNN
in sequence to sequence model and uses multi-head attention
to capture different semantic information.

Lately, more and more researchers focus on combine ab-
stractive and extractive summarization. [18] builds a unified
model by using inconsistency loss. [14] first trains content-
selector to select and mask salient information then trains the
abstractive model (Pointer Generator) to generate abstractive
summarization.

III. MODEL

In this section, we first describe the attention mechanism
and the Transformer baseline model, after that, we introduce
the pointer and BPE mechanism. Our novel aggregation mech-
anism is described in the last part. The code for our model is
available online.1

Notation We have pairs of texts {X,Y }, where d ∈ X is
a long text and y ∈ Y is the summary of corresponding d.
The lengths of d and y is ld and ly respectively. Each text d
is composed by a sequence of words w, and we embed word
w into vector e. So we represent document d with embedding
vector {e1, e2, ..., eld} and we can get representation of y the
same as d.

1https://github.com/Pc-liao/Transformer agg

A. Attention Mechanism

The attention mechanism is widely used in text summariza-
tion models as it can produce word significance distribution
in source text for disparate decode steps. [7] first proposes the
attention mechanism where attention weight distribution can
be calculated:

eti = v>tanh(wsst + whhi + bti) (1)

Attentiont = softmax(et) (2)

Where hi is the encoder hidden states in ith word, st is
decoder hidden states at time step t. v, ws, wh and bti are
learnable parameters. Attentiont is probability distribution
that represents the importance of different source words for
decoder at time step t.

Transformer redefines attention mechanism more concisely.
In practice, we compute the attention function on a set of
queries simultaneously, packed together into a matrix Q. The
keys and values are also packed together into matrices K and
V .

Attention(Q,K, V ) = softmax(
QK>√
dk

)V (3)

where > is transpose function, Q ∈ Rn×dk,K ∈
Rm×dk, V ∈ Rm×dv , R is the real field, n,m are the lengths
of query and key/value sequences, dk, dv are the dimensions of
key and value. For summarization model we assume K = V .
Self-attention can be defined from basic attention with Q =
K = V . And multi-head attention concatenates multiple basic
attentions with different parameters. We formulate multi-head
attention as:

MH(Q,K, V ) = Concat(hd1, hd2..., hdi)wmh (4)

where hdi = Attention(QwQ
i ,Kw

K
i , V w

V
i ), and

wQ
i , w

K
i , w

V
i , wmh are learnable parameters.

B. Transformer Baseline Model

Our baseline model corresponds to the Transformer model
in NMT tasks. The model is different from previous sequence-
to-sequence models as it applies attention to replace RNN. The
Transformer model can be divided into encoder and decoder,
and we will discuss them respectively below.

Input The attention defined in the Transformer is the bag
of words(BOW) model, so we have to add extra position
information to the input. The position encodes with heuristic
sine and cosine function:

PE(pos,2i) = sin(pos/100002i/dmodel) (5)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (6)

where pos is the position of word in text, i is the dimension
index of embedding, and the dimension of model is dmodel.
The input of network U is equal to source text word em-
beddings Ew = {e1, e2, ..., eld} added position embeddings
Ep = {p1, p2, ...pld}.
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Fig. 1. Aggregation Transformer model overview. Compared with the Transformer baseline model, we apply the aggregation layer between encoder and
decoder. The aggregation layer can collect history information to redistribute the encoder’s final hidden states.

Encoder The goal of encoder is extracting the features
of input text and map it to a vector representation. The
encoder stacks with N encoder layers. Each layer consists
of multi-head self-attention and position-wise feed-forward
sublayers. We employ a residual connection around each of
the two sublayers, followed by layer normalization. From
the multi-head attention sublayer, we can extract different
semantic information. Then we compute each encoder layer’s
final hidden states using position-wise feed-forward. The lth
encoder layer is formulated as:

h(l)s = Norm(MH(Q(l)
s ,K(l)

s , V (l)
s ) +Q(l)

s )

h
(l)
el = Norm(PFF (h(l)s ) + h(l)s )

= Norm((relu(h(l)s wl1
s + bl1s )w

l2
s + bl2s ) + h(l)s )

(7)

where h(l)s is the multi-head self-attention output after resid-
ual connection and Norm(.) is layer normalization function,
h
(l)
el means the output of encoder layer l. Q(l)

s = K
(l)
s =

V
(l)
s = U if l = 1, or Q(l)

s = K
(l)
s = V

(l)
s = h

(l−1)
el ,

wl1
s , w

l2
s and bl1s , b

l2
s are learnable parameters, and PFF (.)

is the position-wise feed-forward sublayer. This sublayer also
can be described as two convolution operations with kernel
size 1.

Decoder The decoder is used for generating salient and
fluent text from the encoder hidden states. Decoder stacks with
N decoder layers. Each layer consists of masked multi-head
self-attention, multi-head attention, and feed-forward sublay-
ers. Similar to the encoder, we employ residual connections
around each of the sublayers, followed by layer normalization.
And we take lth decoder layer as example. We use the masked
multi-head attention to encode summary as vector h(l)ms:

h(l)ms = Norm(MH∗(Q(l)
ms,K

(l)
ms, V

(l)
ms) + h(l)ms) (8)

where Q(l)
ms = K

(l)
ms = V

(l)
ms = (Egw + Egp) in the first layer

and Q
(l)
ms = K

(l)
ms = V

(l)
ms = h

(l−1)
dl in other layers. h(l−1)dl

is the output of the (l − 1)th decoder layer, Egw, Egp is the
word embeddings and position embeddings of generated words
respectively. The MH∗(.) is masked multi-head self-attention
and the mask is similar with the Transformer decoder. Then
we execute multi-head attention between encoder and decoder:

h
(l)
d = Norm(MH(Q

(l)
d ,Kd, Vd) +Q

(l)
d ) (9)

where Q(l)
d = h

(l)
ms is hidden states of decoder masked multi-

head attention and Kd = Vd = hNel is the last encoder layer
output states. Finally, we use position-wise feed-forward and
layer normalization sublayers to compute final states h(l)dl :

h
(l)
dl = Norm(PFF (h

(l)
d ) + h

(l)
d )

= Norm((relu(h
(l)
d wl1

d + bl1d )w
l2
d + bl2d ) + h

(l)
d )

(10)

where wl1
d , w

l2
d and bl1d , b

l2
d are learnable parameters. After

projecting the decoder final hidden states to vocab size, we
can get vocabulary probability distribution Pvocab.

C. Pointer and BPE Mechanism

In generation tasks, we should deal with the OOV(out
of vocabulary) problem. If we do not tackle this problem,
the generated text only contains a limited vocabulary words
and replaces OOVs with < unk >. Things get worse in
summarization task, the specific nouns(like name, place, etc.)
with low frequency are the key information of summary,
however, the vocabulary built with top k words with the most
frequent occurrence while those specific nouns may not occur
in vocabulary.

The pointer and BPE(byte pair encoder) mechanism are both
used to tackle the OOV problem. The original BPE mechanism
is a simple data compression technique that replaces the
most frequent bytes pair with unused byte. [37] first uses
this technique for word segmentation via merging characters
instead of bytes. So the fixed vocabulary can load more
subwords to alleviate the problem of OOV.
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Fig. 2. The overview of projection aggregation mechanism with 4 encoder
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The pointer mechanism allows both copying words from the
source text and generating words from a fixed vocabulary. For
pointer mechanism at each decoder time step, the generation
probability Pgen ∈ [0, 1] can be calculated:

Pgen = σ(wdlh
N
dl + bgen) (11)

where wdl and bgen are learnable parameter. hNdl is the last
decoder output states. We compute the final word distribution
via pointer network:

α = softmax(hNdlu
> + bcopy) (12)

Pcopy =

ld∑
1

αzi (13)

Pfinal = Pcopy(1− Pgen) + PvocabPgen (14)

where u is representation of input, zi is one-hot indicator
vector for wi, Pcopy is probability distribution of source words
and Pfinal is final probability distribution.

D. Aggregation Mechanism

The overview of our model is in Fig. 1. To enhance memory
ability, we add the aggregation mechanism between encoder
and decoder for collecting history information. The aggrega-
tion mechanism reconstructs the encoder’s final hidden states
by reviewing history information. And we put forward two
primitive aggregation approaches that can be proved effective
in our task.

The first approach is using full-connected networks to
collect historical information(see Fig. 2). This approach first
goes through normal encoder layers to get the outputs of each
layer, and we select middle L layers’ outputs then concatenate
them as input of full connected networks to obtain history
information H = hh. Finally, we compute multi-head attention
between history state H and the output of the last encoder
layer. This process can be formulated as:

hh = wh(Concat(h
(N−L)
el , ..., h

(N−1)
el )) + bh (15)
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Fig. 3. The overview of attention aggregation mechanism with 4 encoder
layers.

where wh and bh are learnable parameters, L is hyper-
parameter to be explored. Then we add the multi-head at-
tention layer between the last encoder layer output hNel and
history information hh. The output of attention is the final
states of encoder:

ha =MH(Qp,Kp, V p) (16)

where Qp is history information hp and Kp = V p = hNel .
The second approach is using attention mechanism to collect

history information(see Fig. 3). We select middle L encoder
layers’ outputs to iteratively compute multi-head attention
between current encoder layer output and previous history
information. And the lth history information hh(l) can be
calculated as follows:

hh(l) =MH(Qp(l),Kp(l), V p(l)) (17)

where l ∈ [N − L,N) is index of selected encoder layers,
Qp(l) is previous history state hh(l−1) and Kp(l) = V p(l) is
encoder output hlel . Iteratively calculating history information
until the last selected encoder layer, we can get final history
hidden states ha and make the states as the final states of the
encoder.

Finally, we define the objective function. Given the golden
summary Y and input text X , we minimize the negative log-
likelihood of the target word sequence. The training objective
function can be described:

J(θ) =

N∑
− log p(Y |X; θ) (18)

where θ is model parameter and N is the number of source-
summary text pairs in training set. The loss for one sample
can be added by the loss of generated word yt in each time
step t:

log(y|d; θ) =
T∑

t=1

log p(yt|y1, y2, ...y(t−1), d; θ) (19)

where p(yt|y1, y2, ...y(t−1), X; θ) can be calculated in decoder
t time step, T is total decoding steps.



IV. EXPERIMENTS

In this section, we first define the setup of our experiment
and then analyze the results of our experiments.

A. Experimental Setup

Dataset We conduct our experiments on CNN/DailyMail
dataset[43], [4], which has been widely used for long docu-
ment summarization tasks. The corpus is constructed by col-
lecting online news articles and human-generated summaries
on CNN/Daily Mail website. We choose the non-anonymized
version1[2], which is not replacing named entity with a unique
identifier. The dataset contains pairs of articles and summaries.
The details of this dataset are in section IV-B.

Training Details We conduct our experiments with 1
NVIDIA Tesla V100. During training and testing time we
truncate the source text to 500 words and we build a shared
vocabulary for encoder and decoder with small vocabulary
size 50k, due to the using of the pointer or BPE mechanism.
Word embeddings are learned during training time. We use
Adam optimizer with initial learning rate 10−4 and parameter
β1 = 0.9, β2 = 0.999 in training phase. We adapt the learning
rate according to the loss on the validation set (half learning
rate if validation set loss is not going down in every two
epochs). And we use regulation with all dropout = 0.1. The
training process converges about 200,000 steps for each model.

In the generation phase, we use the beam search algorithm
to produce multiple summary candidates in parallel to get
better summaries and add repeated words to blacklist in the
processing of search to avoid duplication. For fear of favoring
shorter generated summaries, we utilize the length penalty. In
detail, we set beam size 10, no-repeated n-gram size 3 and
length penalty parameter 2.0. We also constrain the maximum
and minimum length of the generated summary to 120 and 50
respectively.

We evaluate our system using F-measures of ROUGE-1,
ROUGE-2, ROUGE-L metrics which respectively represent
the overlap of N-gram and the longest common sequence
between the golden summary and the system summary. The
scores are computed by python pyrouge2 package.

Experiment explorations We explore the influence of
different experiment hyper-parameters setup for the model’s
performance, which includes 11 different experiment settings.

Firstly, we explore the number of Transformer en-
coder/decoder layers (see Table III).

Secondly, we dig out the different aggregation methods
with 1 aggregation layer (see Table IV). The exploration
includes our baseline model(m1) and Transformer model with
add function(m2), projection aggregation method(m4) and
attention aggregation method(m6).

Thirdly, we also explore the different performance of dif-
ferent number of aggregation layers (see Table IV). There
are 3 groups of experiments with different number of ag-
gregation layers: Transformer adding last 2 layers(m2) and

1https://github.com/abisee/cnn-dailymail
2https://pypi.org/project/pyrouge/

last 3 layers(m3), Transformer with projection aggregation
method using 1 layer(m4) and 2 layers(m5) and Transformer
with attention aggregation method using 1 layer(m6) and
2 layers(m7). For all models except the exploration of en-
coder/decoder layers, we use 4 encoder and 4 decoder layers.

Human Evaluation The ROUGE scores are widely used
in the automatic evaluation of summarization, but it has great
limitations in semantic and syntax information. In this case,
we use manual evaluation to ensure the performance of our
models. We perform a small scale human evaluations where we
randomly select about 100 generated summaries from each of
the 3 models(Pointer Generator, Transformer, and aggregation
Transformer) and randomly shuffle the order of 3 summaries to
anonymize model identities, then let 20 anonymous volunteers
with excellent English literacy skills score random 10 sum-
maries for each 3 models range from 1 to 5(high score means
high-quality summary). then we using the average score of
each summary as their final score. the evaluation criteria are
as follows: (1) salient: summaries have the important point
of the source text, (2) fluency: summaries are consistent with
human reading habits and have few grammatical errors, (3)
non-repeated: summaries do not contain too much redundancy
word.

B. Results

Dataset Analysis To demonstrate the difference between
summarization and translation tasks, we compare the dataset
for two tasks (see Table II). The summarization dataset
CNN/DailyMail contains 287226 training pairs, 13368 valida-
tion pairs, and 11490 test pairs. The translation dataset iwslt14
and wmt17 have 160239/3961179 training pairs, 7283/40058
validation pairs, and 6750/3003 test pairs respectively. Then
we find the characteristics of those two different tasks after
comparison. The summarization source text can include more
than 2000 words and the average length of the source texts
is 10 times longer than the target texts, while the translation
task contains at most 250 words and the average length of the
source texts is about the same as the target texts. Because of
that, we need a strong encoder with memory ability to decide
where to attend and where to ignore.

Quantitative Analysis The experimental results are given
in Table I. Overall, our model improves all other base-
lines(reported in their articles) for ROUGE-1, 2 F1 scores,
while our model gets a lower ROUGE-L F1 score than the RL
(Reinforcement Learning) model [45]. From [8], the ROUGE-
L F1 score is not correlated with summary quality, and our
model generates the most novel words compared with other
baselines in novelty experiment Fig. 5. The novel words are
harmful to ROUGE-2, L F1 scores. This result also account
for our models being more abstractive.

Fig. 4 shows the ground truth summary, the generated
summaries from the Transformer baseline model and our ag-
gregation Transformer using the attention aggregation method.
The source text is the main fragment of the truncated text.
Compared with the aggregation Transformer, the summary
generated by the Transformer baseline model have two prob-



TABLE I
COMPARISON OF DIFFERENT MODEL RESULTS ON CNN/DALIYMAIL TEST DATASET USING F1 SCORES OF ROUGE-1, ROUGE-2, ROUGE-L WITH
95% CONFIDENCE INTERVAL. THE FIRST PART IS PREVIOUS ABSTRACTIVE BASELINE MODELS, THE SECOND PART IS THE TRANSFORMER BASELINE

MODEL AND OUR TRANSFORMER MODEL WITH AGGREGATION MECHANISM. THE BEST SCORES ARE BOLDED.

Model ROUGE-1 ROUGE-2 ROUGE-L
lead-3 40.24 17.52 36.34
words-1vt2k-temp-att [4] 36.64 15.66 33.42
ConvS2S [13] 39.75 17.29 36.54
Pointer Generator + Coverage [2] 39.53 17.28 36.38
Pointer Generator + Coverage + cbdec + RL[5] 40.66 17.87 37.06
Inconsistency Loss [18] 40.68 17.97 37.13
rnn-ext + abs + RL + rerank [45] 40.88 17.80 38.54
Transformer 40.05 17.72 36.77
Aggregation Transformer(attention) 41.06 18.02 38.04

TABLE II
THE COMPARISON OF TRANSLATION AND SUMMARIZATION DATASETS.

WE REMOVE SENTENCE TAGS IN THE SOURCE TEXT AND SPLIT
SENTENCES WITH BLANK, THEN COUNT MAXIMAL AND AVERAGE LENGTH

TOKEN IN EACH DATASET.

Dataset Train Valid Test
CNN/DailyMail(summarization) 287226 13368 11490

max-token-len(art/abs) 2882 / 2096 2134 / 1684 2377 / 678
avg-token-len(art/abs) 790 / 55 768 / 61 777 / 58

Our Dataset(summarization) 48600 4800 6600
max-token-len(art/abs) 1914 / 80 1687 / 80 1670 / 80
avg-token-len(art/abs) 768 / 65 763 / 65 769 / 65

iwslt14-de-en(translation) 160239 7283 6750
max-token-len(de/en) 244 / 228 169 / 154 245 / 217
avg-token-len(de/en) 24 /24 24 / 24 23 / 22

wmt17-en-de(translation) 3961179 40058 3003
max-token-len(en/de) 250 /250 224 / 233 101 / 93
avg-token-len(en/de) 28 /29 28 / 29 26 / 27

TABLE III
WE COMPARE DIFFERENT LAYERS OF ENCODER(E) AND DECODER(D)

AND REPORT RESULTS ON CNN/DAILYMAIL TEST DATASET USING
PRECISION/RECALL/F1 SCORES OF ROUGE.

E/D ROUGE-1(P/R/F1) ROUGE-2(P/R/F1) ROUGE-l(P/R/F1)
4/4 40.46 41.53 40.05 18.11 18.42 17.72 36.42 37.15 36.77
4/3 40.88 40.47 39.75 18.40 17.93 17.63 37.07 36.70 36.50
4/2 41.70 39.23 39.54 18.78 17.26 17.47 37.96 35.87 36.51
2/4 39.88 41.26 39.57 17.67 18.07 17.30 35.97 37.00 35.98
3/4 40.46 40.01 39.80 18.05 18.10 17.54 36.63 37.07 36.43

lems. Firstly, the summary of the baseline model is lack
of salient information marked with red in the source text.
Secondly, it contains unnecessary information marked with
blue in the source text.

we hold the opinion that the Transformer baseline model
has weak memory ability compared to our model. Therefore,
it can not remind the information far from its current states
which will lead to missing some salient information and
it may remember irrelevant information which will lead to
unnecessary words generated in summaries. Our model uses
the aggregation mechanism that can review the primitive
information to enhance the model memory capacity. Therefore,
the aggregation mechanism makes our model generate salient
and non-repetitive words in summaries.

Encoder/Decoder Layers Analysis The first exploration

TABLE IV
THE AGGREGATION MECHANISM EXPERIMENTS. OUR EXPERIMENTS USE
3 AGGREGATION METHODS WITH 2 DIFFERENT AGGREGATION LAYERS.

Model ROUGE-1 ROUGE-2 ROUGE-L
(m1)Transformer 40.05 17.72 36.77
(m2)Transformer(add 1 layer) 39.79 17.52 36.32
(m3)Transformer(add 2 layers) 39.69 17.34 36.15
(m4)Agg-Transformer(proj 1 layer) 40.58 17.77 36.60
(m5)Agg-Transformer(proj 2 layers) 40.67 17.84 36.70
(m6)Agg-Transformer(attn 1 layer) 41.06 18.02 38.04
(m7)Agg-Transformer(attn 2 layers) 40.03 17.59 36.60

experiment consists of Transformer models using different
encoder and decoder layers. And we only experiment if the
number of encoder/decoder layers is no more than 4. We
also tried 6 encoder and decoder layers, however, there is
no notable difference with 4 encoder and decoder layers
but increasing a lot of parameters and taking more time to
converge. Therefore we make the Transformer baseline model
have 4 encoder and decoder layers.

We decrease the layers of encoder or decoder respectively,
and the results are shown in Table III. It can be concluded
from the comparison of each model results that we can get
lower precision but higher recall score when the encoder layers
are decreasing and we have opposite results on the decoder
layers decreasing experiments. Meanwhile, we can get a higher
ROUGE-1 F1 score and lower ROUGE-2, L F1 scores in
the model decreasing each 1 decoder layer compared to that
decreasing each 1 encoder layer. Therefore, we can conclude
that the encoder captures the features of the source text while
the decoder makes summaries consistently.

Aggregation mechanism Analysis The second exploration
experiment consists of our baseline model(m1, m2) and aggre-
gation Transformer model using different aggregation mecha-
nism(m4, m6) in Table IV. If we use baseline model adding
the last L layer(s) simply(m2), the result scores will decrease
beyond our expectation. However, simply adding the last L
layer(s) can re-distribute the encoder final states with history
states, it will average the importance weights of those layers
and that maybe get things worse. Compared with the baseline
model, the result scores of our aggregation models(m4, m6)
are boosting. We compute attention between history(query)
and encoder final states(key/value) to re-distribute the final



Source Text(truncated 500): (......) national grid has
revealed the uk ’s first new pylon for nearly 90 years .
called the t-pylon -lrb- artist ’s illustration shown -rrb-
it is a third shorter than the old lattice pylons . but it is
able to carry just as much power - 400,000 volts . it is
designed to be less obtrusive and will be used for clean
energy purposes . national grid is building a training line
of the less obtrusive t-pylons at their eakring training
academy in nottinghamshire . britain ’s first pylon ,
erected in july 1928 near edinburgh , was designed by
architectural luminary sir reginald blomfield , inspired
by the greek root of the word ‘ pylon ’ -lrb- meaning
gateway of an egyptian temple -rrb- . the campaign
against them - they were unloved even then - was run by
rudyard kipling , john maynard keynes and hilaire belloc
. five years later , the biggest peacetime construction
project seen in britain , the connection of 122 power
stations by 4,000 miles of cable , was completed . it
marked the birth of the national grid and was a major
stoking of the nation ’s industrial engine and a vital asset
during the second world war (......)
Ground Truth: national grid has revealed the uk ’s first
new pylon for nearly 90 years . called the t-pylon it is a
third shorter than the old lattice pylons . but it is able to
carry just as much power - 400,000 volts . it is designed
to be less obtrusive and will be used for clean energy .
Transformer Baseline: the t-pylon -lrb- artist ’s shown
-rrb- it is a third shorter than the old lattice pylons . but
it is able to carry just as much power - 400,000 volts .
it is designed to be less obtrusive and will be used for
clean energy purposes .
Our model: national grid has revealed the uk ’s first
new pylon for nearly 90 years . called the t-pylon it is a
third shorter than the old lattice pylons . but it is able to
carry just as much power - 400,000 volts . it is designed
to be less obtrusive and will be used for clean energy
purposes .

Fig. 4. The comparison of ground truth summary and generated summaries
of 2 abstractive summarization models on CNN/DailyMail dataset. The red
represents missed information, the blue means unnecessary information and
the green signify appropriate information.

states so that the encoder obtains the ability to fusing history
information with different importance.

The third exploration contains 3 groups experiments: add
group(m2, m3), projection group(m4, m5) and attention
group(m6, m7). The aggregation Transformer models here
use different aggregation layers. We also experiment with the
model in the above 3 groups with 3 aggregation layers, but they
all get extraordinary low ROUGE scores (all 3 models have
ROUGE-1 39.3, ROUGE-2 14.5, ROUGE-L 34.3 roughly).
They all incorporate the output of the first encoder layer which
may not have semantic information which may be harmful to
the re-distributing of the encoder final states. So we do not
compare with those models explicitly.
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Fig. 5. The statistics of novel n-grams and sentences. Our model can generate
far more novel n-grams and sentences than Pointer Generator and Transformer
baseline.

For add aggregation group, we increase the added layers
while the ROUGE scores will get down. If we add more
layers, the final state distributions will tend to be the uniform
distribution which makes decoder confused about the key ideas
of source text. For that reason, we may get worse scores when
we add more layers.

For the projection aggregation group, we increase the aggre-
gation layers and the ROUGE scores will rise. If we aggregate
more layers, the history states will contain more information
which will lead to performance improvement. However, we
will lose a lot of information when the aggregation layers
increasing. And we achieve the best result with 2 aggregation
layers.

For the attention aggregation group, we get the best score
with 1 aggregation layer but the ROUGE scores will decline
if we increase the aggregation layers. We just need one layer
attention to focus on history states, because too much attention
layers may have an excessive dependency on history states. If
the encoder final distribution focus more on shallow layers
which introduced a lot of useless information, it is harmful to
the encoder to capture salient features.

Abstractive analysis Fig. 5 shows that our model copy
10% whole sentences from source texts, and the copy rate
is almost close to reference summaries. However, there is still
a huge gap in n-grams generation, and this is the main area
for improvement.

In particular, the Pointer Generator model tends to examples
with few novel words in summaries because of its lower
rate of novel words generation. The Transformer baseline
model can generate novel summaries and our model get great
improvement (with 0.5, 4.6, 7.8, 10.1% novelty improvement
for n-gram(n ∈ {1, 2, 3, 4})) compared to the Transformer
baseline model. Because our model reviews history states
and re-distribute encoder final states, we get more accurate
semantic representation. It also proves that our aggregation
mechanism can improve the memory capability of encoder.

Human Evaluation We conduct our human evaluation with
setup in section IV-A, and the results show in Table V. We only
compared three models on salient, fluency and non-repeated
criteria, and our model gets the highest score in all criteria.
But in fluency criterion, none of the models scores well,
which means it is hard to understand semantic information
for all models now. The Pointer Generator is our baseline



TABLE V
HUMAN EVALUATION OF THREE MODELS. WE COMPARE THE AVERAGE
SCORE OF SALIENT, FLUENCY AND NON-REPEATED. THE BEST SCORES

ARE BOLDED.

Model Salient Fluency Non-Repeated
Pointer Generator 3.37 3.12 3.17
Pointer Generator + Coverage 3.42 3.23 3.61
Transformer 3.56 3.30 3.67
Transformer + Aggregation 3.87 3.37 3.78

TABLE VI
EXPERIMENTS ON OUR CHINESE DATASET. WE ONLY EXPERIMENT ON
THREE BASELINE MODELS AND EVALUATE RESULTS WITH ROUGE F

METRICS. THE BEST SCORES ARE BOLDED.

Model ROUGE-1 ROUGE-2 ROUGE-L
Lead-3 54.09 42.46 34.56
Pointer Generator 55.49 43.59 48.03
Pointer Generator + Coverage 55.64 43.80 48.08
Transformer 52.69 39.86 43.66
Transformer + Aggregation 58.00 44.42 48.85

abstractive summarization approach and has the lowest scores.
The Pointer Generator uses the coverage mechanism to avoid
generating overlap words, which can make summaries more
fluent and less repetitive. The Transformer is a new abstractive
summarization based on attention mechanism, and it can get
better performance than the Pointer Generator model. We
equip the Transformer model with the aggregation mechanism,
and it can get great improvement on all 3 criteria.

C. Our Chinese Experiments

We build our Chinese summarization dataset via crawling
news website1 and process the raw web page contents to
character-based texts. The details of our dataset show in Table
II where our dataset has a similar average length of source texts
and summaries compared CNN/DM dataset. It is a temporary
dataset, which only contains 60,000 pairs of text totally for
now, and we are still adding data to our dataset.

We also experiment on our Chinese dataset and evaluate the
result with ROUGE metrics. Our model gets the highest score,
while the Pointer Generator model gets rather high ROUGE
scores (see Table VI). Because the dataset does not contain
many novel words where it is suitable for the Pointer Generator
model. Our dataset contains (6.17, 14.51, 17.99, 20.10)% novel
(1,2,3,4)-gram and 59.90% novel sentences; by comparison,
the novel n-gram and sentences frequency of CNN/DM in
Fig. 5 is (14.47, 54.75, 73.32, 82, 98.16)% respectively. And
the Pointer Generator model generates summaries containing
less novel words and sentences, which leads to high scores in
our Chinese dataset. Finally, we compare our model with the
Transformer baseline model, and our results improve 5.31 in
ROUGE-1, 4.56 in ROUGE-2 and 5.19 in ROUGE-L scores.

V. CONCLUSIONS
In this paper, we propose a new aggregation mechanism for

the Transformer model, which can enhance encoder memory

1https://www.thepaper.cn/

ability. The addition of the aggregation mechanism obtains the
best performance compared to the Transformer baseline model
and Pointer Generator on CNN/DailyMail dataset in terms of
ROUGE scores. We explore different aggregation methods:
add, projection and attention methods, in which attention
method performs best. We also explore the performance of
different aggregation layers to improve the best score. We
build a Chinese dataset for the summarization task and give the
statistics of it in Table II. our proposed method also achieves
the best performance on our Chinese dataset.

In the future, we will explore memory network to collect
history information and try to directly send history information
to the decoding processing to improve the performance in the
summarization task. And the aggregation mechanism can be
transferred to other generation tasks as well.
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