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Abstract—In this paper, we study an important recommen-
dation problem with heterogeneous feedback of users’ grade
scores such as 5-star grade scores and like/dislike binary ratings
assigned to items. As a response, we address the problem from a
transfer learning perspective, i.e., taking the grade scores as the
target data and the binary ratings as the auxiliary data, in order
to share knowledge between two different types of data more
sufficiently. Technically, besides the observed explicit feedback of
grade scores and binary ratings, we propose to exploit the implicit
preference context beneath the feedback, which is incorporated
into the prediction process of users’ grade scores to items. Finally,
we develop a novel and generic transfer learning solution, i.e.,
preference-aware transfer (PAT), which embodies several recent
algorithms as parts of our solution and special cases. To verify
our novel solution, we then conduct extensive empirical studies
on two large and public datasets and find that our PAT performs
significantly better than the state-of-the-art methods.

Index Terms—Transfer Learning, Implicit Preference Context,
Matrix Factorization, Collaborative Filtering

I. INTRODUCTION

Recommender systems are now ubiquitous and benefit us
in many aspects of our daily lives. For example, the news
article [1] recommended by a news website is exactly what
we follow closely, the clothing [2] recommended by a dress
shopping system is what we like exactly, and the event [3]
recommended by a mobile recommendation system is what
we interest currently. With all kinds of recommendation ser-
vices, people can easily obtain interesting information without
wasting too much time in searching.

An effective recommendation algorithm is the cornerstone
to a successful recommender system for the purpose of offer-
ing users sensible suggestions. Collaborative filtering [4], [5] is
such a commonly used technique that has aroused considerable
research interest for decades because of its effectiveness and
scalability. One of the tasks of collaborative filtering (CF) is
to predict accurate grade scores to items that users never rated
in the past, which is also known as rating prediction. Among
various CF methods for predicting ratings, one of the most
popular methods is matrix factorization (MF) [6] in which
probabilistic matrix factorization (PMF) [7] is a remarkable
model widely applied in industry due to its efficiency and
effectiveness. Given a (user, item) matrix where each element

*:Corresponding author.

is a score that a user assigns to an item, PMF [7] first
decomposes the (user, item) matrix into two low-rank matrices
representing users’ latent features and items’ latent features,
respectively, then calculates the inner product of a user’s
feature vector and an item’s feature vector as the predicted
score for the corresponding (user, item) pair. As a classical
CF method, PMF [7] has exhibited its success in learning a
recommendation model from homogeneous explicit feedback,
i.e., the grade scores only. However, most real applications are
confronted with the problem of data sparsity, which means
that a large number of elements in the (user, item) matrix
are unobserved. Therefore, it is necessary to consider other
types of available explicit feedback into modeling in a bid to
improve the recommendation accuracy, which is the problem
of collaborative recommendation with heterogeneous explicit
feedback studied in this paper.

Collaborative recommendation with heterogeneous explicit
feedback has been well studied in [8], where a unified transfer
learning [9] framework, i.e., transfer by mixed factorization
(TMF) [8] is proposed based on PMF [7] in an attempt to
improve the performance by transferring knowledge between
grade scores and like/dislike binary ratings as much as pos-
sible. Experiments show that these two types of data are
complementary for the prediction accuracy.

Besides introducing additional explicit binary feedback,
there are some implicit preference context hidden in grade
scores ignored by TMF [8], such as one-class preference con-
text (OPC) and multiclass preference context (MPC), which
are included in SVD++ [10] and MF-MPC [11], respectively.
Both the two methods reach a higher accuracy than the
corresponding former versions.

In this paper, we discuss several methods extended from
PMF [7] that integrate heterogeneous explicit feedback and
implicit preference context independently in a proper way. Mo-
tivated by those prominent works, we take both heterogeneous
explicit feedback and implicit preference context into con-
sideration, and then propose a novel and generic framework,
i.e., preference-aware transfer (PAT), which absorbs PMF [7],
SVD++ [10], TMF [8], and MF-MPC [11], and can also be
reduced to any of them with proper configurations.

We organize the rest of the paper as follows. In Section
2, we discuss some closely related works. In Section 3, we
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introduce the proposed framework in detail. In Section 4, we
conduct extensive empirical studies. Finally, in Section 5, we
give a brief summary and future directions.

II. RELATED WORK

A. Probabilistic Matrix Factorization

Probabilistic matrix factorization (PMF) [7] is a dominant
recommendation model that takes the explicit grade score
matrix as input and outputs the learned low-rank feature
vectors of users and items. At the stage of prediction, the
inner product of a user’s feature vector and an item’s feature
vector is the predicted score given by PMF. The objective of
PMF can be formulated as a regression-oriented optimization
problem [7].

PMF plays a vital role in dealing with a large and dense
data. But in the case of lacking explicit grade records, PMF
may not be a good choice for making appropriate recommen-
dations.

B. Transfer by Collective Factorization

In practice, explicit binary ratings are more common and
easier to be collected than grade scores. To overcome the
problem of data sparsity, like/dislike data is considered in the
framework of transfer by collective factorization (TCF) [12].
Unlike PMF that factorizes one (user, item) matrix only, with
the introduction of the auxiliary data, TCF models users’
personalized preferences from both grade scores and binary
ratings collectively by sharing users’ features and items’
features. Moreover, there is a tradeoff parameter in TCF that
can weigh the effect caused by the auxiliary data. Notice that
when the auxiliary binary ratings are not considered, TCF is
reduced to PMF.

C. Interaction-Rich Transfer by Collective Factorization

The way that using the auxiliary binary data in TCF is
simple and straightforward, but the bridge constructed to
transfer information between two types of data is not strong
enough, so that some valuable knowledge can not be shared
sufficiently. Consequently, iTCF [13] is proposed based on
CMF [14] which exploits the rich interactions among the user-
specific latent features of the target data and the auxiliary data
when calculating the gradients of items in the model training
stage. In addition, there is a tradeoff parameter in iTCF to
measure the strength of interactions between user-specific
latent features. And iTCF is more efficient than TCF because
it uses stochastic gradient descent (SGD) as an optimization
method while TCF uses batch gradient descent (BGD) [13].
Notice that when the interaction weight is 1, iTCF reduces to
CMF.

D. Transfer by Mixed Factorization

Although iTCF brings in richer interactions between the
target data and the auxiliary data in the model training stage
whereas the way that using the user-specific and the item-
specific latent feature information in the grade score prediction
stage is the same as that in CMF. However, there is still some

latent feature information from the auxiliary binary data being
omitted in the grade score prediction stage. Hence, transfer by
mixed factorization (TMF) [8] combines the feature vectors
learned from two different types of data in a collective and
integrative manner.

From an integrative term in objective function of TMF, the
binary rating data for each user is divided into a positive
item set and a negative item set, which contains items that
the user likes and dislikes, respectively. Notice that when the
like/dislike feedback of users to items are not considered in
grade score prediction, TMF becomes iTCF.

E. Preference Context

In most practical recommendation applications, users’ pref-
erence to items are generally quantified by specific scores in
{0.5, 1, . . . , 5} or other ranges. In the training period of PMF,
for each user, the score information of each item is used to
fit the regression model independently, and in the prediction
stage, a user’s score to an item only depends on the features of
the given user and the target item. However, in SVD++ [10], a
user’s estimated score to an item is related to other items that
the user rated in the past, which are called preference context
of the user. Furthermore, there is no difference among these
rated items because whatever scores they are assigned, they are
in the same set, or in other words, their effects are classified
into the same class, which is a typical example of one-class
preference context (OPC). When predicting the unobserved
score, the introduction of OPC can provide a global preference
context for the users . In MF-MPC [11], on the other side, rated
items except the target one of a given user, i.e., preference
context, are classified into several clusters in terms of the
grade scores, which are named multi-class preference context
(MPC). Intuitively, MPC is an advanced version of OPC which
not only offers the global preference information of users, but
also distinguishes the information with different values.

In a summary, TMF inherits the advantages of PMF, TCF
and iTCF. On the one hand, although TMF takes advantage
of explicit feedback with likes/dislikes of users to items in the
auxiliary binary data in the prediction phase of users’ grade
scores to items (i.e., TMF exploits the implicit preference
context of users from the auxiliary binary data in grade score
prediction), but the implicit preference context of users in
the midst of the target data is not exploited for grade score
prediction. On the other hand, SVD++ and MF-MPC only
exploit the preference context in the target data in order to
model users’ personalized preferences, and do not consider
the binary ratings in auxiliary data as used in TMF. Hence,
we propose a novel solution PAT which is a unified and generic
framework to incorporate TMF with the one-class preference
context in SVD++ and the multi-class preference context in
MF-MPC, respectively, from a complementary view in order
to further improve the grade score prediction accuracy.



III. PREFERENCE-AWARE TRANSFER

A. Problem Definition

In this paper, we study a recommendation setting with
heterogeneous explicit feedback, including users’ grade scores
and binary ratings to items. Specifically, for the input of
the training data, we have a set of grade score records
R = {(u, i, rui)} with rui ∈ G as a grade score such
as {0.5, 1, . . . , 5}, and a set of binary rating records R̃ =
{(u, i, r̃ui)} with r̃ui ∈ B = {like, dislike}. Our goal is to
estimate the grade score of each (user, item) pair in the test
data TE , which will be measured via a pointwise loss. Notice
that the binary rating records R̃ are leveraged to improve
the modeling process of the grade score records R. We list
some commonly used notations in Table I for quick index and
reference.

B. Implicit Preference Context

In order to jointly model two different types of explicit feed-
back, i.e., rui and r̃ui, a state-of-the-art method is proposed to
approximate the grade score and binary rating simultaneously
by sharing some latent variable [14],{

r̂ui = Uu·V
T
i· + bu + bi + µ

ˆ̃rui = Wu·V
T
i·

(1)

where the item-specific latent feature vector Vi· is shared
between two factorization subtasks.

However, for the goal of grade score prediction, some
implicit preference contexts are missing in the above joint
modeling approach shown in (1). For example, two users u
and u′ with similar sets of rated items, i.e., Igu and Igu′ with
g ∈ G, are likely to have similar tastes, which are called
graded preference context [11]. Besides that, we may also
assume that two users with similar sets of liked items (with
positive feedback) or disliked items (with negative feedback)
are similar in terms of their preferences [8]. Mathematically,
we may represent the one-class preference context as C̄Ou·,
the graded preference context as C̄Gu·, the positive preference
context as C̄pu·, and the negative preference context as C̄nu· as
follows [10], [11], [8],

C̄Ou· = δO
1√
|Iu\{i}|

∑
i′∈Iu\{i}

Coi′· (2)

C̄Gu· = δG
∑
g∈G

1√
|Igu\{i}|

∑
i′∈Igu\{i}

Cgi′· (3)

C̄pu· = δpwp
1√
|Pu|

∑
j∈Pu

Cpj· (4)

C̄nu· = δnwn
1√
|Nu|

∑
j∈Nu

Cnj· (5)

where δO, δG , δp, δn ∈ {1, 0} are the indicator variables, and
wp and wn are the weights on positive feedback and negative
feedback, respectively. Notice that C̄Ou· has been used in a
traditional and popular matrix factorization algorithm [10], C̄Gu·
has been used in a recent matrix factorization algorithm [11],

Fig. 1. Graphical model of our preference-aware transfer (PAT).

and C̄pu· and C̄nu· are common tricks used in factorization-
based methods [10], [8]. Our goal is to make use of all those
four types of preference context in a unified framework for
the studied problem in order to further improve the prediction
accuracy beyond those very competitive methods.

C. Transfer with Implicit Preference Context

With the preference context, we propose to incorporate them
into the collective factorization framework,{
r̂ui = Uu·V

T
i· + bu + bi + µ+ (C̄Ou· + C̄Gu· + C̄pu· + C̄nu·)V

T
i·

ˆ̃rui = Wu·V
T
i·

(6)

which will bring two user-specific latent feature vectors of
user u and user u′ to be close if they have similar implicit
preference context in a similar way to that of SVD++ [10].
Notice that we incorporate the preference context into the
prediction rule of grade scores instead of that of binary ratings
because that matches our final goal of grade score prediction
rather than binary rating prediction. We illustrate the overall
prediction rule in a graphical model in Fig. 1. Notice that the
green dashed line is used for introducing richer interactions
between the target data (i.e., grade scores) and the auxiliary
data (i.e., binary ratings), and if the grade scores are classified
into one cluster, then (3) will reduce to (2) and the framework
of PAT in Fig. 1 will reduce to PAT-OPC simultaneously.

We then reach an objective function similar to that of
CMF [14], iTCF [13] and TMF [8],

min
Θ

n∑
u=1

m∑
i=1

yuifui + λ

n∑
u=1

m∑
i=1

ỹuif̃ui (7)

where fui = 1
2 (rui− r̂ui)2 + α

2 ‖Uu·‖
2 + α

2 ‖Vi·‖
2 + α

2 ‖bu‖
2 +

α
2 ‖bi‖

2 + δp
α
2

∑
j∈Pu

‖Cpj·‖2F + δn
α
2

∑
j∈Nu

‖Cnj·‖2F +

δO
α
2

∑
i′∈Iu\{i} ‖C

o
i′·‖2F + δG

α
2

∑
g∈G

∑
i′∈Igu\{i} ||C

g
i′·||2F ,

and f̃ui = 1
2 (r̃ui − ˜̂rui)

2 + α
2 ‖Wu·‖2 + α

2 ‖Vi·‖
2.

For solving the optimization problem in (7), we randomly
take a record from R∪R̃, and update the corresponding model
parameters in Θ, i.e., µ, bu, bi, Uu·, Vi·, C

p
j·, C

n
j· ,Coi′· and Cgi′·



TABLE I
SOME NOTATIONS (INCLUDING THOSE OF THE DATA, MODELS AND LEARNING ALGORITHMS) AND EXPLANATIONS USED IN THE PAPER.

n number of users
m number of items
u, u′ ∈ {1, 2, . . . , n} user ID
i, j ∈ {1, 2, . . . ,m} item ID
G = {0.5, 1, . . . , 5} grade score range
B = {like, dislike} binary rating range
rui ∈ G grade score of user u to item i
r̃ui ∈ B binary rating of user u to item i
R = {(u, i, rui)} grade score records (training data)
R̃ = {(u, i, r̃ui)} binary rating records (training data)
p = |R| number of grade scores (training data)
p̃ = |R̃| number of binary ratings (training data)
Igu, g ∈ G items rated by user u with score g (training data)
Pu items liked (w/ positive feedback) by user u (training data)
Nu items disliked (w/ negative feedback) by user u (training data)
TE = {(u, i, rui)} grade score records in test data
µ ∈ R global average rating value
bu ∈ R user bias
bi ∈ R item bias
d ∈ R number of latent dimensions
Uu·,Wu· ∈ R1×d user-specific latent feature vector
U,W ∈ Rn×d user-specific latent feature matrix
Vi·, C

p
j·, C

n
j·, C

o
i′·, C

g
i′· ∈ R1×d item-specific latent feature vector

V,Cp,Cn,Co,Cg ∈ Rm×d item-specific latent feature matrix
r̂ui predicted grade score of user u to item i
ˆ̃rui predicted binary rating of user u to item i
γ learning rate
ρ interaction weight between grade scores and binary ratings
α tradeoff parameter on the regularization terms
δO, δG , δp, δn ∈ {0, 1} indicator variable for positive and negative feedback
wp, wn weight on positive and negative feedback
T iteration number in the algorithm

if a grade score record (u, i, rui) ∈ R is sampled (i.e., yui =
1), and Wu· and Vi· if a binary rating record (u, i, r̃ui) ∈ R̃
is sampled (i.e., ỹui = 1). In order to further introduce rich
interactions between the two factorization subtasks, we follow
the technique in iTCF [13], which will be reflected in the
gradients in the sequel.

Specifically, for a randomly picked up record, we have the
gradients of the model parameters w.r.t. fui or f̃ui as follows,

∇µ = −eui
∇bu = −eui + αbu

∇bi = −eui + αbi

∇Uu· = −euiVi· + αUu·

∇Vi· = −eui(ρUu· + (1− ρ)Wu· + C̄pu· + C̄nu· + C̄Gu·) + αVi·

∇Cpj· = δp(−euiwp
1√
|Pu|

Vi· + αCpj·), j ∈ Pu

∇Cnj· = δn(−euiwn
1√
|Nu|

Vi· + αCnj·), j ∈ Nu

∇Coi′· = δO(−eui
1√
|Iu\{i}|

Vi· + αCi′·), i
′ ∈ Iu\{i}

∇Cgi′· = δG(−eui
1√
|Igu\{i}|

Vi· + αCgi′·), i
′ ∈ Igu\{i}, g ∈ G

∇Wu· = λ(−ẽuiVi· + αWu·)

∇Vi· = λ(−ẽui(ρWu· + (1− ρ)Uu·) + αVi·)

where eui = (rui − r̂ui) is the error w.r.t. the target grade
score, ẽui = (r̃ui − ˆ̃rui) is the error w.r.t. the auxiliary
binary rating, and ρUu· + (1 − ρ)Wu· is used to introduce
rich interactions [13] between the user-specific latent features
Uu· and Wu·. Notice that we follow TMF [8] and convert
each “like” to r̃ui = 5 and each “dislike” to r̃ui = 1.
In our factorization-based transfer learning framework, the
implicit preference context is extracted from both grade scores
and binary ratings, which are both leveraged to improve
the task of predicting grade scores. On the one hand, the
explicit grade scores themselves are an obvious symbol of
classification which is easily neglected but important to capture
users’ detailed information. On the other hand, the binary
ratings indicate users’ affinity or rejection directly, which
helps to model users’ intuitive feelings. More importantly,
by combining them in one single framework, knowledge can
be transferred between each other so that contributes to more
accurate modeling of users’ preferences.

D. Discussions

Our transfer learning solution is very generic, which con-
tains several state-of-the-art factorization-based recommen-
dation methods as special cases, including RSVD [10],



CMF [14], iTCF [13], TMF [8], SVD++ [10] and MF-
MPC [11]. We explicitly describe the relationship of these
models in Table II. From Table II, we can see that our PAT
contains several pluggable components such as the compo-
nents for the auxiliary binary ratings, the positive and negative
preference context, the multiclass preference context, and the
interaction between two types of feedback, which shows that
our solution is very generic and flexible. This also gives us a
new perspective of analyzing the performance of each specific
method, which is included in our empirical studies.

TABLE II
RELATIONSHIPS BETWEEN OUR PREFERENCE-AWARE TRANSFER (PAT)
AND OTHER FACTORIZATION-BASED METHODS IN THE PERSPECTIVE OF

ITS PROJECTION TO THE GRAPHICAL MODEL OF OUR PAT SHOWN IN
FIG. 1.

Algorithm Edges
RSVD [10] {e1, e2}
CMF [14] {e1, e2, e3, e4}
iTCF [13] {e1, e2, e3, e4, e5}
TMF [8] {e1, e2, e3, e4, e5, e6, e7}
SVD++ [10], MF-MPC [11] {e1, e2, e8}
PAT-OPC, PAT (proposed) {e1, e2, e3, e4, e5, e6, e7, e8}

E. The Learning Algorithm

We adopt the commonly used stochastic gradient descent
(SGD) based algorithm to solve the optimization problem,
and formally describe the algorithm in Algorithm 1. We can
see that our PAT algorithm mainly contains two loops, where
the core steps are as follows: (i) sampling a record from a
union of two sets R∪ R̃, (ii) calculating the gradients of the
corresponding model parameters, and (iii) updating the model
parameters. The time complexity of our PAT are comparable
to that of TMF [8] and MF-MPC [11].

Algorithm 1 The algorithm of preference-aware transfer
(PAT).

1: for t = 1, . . . , T do
2: for iter = 1, . . . , |R ∪ R̃| do
3: Randomly pick up a record (u, i, rui) or (u, i, r̃ui)

from R∪ R̃.
4: Calculate the gradients w.r.t. fui or f̃ui accordingly.
5: Update the corresponding model parameters.
6: end for
7: Decrease the learning rate via γ ← γ × 0.9.
8: end for

IV. EXPERIMENTAL RESULTS

In this section, we conduct empirical studies in order
to study the usefulness of the binary rating data and the
effectiveness of exploiting the preference context in terms of
the prediction accuracy of the grade scores.

A. Datasets and Evaluation Metrics

In order to compare with the closely related works directly,
we adopt two public datasets used in a previous study about
modeling heterogeneous feedback [8], i.e, Movielens 10M (de-
noted as ML10M) and Flixter. The ML10M dataset contains
10, 000, 054 grade scores from 71, 567 users to 10, 681 items.
The Flixter dataset contains 8, 196, 075 grade scores from
147, 612 users to 48, 794 items. For simulating the problem
setting with heterogeneous feedback, we process each dataset
as follows: (i) we randomly split the data into five parts with
similar size, and (ii) we then take two parts as training data
with grade scores, take another two parts as binary ratings
by transforming grade scores larger than or equal to four to
“like” and grade scores smaller than four to “dislike”, and
take the remaining one part as the test data with grade scores.
We repeat this process for five times and obtain five copies of
grade score records, binary ratings and test data. The results
are averaged over those five copies of data.

To evaluate the performance of our PAT and other methods,
we use two commonly used regression-oriented evaluation
metrics, which are mean absolute error (MAE) and root mean
square error (RMSE).

B. Baselines and Parameter Configuration

In order to study the effectiveness of our generic transfer
learning framework, we conduct the experiments with the
following baseline methods:
• RSVD [10] is a basic matrix factorization method without

modeling preference context and auxiliary binary ratings,
which is a special case of our PAT with edges {e1, e2};

• MF-MPC [11] is a recent advanced matrix factorization
method exploiting multiclass preference context beneath
the grade scores, which is a special case of our PAT with
edges {e1, e2, e8}; and

• TMF [8] is a recent factorization-based transfer learn-
ing method incorporating the auxiliary binary ratings,
which is a special case of our PAT with edges
{e1, e2, e3, e4, e5, e6, e7}.

Notice that we do not include some other algorithms for
the studied problem such as collective matrix factorization
(CMF) [14] with edges {e1, e2, e3, e4}, and interaction-rich
transfer by collective facrtorization (iTCF) [13] with edges
{e1, e2, e3, e4, e5} because they usually perform worse than
TMF [8].

As for the parameter configurations in our PAT, we adhere to
the same rules used in TMF [8]. Specially, we fix the number
of latent dimensions d = 20 on ML10M and d = 10 on Flixter,
respectively, the iteration number T = 50, the learning rate
γ = 0.01, the interaction weight ρ = 0.5, the weight on the
auxiliary binary ratings λ = 1, the tradeoff parameter on the
regularization terms α = 0.01, and the weight on positive and
negative feedback wp = 2 and wn = 1.

For fair comparison between our PAT and other
factorization-based methods, we use the same code framework
of our PAT in Java programming language, and obtain the



TABLE III
RECOMMENDATION PERFORMANCE OF OUR PREFERENCE-AWARE TRANSFER (PAT) AND OTHER FACTORIZATION-BASED METHODS ON ML10M AND

FLIXTER, WHERE THE RESULTS OF RSVD [10] AND TMF [8] ARE COPIED FROM [8]. NOTICE THAT WE FOLLOW THE PARAMETER SETTING IN TMF [8]
AND FIX α = 0.01 AND T = 50 FOR ALL THE METHODS, AND wp = 2 AND wn = 1 FOR TMF AND OUR PAT. WE ALSO INCLUDE THE CONFIGURATIONS

IN OUR GENERIC PAT FRAMEWORK FOR COMPARATIVE STUDY AND REPRODUCIBILITY.

Data Algorithm MAE RMSE Configurations

ML10M

RSVD 0.6438± 0.0011 0.8364± 0.0012 δp = δn = 0, δG = 0, λ = 0, ρ = 1
MF-MPC 0.6162± 0.0006 0.8063± 0.0007 δp = δn = 0, δG = 1, λ = 0, ρ = 1
TMF 0.6124± 0.0007 0.8005± 0.0008 δp = δn = 1, δG = 0, λ = 1, ρ = 0.5
PAT 0.6107± 0.0003 0.7989± 0.0008 δp = δn = 1, δG = 1, λ = 1, ρ = 0.5

Flixter

RSVD 0.6561± 0.0007 0.8814± 0.0010 δp = δn = 0, δG = 0, λ = 0, ρ = 1
MF-MPC 0.6383± 0.0004 0.8644± 0.0005 δp = δn = 0, δG = 1, λ = 0, ρ = 1
TMF 0.6348± 0.0007 0.8615± 0.0012 δp = δn = 1, δG = 0, λ = 1, ρ = 0.5
PAT 0.6332± 0.0006 0.8572± 0.0010 δp = δn = 1, δG = 1, λ = 1, ρ = 0.5

baseline methods via specific configurations, which are also
included in our experimental results in Table III.

C. Results

The recommendation performance of our PAT and other
factorization-based methods are shown in Table III, from
which we can have the following observations:

• our PAT performs significantly better than all the base-
line methods across the two datasets, which shows the
effectiveness of our transfer learning solution in modeling
users’ heterogeneous feedback and preference context;
and

• compared with RSVD and MF-MPC, TMF and our PAT
with both target grade scores and auxiliary binary ratings
perform better, which showcases the usefulness of the
binary ratings.
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Fig. 2. Recommendation performance of factorization methods with one-class
preference context (OPC) and multiclass preference context (MPC), i.e., MF
with OPC (SVD++ [10]), MF with MPC (MF-MPC [11]), reduced version of
our PAT with OPC (i.e., PAT-OPC) and our PAT with MPC (PAT) on ML10M
(top) and Flixter (bottom), respectively.

We also study the effectiveness of oneclass preference
context (OPC) and multiclass preference context (MPC) in
factorization-based methods in depth, which are shown in
Fig. 2. In particular, we include basic matrix factorization with
OPC and MPC denoted as SVD++ [10] and MF-MPC [11],
respectively, and a reduced version of our PAT with OPC (i.e.,
PAT-OPC) and our PAT. Technically, PAT-OPC can easily be
derived and implemented by removing the grade scores when
generating the multiclass preference context, i.e., g = 1 for all
values in {0.5, 1, . . . , 5}. Notice that SVD++ and MF-MPC
only exploit the grade score records R, while our PAT-OPC
and PAT make use of both the grade scores and the binary
ratings. From the results in Fig. 2, we can have the following
observations:
• the overall performance ordering is SVD++ < MF-

MPC < PAT-OPC < PAT, which clearly showcases the
effectiveness of our preference-aware transfer learning
solution in modeling users’ heterogeneous feedback;

• for the two methods with OPC, i.e., SVD++ and our PAT-
OPC, and the two methods with MPC, i.e., MF-MPC and
our PAT, we can see that integrating the binary rating
records always brings performance improvement; and

• for the two methods modeling grade scores only, i.e.,
SVD++ and MF-MPC, and the two methods modeling
both grade scores and binary ratings, i.e., PAT-OPC and
PAT, we find that a method with MPC is always better
than that with OPC, which shows the effectiveness of
leveraging the fine-granularity preference context.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel and generic transfer
learning framework, i.e., preference-aware transfer (PAT), for
recommendation with heterogeneous feedback. In particular,
we take the grade scores as the target data and the likes/dislikes
as the auxiliary data in a transfer learning view, and exploit the
implicit preference beneath the target data and the auxiliary
data as the preference context, in order to build a more
accurate and generic recommendation model. Technically, we
find that several recent algorithms can be projected to be parts
of our generic solution PAT as special cases. Empirically,
we obtain very promising results on two large and public



datasets in comparison with several state-of-the-art methods.
More importantly, we observe that the empirical results are
consistent with that of the technical framework with different
subsets of components, i.e., more components leading to better
performance.

For future works, we are interested in further generaliz-
ing our generic factorization framework with deep federated
learning [15], [16] and ranking-oriented recommendation [17],
[18].
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