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Abstract—In this paper, we present a novel unsupervised do-
main adaptation framework, Multi-Partition Feature Alignment
Network, that learns a deep neural model for the target domain
without the need for any supervision. Recent leading approaches
for unsupervised domain adaptation are based on adversarial
alignment. Aligning the global distribution of the domain repre-
sentations via adversarial training does not guarantee the class-
wise distribution alignment. The proposed approach is built
on adversarial learning with the focus on carefully aligning
class-wise domain representations. Our algorithm utilizes the
pseudo-labels (the predicted labels) of the target features to
stimulate class-wise alignment. As the pseudo-labels of individual
target features can be erroneous, instead of iteratively aligning
individual target samples, the proposed framework introduces
a generic class-specific multi-partition alignment procedure that
enables superior class-discriminative alignment of domain repre-
sentations. The competitive performance of the proposed frame-
work against state-of-the-art approaches over a wide variety of
visual recognition tasks, namely, the digits classification task
and the object recognition task, validates its effectiveness for
unsupervised domain adaptation.

I. INTRODUCTION

With deep neural networks, the key to success for supervised
visual recognition tasks is the availability of plentiful labeled
examples. Often, for many real-world problems, the quantity
of available labeled data is scarce. Even if unlabeled data is
available, manually labeling the training data demands domain
expertise and is a laborious task. Leveraging labeled samples
from existing auxiliary domains (often termed as the source
domains) can help to learn the desired task for the domain
of interest (often referred to as the target domain). However,
when the well-trained source model is evaluated on target
examples, the performance suffers due to the distribution
differences between the domains. The performance of a well-
trained classifier in a new domain depends on two factors [1],
1) the performance in its domain and 2) the discrepancy be-
tween the two domains. The discrepancy between the domains,
popularly known as domain shift or dataset shift, calls for
domain adaptation. In this paper, we propose a deep adaptation
framework that learns an efficient deep neural model for the
target domain where no labeled data is available. This setting
is commonly known as Unsupervised Domain Adaptation
(UDA).

A common theme among recent promising deep UDA
approaches is the use of adversarial training to align the feature
distributions of the source and target domain. Based on the

Generative Adversarial Network (GAN) loss, the adversarial
adaptation procedure trains two competing networks - a feature
generator network (one network each for the source and the
target domain) and a domain classifier network. Here, the
domain classifier (also known as the discriminator network)
distinguishes the representations of the source and the target
domain. In general, the source feature generator learns the
class-discriminative features from the source labeled data
whereas the target feature generator network is adversarially
trained to confuse the domain classifier by generating source-
like representations from the target samples. Learning domain
invariant features with unsupervised adversarial adaptation
only aligns the marginals distributions of the domains [21] and
does not guarantee the class-specific alignment of the domain
representations. Matching the class-wise distribution involves
bringing the similarly labeled source and target representations
closer to each other. As the target labels are not available in the
unsupervised setting, some of the recent deep UDA approaches
[15], [18], [26], [24], [3] utilize the pseudo-labels (the pre-
dicted labels for the target samples) as the categorical informa-
tion for the target domain. However, the predicted labels are
not guaranteed to be correct (even if confidently predicted).
Consequently, progressive class-wise alignment of individual
pseudo-labeled target samples leads to error accumulation and
thereby, limits the transfer performance. Therefore, instead of
aligning individual target samples, two recent approaches [24],
[3] align the class-wise mean of the source and the target
domain representations. Aligning the means limits the effect
of noise as it alleviates the bias from incorrect pseudo-labeled
target samples and has shown significant improvement over
the adversarial adaptation baseline.

One explicit shortcoming with these approaches is that
during the class-wise alignment of representations, there may
exist several partitions for every label in the feature space
that are distant from each other. Hence, only aligning the
individual class-wise means would be ill-suited to match the
conditional distribution of the domains. Figure 1 depicts a
visual comparison of the learned representations with class-
wise mean-alignment [24], [3] approaches versus the proposed
approach. Consider a simple scenario, where for the red class
(refer Figure 1 (d)), there are two distant compact partitions
of the source representations and one dense partition formed
by the target representations. Here, bringing the target mean
closer to the source mean will lack in the good congruence
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(a) Source Sample Representations (b) After Adversarial Adaptation (c) Class-Wise Mean of Representations

(d) Class-Wise Mean Alignment (e) Class-Wise Partitioning of Representations (f) Multi-Partition Centroid Alignment

Fig. 1: (Best viewed in color) The given example contains 3 classes where each class is denoted with a different color. Figure (a) shows
the 2D representation of the source samples. Figure (b) depicts the adversarially aligned target sample representations (denoted with ⊕)
with source sample representations. In figure (c), the color of a target sample representation corresponds to the class-label obtained from
the classifier (the predicted label, also known as the pseudo-label). The colored bullet (•) and plus (') symbols represent the individual
class-mean of the source samples and pseudo-labeled target samples respectively. Figure (d) depicts the class-wise mean alignment of target
representations with fixed source representations. The direction of the arrow indicates the course of the pseudo-labeled target representations
(the target mean) towards the source mean having the same label whereas the length of the arrow represents the magnitude of movement.
In contrast to aligning the mean for each class, the proposed approach aligns a target partition to its nearest source partition of the same
class (refer Figure (f)). Figure (e) depicts the individual centroids of the obtained partitions (clusters) for each class in the source and target
domain.

of the conditional alignment of the domain representations.
So, considering that the domain representations can form
multiple compact partitions (for every label), we propose a
simple generic solution for effectively aligning the representa-
tions. The proposed adversarial adaptation framework, Multi-
Partition Feature Alignment Network (MPFAN), overcomes
this weakness by considering per-label partitions to align the
class-wise distributions (refer Figure 1 (f)). We introduce the
“centroid loss” that brings a refined pseudo-labeled target
partition (cluster) closer to the nearest source partition with
the same label. Moreover, inspired by the contrastive loss
[5], we keep the partitions with dissimilar class-labels distant
from each other. Besides, as a final step, we use an ensemble-
based strategy for correcting the predicted labels of the target
samples.

sary notations. Section ?? briefly describes the existing
approaches that are related to the proposed framework. The
subsequent section describes the proposed framework in de-
tail. A brief description about the datasets and the transfer
approaches for performance comparison is given in Section
??. Section ?? presents the experimental results along with
key insights from ablation studies.

A. Problem Statement

We are given a source domain Ds with ns labeled exam-
ples {xis, yis}

ns
i=1 derived from a joint probability distribution

P1(Xs, Ys) and a target domain Dt with nt unlabeled target

examples {xjt}
nt
j=1 derived from a joint probability distribution

P2(Xt, Yt). Here, Xs and Xt denote the source and target
feature distributions respectively. The two domains share the
same categories i.e. Ys = Yt. Let the total number of categories
be K numbered from {1, 2 · · ·K}. With P1 6= P2, the goal
is to learn a model that can correctly predict the labels of
unlabeled target examples {yjt }

nt
j=1 by leveraging the labeled

samples from Ds.

II. RELATED WORK

In this section, we briefly describe the most relevant
methods to our proposed framework which comes under the
category of deep UDA methods for the image classification
task. Most of the prior work can be summarized as Latent
Feature Transformation (LFT) approaches where the goal is
to minimize the domain discrepancy in a shared feature space.
This is achieved by learning shared hidden representations
while matching the distributions between the source and target
data via some distance metric. Prior work has used Maximum
Mean Discrepancy [8], [23] and correlation distance [20] to
reduce the domain differences in the common feature space.
Recent state-of-the-art UDA frameworks [7], [22], [9], [24],
[17], [3] are based on adversarial adaptation. Motivated by pa-
rameter sharing frameworks [19], some adversarial adaptation
frameworks [4], [16] share the parameters of the hidden layers
to learn a joint distribution from the source and target images.



Fig. 2: Depicts the proposed adversarial alignment framework. The pseudo-labels for the target images are obtained from the classifier.
There are three alternating steps in the training procedure. In the first step, we train the classifier with a randomly generated mini-batch of
labeled source examples. Thereafter, in the second step, the domain representations are adversarially aligned by fooling the discriminator.
The second step involves updates to the generator and the discriminator. The third step aligns the centroids of the target partitions with the
source partitions. These three steps are repeated until convergence.

The aforementioned adaptation approaches ignore the con-
ditional distribution differences between the source and target
data while aligning the representations. Two recent adversarial
adaptation frameworks, namely, 1) Moving Semantic Transfer
Network (MSTN) [24] and Progressive Feature Alignment
Network (PFAN) [3] utilize the pseudo-labels of the target
samples to improve the class-wise alignment of the source and
target representations. Instead of bringing individual pseudo-
labeled target samples closer to similar source samples, both
MSTN and PFAN align the class-wise means of the source
and the target representations to match the conditional distri-
butions. As most target samples are expected to be correctly
predicted, the contribution of the false pseudo-labeled target
samples towards the mean is unlikely to have a radical
impact on overall alignment. To further reduce the impact
of incorrectly predicted target samples, PFAN introduced a
pruning strategy for the pseudo-labeled target samples. A
pseudo-labeled target sample contributes to its class-wise mean
when its cosine similarity score concerning the source mean
(computed from the source samples having the same label)
lies above a certain threshold. Nevertheless, during the class-
wise alignment, both MSTN and PFAN do not consider that
the representations of the samples having the same label can
be scattered in the feature space forming multiple partitions
that can be distant from each other.

Overall, the proposed framework of multi-partition centroid
alignment can be considered as a generic framework for
unsupervised domain adaptation where both MSTN and PFAN
can be viewed as a particular case of ours with the number
of partitions per label being set to 1. However, there are
three key differences, namely, 1) In contrast to grouping the
representations of all the samples belonging to the same class
to compute the mean, the proposed adversarial adaptation
framework takes into account that samples from the same
class can form multiple distant partitions. 2) Moreover, the
dissimilar partitions are kept distant from each other. 3) Ad-
ditionally, the proposed framework incorporates an ensemble-
based correction strategy for correcting final predictions for
the target samples.

III. PROPOSED FRAMEWORK

We present a deep UDA framework that learns a deep neural
model to effectively label the given unlabeled samples with
the help of labeled samples from a related domain. Figure
2 depicts an overview of the architecture of the proposed
framework. The source feature extractor is responsible for
learning class discriminative features from the labeled source
data whereas the target feature extractor (the generator) is
expected to generate domain-invariant representations from
the target samples. The output image representations from
the feature extractors are then labeled by the classifier. The
domain classifier (the discriminator) distinguishes between the
source and target representations and the centroid alignment
component aligns the conditional distributions of the domains.
Overall, the proposed framework can be summarized as a
training procedure that comprises of three alternating steps.
The three key steps are described in detail in the subsequent
sections.

A. Step 1: Training the source classifier

The first step of the proposed framework is training the
source classifier. With the standard supervised classification
loss Lcls (refer Equation 1) on labeled source data (Xs, Ys),
the source feature extractor network learns class-discriminative
features and the classifier C to categorize each source sample
into one of K given classes.

min
Ms,C

Lcls(Xs, Ys) =

− E(xs,ys)∼(XS ,YS)

K∑
k=1

1[k=ys] logC(Ms(xs))
(1)

Here, Ms indicates the source feature extractor. The classi-
fier is trained with a randomly generated minibatch with the
same number of samples from every class. After training the
classifier, the weights of the source feature extractor network
are kept fixed for the second step.



B. Step 2: Adversarial Adaptation

In the second step, similar to Adversarial Discriminative
Domain Adaptation (ADDA) [22], the target representations
are adversarially mapped to the source representations. The
target feature generator is trained to mimic source-like rep-
resentations from the unlabeled target images Xt which is
achieved by fooling the domain classifier. Overall, the ad-
versarial adaptation step involves two phases. In the first
phase, while keeping the target feature extractor (generator)
fixed, we update the domain classifier (discriminator) with a
randomly generated mini-batch comprising of samples from
the source and target domain. Thereafter, in the second phase,
while keeping the domain classifier fixed, we train the target
generator with inverted labels. Keeping Ms fixed, Equation
2 depicts the alternate training of the discriminator and the
target generator. The discriminator loss LadvD is a standard
classification loss where the labels indicate the domain of
origin whereas for the generator loss LadvM , the generator
features are learned by simply inverting the labels. Here, Mt

indicates the target feature extractor.

min
D
LadvD (Xs, Xt,Ms,Mt) =

− Exs∼XS
[logD(Ms(xs))]− Ext∼Xt

[log(1−D(Mt(xt))]

min
Mt

LadvM (Xs, Xt, D) = −Ext∼Xt [logD(Mt(xt))]

(2)

With adversarial alignment, the sample representations be-
longing to the same class from the source and the target
domain are expected to be mapped in the vicinity of each other.
However, while matching the distributions with adversarial
adaptation, the semantic relationships within the target domain
data and the class-boundaries learned from the source data
are ignored. This can lead the target representations to get
mapped near the classification boundaries which in turn can
lead to incorrect predictions. Hence, there is a need to match
the conditional distributions of the domains for improving
the alignment. Aligning the conditional distributions requires
labeled samples in the target domain. As labeled target sam-
ples are not available under the UDA setting, the proposed
framework makes use of the pseudo-labels (predicted labels)
of the target samples. Aligning the conditional distributions
requires bringing the target representations closer to source
representations of the same class. However, the predicted
pseudo-labels of individual target samples can be noisy. Con-
sequently, aligning individual pseudo-labeled target samples
can affect the transfer performance. Similar to MSTN and
PFAN, we propose to align the class-wise means of the source
and target representations. As explained earlier in Section ??,
aligning the class-wise means limits the impact of noise on
the alignment as it reduces the bias from individual pseudo-
labeled target samples. However, directly aligning the class-
wise means is only adequate when the domain representations
(for every label) are densely grouped i.e. the representations

form a single cluster for every label. So, the problem arises
how to effectively align when the domain representations (in
either of the domains) can form multiple compact partitions
that can be distant from each other while keeping the noise
in check. This issue is addressed in Step 3 of the proposed
framework.

C. Step 3: Centroid Alignment

We bring a pseudo-labeled target partition closer to the
nearest source partition having the same label. This is achieved
by introducing a loss that minimizes the difference between
the centroids of a target partition with the nearest source
partition having the same label. We will refer to this loss as
the “centroid loss” in the remainder of the draft.

Alignment with the centroid loss requires identifying the
number of partitions/clusters formed by the similar labeled
samples in the source and target domain. We use Hierar-
chical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) [2] algorithm for identifying the per-
label partitions. There are several reasons to why we selected
HDBSCAN over other clustering algorithms. First of all, it
does not assume anything about the underlying distribution
of the clusters and performs better than most algorithms
over a wide range of clustering tasks [12]. It can identify
partitions with varying density and is relatively faster than
most clustering algorithms [11]. Moreover, it lets us define the
cluster importance based on size and can effectively identify
the outliers that can be ignored while computing the centroids
of the partitions.

Let Cskn and Ctkm denote the centroids of the source and
target clusters respectively for the kth label where n ∈
[1, 2 · · ·nk] and m ∈ [1, 2 · · ·mk]. Here, nk and mk denote
the number of partitions obtained for label k in the source and
target domain respectively. A centroid of a source partition is
computed as the mean vector of the sample representations
obtained from the feature extractor Ms. Equation 3 depicts the
centroid computation for the ith source partition P ski having
the label k.

Cski =
1

Ns
i

∑
(xi

s,y
i
s)∈P

sk
i

Ms(x
i
s) (3)

After identifying the per-label partitions in both the do-
mains, we apply the centroid loss that brings a target partition
closer to the nearest source partition having the same label.
The Centroid Alignment (CA) loss LCA (refer Equation 4)
for aligning the ith target partition having the label j is the
euclidean distance to the nearest source partition having the
same label. Here, φ is the euclidean distance between a pair
of the centroids C ∈ Rd.

LCA(C
tj
i ) = argmin

∀n
φ(Csjn , C

tj
i ), n ∈ [1, 2 · · ·nk] (4)

The three alternating steps are the focal part of the proposed
framework. While minimizing the centroid loss in practice,
it is not necessary that samples from all labels are picked



in the target minibatch as it is randomly selected. Hence,
the categorical information within a minibatch might not be
sufficient for computing the per-label partitions. So, after every
few iterations, we use all the domain representations (from
both source and target) to perform the centroid alignment step.
The overall centroid alignment procedure is summarized in
Algorithm 1.
Algorithm 1 Centroid Alignment Framework
Input: Labeled Source samples: (Xs, Ys) and unlabeled Target
samples: Xt. The number of labels is K and nk denotes the
number of partitions for label k.
Output: LCA, the Centroid Alignment (CA) loss between the
source partitions Cskn and the target partitions Ctkn where n ∈
[1, 2 · · ·nk] and k ∈ [1, 2 · · ·K].

1. for every label j ∈ Ys do
nsj , C

sj
n ← HDBSCAN(Ms(Xs, Ys == j))

end for
2. Randomly sample a batch from Xt: X̂t and get the
pseudo-labels Ŷt for this batch.
3. for every label j do

ntj , C
tj
n ← HDBSCAN(Mt(X̂t, Ŷt == j))

end for
4. for every label p ∈ Ys do

for every cluster i ∈ [1, 2 · · ·ntpn ] do
for every cluster j ∈ [1, 2 · · ·nspm ] do

LCA ← φ(C
sp
i , C

tp
j )

end for
end for

end for
5. return LCA
1) Contrastive Loss Term: The contrastive loss term LCL

(refer Equation 5) enforces the pseudo-labeled target repre-
sentations to be distant from the source representations with
a dissimilar label by a distance of atleast m (the margin).
Here, nspi and ntqj denote the ith labeled source partition for
the pth class-label and jth pseudo-labeled target partition for
the qth class-label respectively. Similarly, Cspi and Ctqj denote
the centroids of those partitions. The label dissimilarity term
is denoted with Wij .

LCL ← ∀p 6=q
n
sp
i∑
i=1

n
tq
j∑

j=1

max(0,m− || Cspi − C
tq
j ||

2)Wij

where Wij = 1, if p 6= q else 0.

(5)

2) Iterative Pruning Strategy: Similar to PFAN [3], we
introduced a progressive pruning strategy that mitigates the
transfer detriment from incorrect pseudo-labeled examples.
The strategy differentiates between “easy” pseudo-labeled
target samples from “hard” samples. An “easy” target sample
is more likely to get correctly classified than a “hard” sample.
After adversarial adaptation, the target sample representations
are expected to get mapped near the centroids of the source
partitions in the representational space. A target sample xjt
is considered as a easy sample when its Cosine Similarity

(CS) score ψ(xjt ) (refer Equation 6) with respect to its nearest
source partition lies above the threshold τ (refer Equation 7)
else it is designated as a hard sample.

ψ(xjt ) = argmin CS(Mt(x
j
t ), C

sj
n ), n ∈ [1, 2 · · ·nk] (6)

τ =
1

1 + e−µ(m+1)
− 0.01 (7)

Here, µ is a constant and m denotes the training steps.
With progressive alignment, the similarity of samples increases
as target samples get closer to the source samples which in
turn leads to hard samples being regarded as easy samples in
later iterations. During the centroid alignment procedure, the
estimated easy samples for a partition contribute to its centroid
whereas the hard samples are ignored.

D. Noisy labels correction

After performing the centroid alignment procedure, the
predicted labels of the target samples can still be noisy. So,
we employ an iterative label noise correction strategy known
as Iterative Cross Learning (ICL) [25]. ICL combines two
key ideas, namely, majority voting and co-training to train
multiple independent networks over multiple stages where
each network is trained from a partition of the given data at
every stage. These independent networks work alongside each
other to correct each others data for the subsequent stages.
For an unseen data point, if the independent networks agree,
the prediction is retained else a random label is assigned
from the set of given labels. The random flipping of labels
on disagreement ensures that the induced noise becomes less
structured and uniformly random, that in turn helps to reduce
the bias for the networks.

This correction strategy is applied post the centroid align-
ment step on the pseudo-labeled target samples (Xt, Ŷt). Here,
Ŷt indicates the pseudo-labels of the target samples. We train
two independent convolutional neural networks with the same
network architecture like that of the feature extractors but
initialized with different weights. We also use standard data
augmentation methods (random cropping and flipping, varying
brightness and contrast) while training these networks.

IV. EXPERIMENTS

We chose three diverse digits datasets: two grey handwritten
digits datasets, 1) MNIST1 [6] and 2) USPS2, and a real-world
digits dataset obtained from natural scene images, 3) SVHN 3

[13]. We followed the same experimental setting given in [22]
to evaluate the performance of the proposed algorithm on three
transfer scenarios: 1) SVHN → MNIST, 2) MNIST → USPS
and 3) USPS → MNIST. We follow the same experimental
setting as given in [22] for the three digit-classification transfer
tasks. We also evaluated the transfer performance of our
algorithm on the Office dataset [14]. It contains images from 3

1http://yann.lecun.com/exdb/mnist/
2https://www.kaggle.com/bistaumanga/usps-dataset
3http://ufldl.stanford.edu/housenumbers/

http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/bistaumanga/usps-dataset
http://ufldl.stanford.edu/housenumbers/


Fig. 3: Depicts a few sample images from the digits datasets and the Office dataset. We compare the transfer performance of the proposed
framework against state-of-the-art UDA approaches on cross-dataset digit classification tasks and cross-domain object recognition tasks.

Source→Target SVHN→MNIST MNIST→SVHN MNIST→USPS
Source Only 60.0±1.1 33.0±1.2 75.2±1.6
RevGrad 73.8 ±1.7 35.7 ±2.0 77.1 ±1.8
ADDA 76.0 ±1.8 - 89.4 ±0.2
MSTN 91.7±1.5 did not converge 92.9±1.1
PFAN 93.9±0.8 57.6 ±1.8 95.0±1.3
MPFAN 93.6±1.0 (+0.5) 57.7±1.9 (+1.2) 94.6±1.4 (+0.6)
MPFAN + ICL 94.1±1.1 (+0.5) 58.5±1.3 (+1.4) 95.5±1.0 (+0.4)

TABLE I: Transfer results on digits classification tasks are depicted in terms of mean accuracy and standard deviation. The results of the
other transfer approaches are taken from [3]. - indicates that the results are not available. The best results have been highlighted in bold.
Here, the value (+x) shows the improvement in the mean accuracy due to the contrastive loss term.

Approach A →W D→W W→D A→D D→A W→A
Source only 61.5±0.5 95.1±0.3 99.0±0.2 64.4±0.5 48.8±0.3 47.0±0.4
RevGrad 73.0±0.5 96.4±0.3 99.2±0.3 72.3±0.3 53.4±0.4 51.2±0.5
ADDA 75.1 97.0 99.6 - - -
MSTN 80.5±0.4 96.9±0.1 99.9±0.1 74.5±0.4 62.5±0.4 60.0±0.6
PFAN 83.0±0.3 99.0±0.2 99.9±0.1 76.3±0.3 63.3±0.3 60.8±0.5
MPFAN 82.7±0.5 (+0.9) 98.8±0.2 (+0.1) 99.9±0.1 (+0.0) 76.1±0.4 (+1.2) 63.0±0.3 (+1.7) 60.5±0.5 (+1.2)
MPFAN + ICL 83.8±0.5 (+1.2) 99.2±0.3 (+0.1) 100.0±0.0 (+0.0) 77.2±0.4 (+0.9) 63.7±0.3 (+1.5) 62.4±0.3 (+1.3)

TABLE II: Transfer results on the object recognition tasks (Office dataset) are depicted in terms of mean accuracy and standard deviation.
Apart from ADDA [22], the results of the other transfer approaches are taken from [3]. - indicates that the results are not available. The best
results have been highlighted in bold. Here, the value (+x) shows the improvement in the mean accuracy due to the contrastive loss term.

different domains, namely, Amazon (A) (from amazon.com),
Webcam (W), and DSLR (D) where each domain contains 31
categories. The images for the Webcam and DSLR domain
are taken by a webcam and a DSLR camera respectively with
varying lighting and pose changes in an office environment.
For a fair comparison, we follow the same experimental setting
as given in [3] for the six transfer tasks. Figure 3 depicts
example images from the chosen datasets.

We utilize all the available labeled samples in the source
domain to train the classifier and all the unlabeled samples in
the target domain are used for adaptation. Similar to MSTN
[24], we repeated each transfer experiment five times and
reported the average accuracy and standard deviation.

We compared the performance of the proposed framework
against the following baselines and related UDA frameworks.
• Source only: Here, we report the accuracy of the trained

source classifier on the target dataset.
• Adversarial Discriminative Domain Adaptation

(ADDA) [22]: ADDA is a generic adversarial adaptation
framework that uses GAN loss for aligning the marginal
distributions of the source and the target domain.

• Gradient Reversal (RevGrad) [4]: In contrast to ADDA,
the weights of the source and the target feature genera-

tor are tied. Here, the common feature extractor learns
domain-invariant features by maximizing the domain
classifier loss.

• Moving Semantic Transfer Network (MSTN) [24]:
MSTN is an iterative adversarial framework that utilizes
the pseudo-labels of the target samples to further induce
class-wise alignment in the shared feature space. After the
adversarial step, the mean of the pseudo-labeled target
samples and the mean of the labeled source samples
(having the same label) is brought closer in every iteration
to optimize class-wise alignment.

• Progressive Feature Alignment Network (PFAN) [3]:
Similar to MSTN, PFAN also progressively aligns the
distributions of the source and the target domain. How-
ever, while doing the class-wise mean alignment, PFAN
computes the mean from only those target samples that
are similar (computed with cosine similarity) to the
source-mean having the same label. In every iteration, a
gradually increasing similarity threshold is used to iden-
tify the relevant subset of target samples that contribute
to the class-wise target mean.



(a) MSTN [24] (b) PFAN [3] (c) MPFAN

Fig. 4: (Best viewed in color) Depicts the 2D t-SNE visualization of the target representations for the A → W (8 classes were randomly
selected) adaptation task.

A. Implementation Details

Network Architecture: For a fair comparison, we use the
same architecture for the feature extractors and the discrim-
inator as mentioned in [22] for the three transfer scenarios
with the digit classification task. Similarly, for the six transfer
scenarios constructed from the Office dataset, we use the
same network architecture as followed in [4] for the object
recognition tasks.

B. Hyper-parameter Tuning

We follow the same values of the hyper-parameters as
mentioned in [22] for learning the source classifier. For a fair
comparison of the transfer tasks, the batch size is set to 128
and the same annealing strategy is followed for the learning
rate as mentioned in [4]. The moving average coefficient is set
as θ = 0.7 and Stochastic Gradient Descent with momentum
= 0.9 is used as the optimizer for all transfer experiments.
In all our experiments, the centroid alignment procedure is
applied after every 100 iterations. We observed that in the
early iterations of adversarial adaptation, the predictions on the
target samples are inconsistent on an average which deters the
transfer performance. Consequently, for the first few epochs
(in our experiments, it is set to 5), the centroid alignment
procedure was not performed. The parameter µ is set to 0.8
[3]. For the final label correction, we used Adam optimizer
with a learning rate of 10−4 for training the independent
networks. The final results are reported with the network
training terminated at Stage 2 for the digit classification tasks
and Stage 3 for the image classification tasks.

V. RESULTS AND DISCUSSION

Digits datasets: The experimental results for the three
cross-dataset transfer scenarios on the digits classification task
are presented in Table I. It can be observed that the proposed
framework (MPFAN + ICL) outperforms all the other methods
on all the transfer tasks. It achieves a significant transfer im-
provement of +27% on the source-only baseline on an average
over the three transfer scenarios. In comparison to standard
adversarial adaptation frameworks RevGrad and ADDA, it
shows superior performance with a margin of +19% and
+11% respectively (on average). Both ADDA and RevGrad
only match the marginal distributions of the source and target
domain but ignore the class-wise alignment in the shared
representational space. The significant improvement of MSTN,

PFAN, and MPFAN over these two frameworks suggests
that matching the class-wise distributions with the help of
pseudo-labels enriches the alignment of representations and
yields more discriminative features. The proposed framework
(MPFAN + ICL) also significantly outperforms MSTN by 2%
and marginally outperforms PFAN by 0.5% on an average. The
transfer improvement of the proposed framework (MPFAN)
over MSTN validates that aligning the per-label partitions is
comparatively better than aligning the unpruned class-wise
means for matching the class-wise distributions.
Office dataset: The results for the six cross-domain object
recognition tasks are presented in Table II. Apart from PFAN,
it can be observed that the proposed framework (MPFAN
+ ICL) still outperforms all the other approaches. However,
its performance is slightly inferior to PFAN. This can be
attributed to the smaller size of the training datasets for the
cross-domain transfer scenarios. The clustering capability of
HDBSCAN slightly suffers for the sparser datasets in the high-
dimensional representational space. Another key observation
is that the ICL strategy for label correction improves the
transfer performance of the proposed framework by 0.7% on
an average over the three cross-dataset digits classification
tasks and by 1.2% on the cross-domain object recognition
tasks. This suggests that there is scope for noise correction
in the final predictions for the target samples.

Moreover, from Table I and II, it can be observed that there
is a significant improvement in the transfer performance with
the contrastive loss term. This validates the hypothesis that
keeping the dissimilar domain partitions at bay helps to learn
better feature representations for the target task. For all the
experiments, the value of the margin (m) was set to 0.5. To
sum up, the overall framework (MPFAN + ICL + contrastive
loss) significantly outperforms all the other approaches over
all the transfer tasks.

Figure 4 shows the 2D t-SNE [10] visualization of the
target representations for the A → W adaptation task from
the Office-31 dataset. It can be observed that the mean-
alignment approaches, MSTN and PFAN, including the pro-
posed approach, MPFAN, learn good class-discriminative rep-
resentations. However, the inter-class spread is much more for
MPFAN in comparison to the other approaches. Secondly, for
some categories, the representations learned with MSTN and
PFAN appear to sparsely coalesce with each other, which is not
the case for MPFAN. These observations suggest that MPFAN



learns better target representations than the mean-alignment
approaches.

VI. CONCLUSION

In this paper, we present a simple and effective UDA
framework that carefully aligns the target representations to
the source representations by matching the feature distributions
between the domains, even at the class-level. The transfer
improvement over the extensive experiments on cross-dataset
digit classification tasks and cross-domain object recogni-
tion tasks suggests that the multi-partition centroid alignment
approach is significantly better than aligning the class-wise
means of the domain representations.
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