
Unsupervised Clustering through Gaussian Mixture
Variational AutoEncoder with Non-Reparameterized

Variational Inference and Std Annealing
Zhihan Li†, Youjian Zhao‡, Haowen Xu†, Wenxiao Chen†, Shangqing Xu†, Yilin Li†, Dan Pei‡∗

Tsinghua University
Beijing National Research Center for Information Science and Technology (BNRist)

Beijing, China
†{lizhihan17, xhw15, chen-wx17, xsq17, liyilin16}@mails.tsinghua.edu.cn

‡{zhaoyoujian, peidan}@tsinghua.edu.cn

Abstract—Clustering has long been an important research
topic in machine learning, and is highly valuable in many
application tasks. In recent years, many methods have achieved
high clustering performance by applying deep generative models.
In this paper, we point out that directly using q(z|y, x) instead
of resorting to the mean-field approximation (as is adopted in
previous works) in Gaussian Mixture Variational Auto-Encoder
can benefit the unsupervised clustering task. We improve the
performance of Gaussian Mixture VAE, by optimizing it with a
Monte Carlo objective (including the q(z|y, x) term), with non-
reparameterized Variational Inference for Monte Carlo Objec-
tives (VIMCO) method. In addition, we propose std annealing
to stabilize the training process and empirically show its effects
on forming well-separated embeddings with different variational
inference methods. Experimental results on five benchmark
datasets show that our proposed algorithm NVISA outperforms
several baseline algorithms as well as the previous clustering
methods based on Gaussian Mixture VAE.

Index Terms—Unsupervised Clustering, Gaussian Mixture
Variational Auto-Encoder, Std Annealing

I. INTRODUCTION

Clustering is a fundamental and important research topic
in machine learning and artificial intelligence, which aims at
grouping similar examples together in an unsupervised manner.
Traditional clustering methods like k-means [1] and Gaussian
Mixture Models (GMMs) [2] represent the clusters using simple
similarity measure and statistical distributions in data space or
hand-crafted feature space, which need careful feature designs
for specific tasks. However, it’s quite challenging to manually
design such features for complex data such as images, resulting
in poor clustering performance.
Related Work. In recent years, with the help of deep neural
networks (DNN), many researches have shown that learning
good representations plays an important role in improving
the accuracy of clustering on complex datasets. For example,
Deep Embedded Clustering (DEC) [3] proposed a method
to simultaneously learn feature representations and clustering
centroids using DNNs, then applied simple k-means clustering
on the low-dimensional feature space derived from DNN with

* Dan Pei is the corresponding author.

the learned centroids. However, the clustering accuracy of DEC
is also poor, since the training objective of the model does not
match so well with the goal of classical clustering technique.

Another approach, quite different from DEC, is deep gener-
ative models, including variants of Variational Auto-Encoder
(VAE) [4] and Generative Adversarial Network (GAN) [5].
They are able to model the clustering assignment as a latent
variable, which benefits the unsupervised clustering task [6]–
[8]. i.e., the clustering assignment is also a part of the latent
representations in the deep generative model based methods.

Along this direction, several methods for unsupervised clus-
tering were proposed. Gaussian Mixture Generative Adversarial
Network (GM-GAN) [6] proposed a variant of GAN where the
probability distribution over the latent space is a mixture of
Gaussians. However, for the GAN-based models, the constraints
on the relationship between the clustering assignment latent
variable and other latent variables is not very strong, which
may downgrade the clustering performance on datasets more
complicated than MNIST (see Section III-B). As for VAE-
based models, Gaussian Mixture Variational Auto-Encoder
(GMVAE1) [7] and Variational Deep Embedding (VaDE) [8]
both proposed variants of Gaussian Mixture VAE, which have
better constraints on the relationship between the clustering
assignment latent variable (categorical latent variable) and other
latent variables. Both of them applied mean-field approximation,
in order to more easily deduce their training methods, based
on Stochastic Gradient Variational Bayes (SGVB) estimator
and reparameterization trick [4].
Our Approach. Gaussian Mixture VAE is appealing for
clustering, since among all models, the VAE-based models can
better characterize the constraints on the relationship between
different types of latent variables, useful in the unsupervised
clustering task which involves disentangling the categorical
and other information of the input. However, the performance
of the previous works (GMVAE [7] and VaDE [8]) seems not
satisfactory. We noticed that both these works used the mean-

1We use Gaussian Mixture VAE to denote the VAE-based model with
Categorical latent variable y and continuous Gaussian latent variable z
depending on y, while GMVAE specifically denotes the previous work [7].

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

yzx x z y

N N

� ✓

Fig. 1. Architecture of NVISA. The Categorical latent variable y as well as
the continuous Gaussian latent variable z are regarded as part of the generative
model (right), the left one denotes the variational model.

field approximation, which we advocate should be replaced
by directly using q(z|y,x) (as shown in Fig. 1). In this
paper, we propose NVISA (Gaussian Mixture VAE with Non-
reparameterized Variational Inference and Std Annealing), an
unsupervised clustering method based on Gaussian Mixture
VAE without mean-field approximation, using Variational
Inference for Monte Carlo Objectives (VIMCO) [9] as training
method and the standard deviation (std) annealing trick (i.e.,
gradually shrink the lower bound of std of the posteriors during
training) proposed by us.

The main contributions of the paper are:
• We point out that directly using q(z|y,x) instead of

using the mean-field approximation in previous works can
benefit the unsupervised clustering task with Gaussian
Mixture VAE.

• We experiment with three possible variational inference
methods (EnumY, NVIL, VIMCO) to train NVISA, and
finally use the non-reparameterized method VIMCO to
achieve the best performance. Besides, we propose std
annealing to stabilize the training of NVISA with VIMCO,
and empirically show that the std annealing can help
form well-separated embeddings and improve clustering
accuracy with different variational inference methods.

• We evaluate NVISA with VIMCO and std annealing on
five benchmark datasets. Our results show that NVISA
outperforms several baseline clustering algorithms as well
as the previous clustering methods based on Gaussian
Mixture VAE.

II. NVISA FOR UNSUPERVISED CLUSTERING

In this section, we first present the architecture of NVISA.
Unlike the previous works [7], [8], NVISA does not adopt
the mean-field approximation. We then show how to optimize
NVISA with three candidate variational inference methods
(EnumY, NVIL and VIMCO). Finally, we propose the std
annealing, which helps stabilize the training process of NVISA
when VIMCO is used, resulting in better embeddings in the
latent space with different variational inference methods.

A. Architecture

As in [7], [8], we use a Categorical latent variable y ∈
{1 . . .K} to represent the clustering assignment of a given
input x, and a continuous Gaussian latent variable z, which
depends on y, to capture other information of x. The whole
generative model is thus composed of three variables, namely
x, y and z, with parameters denoted as θ. We factorize the
generative model as follows:

pθ(x, y, z) = pθ(x|z) pθ(z|y) pθ(y) (1)

where each variable is derived as:

pθ(y) = Cat(π) (2a)

pθ(z|y) = N
(
µz(y; θ),σz

2(y; θ) I
)

(2b)

pθ(x|z) = N
(
µx(z; θ),σx

2(z; θ) I
)

(2c)

We let the prior distribution pθ(y) = Cat(π) assign equal
probability to each possible choice of y ∈ {1 . . .K}. pθ(z|y)
is assumed to be a Gaussian distribution, with µz(y; θ) as its
mean and σz(y; θ) as its standard deviation (std). pθ(x|z) is
also assumed to be a Gaussian distribution, derived in a way
similar to z. µz(y; θ) and σz(y; θ) are just learnable vectors
for each y, respectively. µx(z; θ) and σx(z; θ) are derived
by neural networks, with parameters θ. Note that we add a
constant lower-bound to the std of prior pθ(z|y):

σz
′
(y; θ) = SoftPlus(σz(y; θ)) + 1

where SoftPlus(a) = log(exp(a) + 1). This is because we
want the prior pθ(z|y) (which is learnable) to be at least as
large as a unit Gaussian.

To apply variational inference on pθ(x, y, z), we need a sep-
arated qφ(z, y|x) to approximate the true posterior pθ(z, y|x).
We factorize the variational posterior as:

qφ(z, y|x) = qφ(z|y,x)qφ(y|x) (3)

where each variable is derived as:

qφ(y|x) = Cat(π(x;φ)) (4a)

qφ(z|y,x) = N
(
µz(x, y;φ),σz

2(x, y;φ) I
)

(4b)

qφ(y|x) is assumed to be a Categorical distribution, while
qφ(z|y,x) is assumed to be a Gaussian distribution. π(x;φ),
µz(x, y;φ) and σz(x, y;φ) are all derived by neural networks
with parameters φ. Note that, we also add a lower bound to
the σx(z; θ) and σz(x, y;φ) to stabilize the training of our
model, see Section II-D for more details.

The whole architecture of our model, including pθ(x, y, z)
and qφ(z, y|x), is shown as Fig. 1. In the generative network, x
conditions on z and z conditions on y, hence the latent variable
z should encode the label information. Thus, it’s natural to let
z condition on both x and y, i.e., directly calculating qφ(z|y,x)
rather than using the mean-field approximation qφ(z, y|x) =
qφ(z|x)qφ(y|x).

B. Using qφ(z|y,x) instead of Mean-Field Approximation

The previous works that use Gaussian Mixture VAE on
unsupervised clustering [7], [8] both adopt mean-field ap-
proximation qφ(z, y|x) = qφ(y|x) qφ(z|x). By doing this,
they managed to train their model without sampling y, the
categorical latent variable, which is impossible to directly
train2 with SGVB and reparameterization trick. However, this
mean-field approximation qφ(y|x) qφ(z|x) can only represent
joint distributions where z and y are conditionally independent

2Although it’s possible to use SGVB and categorical reparameterization
with Gumbel-Softmax [10] to train Gaussian Mixture VAE with categorical
latent variable, this method can only get around 80% clustering accuracy on
MNIST in our experiments. Thus we do not discuss this method in our paper.

given x, which may not hold in the real-world datasets in many
cases. On the contrary, the factorization qφ(z|y,x)qφ(y|x) can
represent all possible joint distributions qφ(z, y|x), regardless
of whether or not z and y are conditionally dependent
given x. Thus we choose the factorization qφ(z|y,x)qφ(y|x)
deliberately. We shall see in Section III-C that, our model,
which directly calculates qφ(z|y,x), significantly outperforms
GMVAE, VaDE, and a variant of our model which uses mean-
field approximation instead.

C. Three Candidate Variational Inference Methods for NVISA

Since we decide not to use the mean-field approximation,
we need a new variational inference method, different from
the previous work, to train NVISA. In order to deal with
the non-reparameterized Categorical latent variable y, we
found three candidate methods: the EnumY, which enumerates
y and uses SGVB [4], [11], and two non-reparameterized
method, NVIL [12] and VIMCO [9]. These methods are briefly
described as follows.
EnumY In Gaussian Mixture VAE, if we enumerate y =
1 . . .K and keep the z variable reparameterized, the evidence
lower bound (ELBO) can be written into a summation over
y and an expectation over z (5), which can be optimized by
SGVB with reparameterization trick [4], [11]:

LELBO(x; θ, φ) =

K∑
y=1

qφ(y|x)Eqφ(z|y,x)
[

log pθ(x, y, z)− log qφ(y|x)− log qφ(z|y,x)
]

(5)

Unfortunately, this simplest method does not work as well as
the non-reparameterized method, and is likely to get “mixture
models” (see Section III-D).
NVIL Mnih and Gregor [12] proposed Neural Variational
Inference and Learning (NVIL) to estimate the gradient
of ELBO, when latent variables are NOT reparameter-
ized. Let f(x, y, z) = log pθ(x, y, z) − log qφ(z, y|x), and
LELBO(x; θ, φ) = Eqφ(z,y|x)[f(x, y, z)], NVIL then estimates
the gradient ∇LELBO(x; θ, φ) by (6):

∇LELBO(x; θ, φ) = Eqφ(z,y|x)
[
∇f(x, y, z)

+ (f(x, y, z)− Cψ(x)− c)∇ log qφ(z, y|x)
]

(6)

Cψ(x) is derived by another trainable neural network (which
is called “baseline net”) with parameter ψ, while c is a
learnable constant. The gradient (6) is directly used to train the
parameters θ, φ and ψ with stochastic gradient descent, instead
of computing the gradient of a certain objective function.

In our experiments (Section III-D), the variance of NVIL
gradient estimator is too large (which is theoretically possible),
such that when training with NVIL, the loss of the model
would diverge.
VIMCO Burda et al. [13] proposed the Monte Carlo objective
for training VAEs. It is a tighter variational lower bound than
ELBO, computed from multiple samples of latent variables.
The original method of [13] requires the latent variables to be
reparameterized, such that the gradient can be estimated by an
SGVB-like algorithm. Mnih and Rezende [9] then extended this

lower bound to train non-reparameterized latent variables. They
suggested to take advantage of the multiple samples, in order
to eliminate the need of using the separated learnable network
Cψ(x) and constant c (as in NVIL). This non-reparameterized
variational inference method is called VIMCO. In NVISA, the
Monte Carlo objective can be formulated as (7).

LM (x; θ, φ) =

E(y,z)(1:M)∼qφ(z,y|x)

[
log

1

M

M∑
m=1

pθ(x, y
(m), z(m))

qφ(z(m), y(m)|x)

]
(7)

where (y, z)(1:M) are M independent joint samples of (y, z)
from qφ(y, z|x), and each (y, z) is sampled by first taking
y ∼ qφ(y|x), then z ∼ qφ(z|y,x). The details of VIMCO
gradient estimator can be found in [9].

Although more stable than NVIL, the VIMCO method may
still cause loss divergence in a few tens or hundreds of epochs
in our clustering task (see Section III-D). We developed the
std annealing trick to stabilize training with VIMCO. With
this trick, training with VIMCO converges and gives us better
models than EnumY. We thus choose VIMCO as the training
method for NVISA.

D. The Std Annealing Trick

We developed the std annealing trick (i.e., add and gradually
shrink the lower bound of std of the Gaussian posteriors during
training) to stabilize the model training with VIMCO and
Gaussian pθ(x|z). Moreover, we empirically show that, std
annealing can help learn better embeddings and lead to higher
clustering performance on the raw image datasets like MNIST
and fashion-MNIST, either with EnumY or VIMCO training
method. The insights of developing this trick is shown below.

In our experiments, we observed that the loss may diverge
only if 1) we assume pθ(x|z) to be a Gaussian distribution;
and 2) we use NVIL or we use VIMCO method with just
a small number of samples. If we assume pθ(x|z) to be a
Bernoulli distribution (which is more stable than Gaussian in
our context), the loss will not diverge. However, the Bernoulli
pθ(x|z) is only applicable to a few datasets (e.g., MNIST),
and in our experiments, it does not work as well as our final
model using Gaussian pθ(x|z) even on such datasets. Thus we
have to develop tricks that make the training with Gaussian
pθ(x|z) converge. Unfortunately, we cannot find a trick that
can stabilize NVIL with Gaussian pθ(x|z). For VIMCO with
Gaussian pθ(x|z), using a large number of samples may help
the loss converge, but we found that it takes too long for
training and its performance is not as good as VIMCO with
a small number of samples and the stabilization trick that we
managed to propose below, which turns out to also work better
than EnumY (see experimental results in Section III-D).

Our proposed stabilization trick is based on the following
observations and analysis. At the beginning of training, we
observe huge loss and gradients with large variance, and then
the loss diverges. We then try to clip the gradients by L2-norm,
but the loss still gradually increases, and eventually reaches
∞. This suggests that the loss divergence is not because the

gradients are too large, but because, when the loss has large
variance, the gradients often guide the optimization to wrong
directions. Looking closer into the Monte Carlo objective (7),
we can see that it is just a lower-bound of the importance
sampling based estimator for log pθ(x):

E(y,z)(1:M)∼qφ(z,y|x)

[
log

1

M

M∑
m=1

pθ(x, y
(m), z(m))

qφ(z(m), y(m)|x)

]

≤ logE(y,z)(1:M)∼qφ(z,y|x)

[
1

M

M∑
m=1

pθ(x, y
(m), z(m))

qφ(z(m), y(m)|x)

]

= logEqφ(z,y|x)

[
pθ(y, z|x)

qφ(z, y|x)
pθ(x)

]
= log pθ(x)

The theory of importance sampling states that, the variance of
this estimator will be large if qφ(z, y|x) does not approximate
pθ(z, y|x) well enough [14]. This is exactly what we will
encounter at the beginning of training, when pθ(z, y|x) are
still rapidly evolving. Thus qφ(z, y|x) can never approximate
the true posterior well. The large variance on the importance
sampling estimator may cause large variance on the objective
function, and may further cause the gradients go towards wrong
directions. When using Gaussian pθ(x|z), for NVIL, the large
variance may be caused by the incapability of baseline net.
The EnumY does not use Monte Carlo objective, thus will not
have this problem. When using VIMCO with a large number
of samples, the variance is reduced, thus the training converges.
However, as discussed above, these two method does not lead
to good performance. We then try to find additional tricks to
prevent the loss divergence when using Gaussian pθ(x|z) and
VIMCO with a small number of samples.

Since pθ(x|z) and qφ(z|y,x) are Gaussian distributions,
adding large lower-bounds to their stds actually limit the scale
of the probability densities, which prevent the scale of Monte
Carlo objective from becoming too large when the importance
sampling estimator still has large variance (which causes the
loss diverges). Based on these observations and analysis, we
propose our std annealing trick as follows: We add large
lower-bounds on the standard deviation (std) of the Gaussian
distributions pθ(x|z) and qφ(z|y,x) at the beginning of the
training, gradually shrink the lower-bounds during training
process, and finally set them to small constants at the end of
training. The lower-bounds are added as:

σx
′
(z; θ) = SoftPlus(σx(z; θ)) + εx

σz
′
(x, y;φ) = SoftPlus(σz(x, y;φ)) + εz

where εx and εz are annealing parameters, initialized to 1,
shrunk by 0.5 after every 100 epochs, and set to 10−4 at
the end. With the std annealing trick, the loss never diverges
when training NVISA with VIMCO in our experiments in
Section III-B. The resulting model achieves much higher
clustering accuracy than the previous Gaussian mixture VAE-
based methods on several benchmark datasets.

Moreover, we found that the std annealing can help learn
better embeddings on the raw image datasets like MNIST

and fashion-MNIST, either with EnumY or VIMCO training
method. In NVISA, the ELBO can be written as:

LM (x; θ, φ) =Eqφ(z,y|x)pθ(x|z)

−DKL(qφ(y, z)‖pθ(y, z))− I((Z, Y);X)

where the first term is called reconstruction loss, the second
term is KL divergence between posterior and prior, the last term
(mutual information) acts as a regularizer [15]. During training,
the model pays more attention to optimize the reconstruction
loss (which is much larger than the other two terms) rather
than the KL term, while the latter one actually makes the
posterior match the Gaussian mixture prior and helps form
better embeddings for clustering. Thus, for the raw image data
where some images from different classes might be similar, it’s
easy to get “mixture” clusters on the latent space. However,
at the early stage of training, a large lower bound on the
std of pθ(x|z) actually slows down the optimization of the
reconstruction loss, and the regularizer (whose value is very
small) only changes slightly, pushing the model to optimize the
KL term and make the posterior match the Gaussian mixture
prior. Note that, the std annealing is applied during training
process, rather than modify the training objective (which may
harm the final reconstruction). We empirically show that this
leads to a better-separated embeddings, which significantly
improves the clustering performance with different variational
inference methods in Section III-D.

III. EXPERIMENTS AND ANALYSIS

A. Setup

Datasets We evaluate NVISA on five benchmark datasets
and compare its performance with several baseline clustering
methods to show the superiority of our algorithm. The datasets
include: MNIST [16], fashion-MNIST [17], STL-10 [18],
CIFAR-10 and CIFAR-100 [19]. MNIST and fashion-MNIST
are grayscale image datasets about hand-written digits and
fashion clothes, while the other three datasets are color natural
images. Previous works [8], [20] have found that raw pixels
of these complex color images may not be suited for our
clustering task, since the color information would be dominant,
but unrelated to clustering. Thus, following previous works [6],
[8], [21], we use raw pixel values for MNIST and fashion-
MNIST, 2048-dimensional features3 extracted by pre-trained
Resnet-50 [22] (which is trained on ImageNet [23]) for STL-10,
CIFAR-10 and CIFAR-100. These configurations are used for
all the compared methods.
Evaluation Metric It is a common practice to use a K-
class labeled classification dataset to evaluate the clustering
performance of a model, by using the unsupervised clustering
accuracy (ACC for short hereafter) [3], [6], [8], [21]:

ACC = max
f∈F

∑N
i=1 I(f(ci) = li)

N

3The raw image is resized through a bilinear filter and then passed through
the pre-trained Resnet-50. A 7 × 7 average pooling is applied on the last
feature map of Resnet-50 to get the 2048-dimensional features.

N is the total number of samples. ci is the clustering assignment
for the i-th testing data, produced by the model, while li is
the ground-truth class label. F is the set of all possible one-
to-one mappings between cluster assignments and labels. The
best mapping f (as required by max) can be obtained using
KuhnMunkres algorithm [24]. Following previous work, we
always use K, the number of ground-truth classes, as the
number of clusters to fit. Note that K = 100 for CIFAR-100,
and K = 10 for other datasets.
Other Configurations The network structure is shown in
Fig. 5(a), while the hidden layers consist of several convolu-
tional and deconvolutional layers. We use Adam [25] optimizer
to optimize our model. The initial learning rate is set to 0.001,
with a decay rate of 0.5 every 300 epochs. The number of
VIMCO samples M is set to 50 for CIFAR-100, and 15 for all
other datasets. According to [26], a uniform random noise is
added on the raw pixel images for training, and then normalize
the pixel value to [0, 1] (by dividing 256). For other datasets,
the features are standardized to 0 mean and 1 variance as input.
According to [27], the latent z dimension should not be very
large, in order to get more disentangled representations for
clustering task. In this paper, we use z dimension L = 10 for
MNIST, CIFAR-10 and CIFAR-100, L = 16 for more complex
fashion-MNIST dataset, and L = 5 for the simplest STL-10
features. The cluster assignment of each input x is obtained
by finding the y with the maximum qφ(y|x).

B. Overall Performance

We evaluated our method NVISA on five benchmark
datasets, and compared it with several baseline clustering meth-
ods, including AE+GMM (AutoEncoder + Gaussian Mixture
Model), VAE+GMM, DEC [3], GM-GAN [6], GMVAE [7],
VaDE [8], LTVAE-GMM [21] and LTVAE-full [21] (LTVAE
with structure learning in latent space). The results are shown
in Table I. We report the means and standard deviations in
ten runs for our method NVISA and highlight the top two
clustering accuracy on each dataset.

Our NVISA overall performs the best among all the
compared methods on five benchmark datasets. Specifically,
NVISA significantly outperforms GMVAE and VaDE, which
are based on variants of Gaussian Mixture VAE. This highlights
the benefits of our modifications (qφ(z|y,x), VIMCO and std
annealing) to the Gaussian Mixture VAE. Note that, GMVAE
uses an additional regularization term to help improve its
clustering performance, which is not very applicable to our
model. However, even without using this regularization term,
NVISA still outperforms GMVAE on all the five datasets. Thus,
we decide not to use any clustering specific regularization
term in NVISA. Besides, the result of NVISA on MNIST is
slightly worse than GM-GAN. However, NVISA outperforms
GM-GAN on the more complicated fashion-MNIST dataset,
which suggests NVISA should be at least no worse than GM-
GAN. LTVAE [21] (Latent Tree Variational AutoEncoder) is
a Variational AutoEncoder with a superstructure of discrete
latent variables (i.e., y) on top of the latent features (i.e., z).
LTVAE-GMM uses a fixed Gaussian mixture structure with

one single y variable, while LTVAE-full performs structure
learning to learn the superstructure through a latent tree model.
The use of multiple latent variables and the learned structure
help LTVAE-full achieves good clustering performance on
several datasets. However, although not using the complex
superstructure, NVISA achieves clustering results better than
or comparable to LTVAE-full on all the five datasets. Each
experiment of NVISA takes 3-12 hours to train on one GTX
1080 Ti graphical card for every dataset except CIFAR-100.
The training time of CIFAR-100 is around 30 hours, since
more VIMCO samples are needed for this 100-class dataset.
Overall, such training overhead is comparable with other deep
generative model based methods.

One thing to mention is that, the large standard deviation
(2.64%) of our method on MNIST dataset is mainly caused by
one run with around 90% accuracy. This might be caused by
the bad initialization which makes the model mix up similar
numbers like “4” and “9”. However, inspired by [8], we find that
using parameters of a simple pretrain model as an initialization
of NVISA can help tackle the above problem. Specifically, we
pretrain an AutoEncoder who has the same network structure
as NVISA, then perform GMM on the latent space obtained by
AE. The network parameters are used to initialize the neural
networks in NVISA, while the means of GMM are used as
the initial means of z priors in NVISA (instead of random
initialization). With this better initialization, NVISA is able to
get 98.04%(±0.17%) clustering accuracy on MNIST (evaluated
in ten runs).

C. qφ(z|y,x) vs Mean-Field Approximation

Among the three variants of Gaussian Mixture VAE, NVISA
significantly outperforms GMVAE and VaDE, as shown in
Table I. Unlike the previous works, we deliberately use
qφ(z|y,x), instead of the mean-field approximation, as dis-
cussed in Section II-B. Our experiments on MNIST (Table II)
shows that the model using qφ(z|y,x) (adopted in NVISA
with VIMCO and std annealing) outperforms the models
using mean-field approximation qφ(z, y|x) = qφ(z|x)qφ(y|x).
This is verified not only by the results of previous works,
but also by the controlled experiment on NVISA with mean-
field approximation. Fig. 4 also shows that the embeddings
learned by NVISA are better separated than the controlled
experiment with mean-field approximation. Thus, we stick to
using qφ(z|y,x) in NVISA.

D. Comparison of Different Variational Inference Methods and
Std Annealing

Table II shows the unsupervised clustering accuracy on
MNIST of previous works, and NVISA trained with three
variational inference methods (EnumY, NVIL and VIMCO)
and other configurations. “(Bernoulli)” indicates that a model
uses Bernoulli pθ(x|z), otherwise it uses Gaussian. “(mean-
field)” indicates that a model uses the mean-field approximation,
otherwise it uses qφ(z|y,x). “(1000 samples)” indicates that
a model uses 1000 samples in VIMCO, otherwise it uses
15. “*” indicates the std annealing is applied. Note that,

TABLE I
COMPARISON OF UNSUPERVISED CLUSTERING ACCURACY (%) ON FIVE BENCHMARK DATASETS.

Method MNIST Fashion-MNIST STL-10 CIFAR-10 CIFAR-100

AE+GMM 84.27 53.83 76.18 43.66 29.41
VAE+GMM 76.87 53.43 82.42 59.4 30.81

DEC [3] 84.30∗ 57.58 84.08 70.31 31.22
GM-GAN [6] 99.24∗ 58.16∗ - - -
GMVAE [7] 88.54∗ 50.15 65.72 49.79 14.46

VaDE [8] 94.46∗ 56.12 84.45∗ 59.69 23.58
LTVAE-GMM [21] 86.31 55.69 81.66 63.51 16.98

LTVAE-full [21] 86.32∗ 61.32 90.00∗ 69.16 38.52
NVISA(best) 98.40 66.14 91.22 76.96 38.79

NVISA(avg±std) 96.55±2.64 62.63±2.92 89.15±2.36 71.37±2.79 37.32±0.70
Results marked by ∗ are excerpted from their original paper.
“-” means there is no published result and we didn’t find any released code to produce it.

TABLE II
THE UNSUPERVISED CLUSTERING ACCURACY ON MNIST.

Variational Inference Method ACC (%)

GMVAE 88.54
VaDE 94.46

EnumY NVISA (Bernoulli) 95.12
NVISA 78.43
NVISA∗ 93.81

NVIL NVISA N/A
NVISA∗ N/A

VIMCO NVISA N/A
NVISA (Bernoulli) 95.74
NVISA (1000 samples) 71.42
NVISA∗(1000 samples) 91.3
NVISA∗ (mean-field) 95.25
NVISA∗ 98.40

“*” indicates the std annealing is applied.
“N/A” means the loss diverges and we cannot get a meaningful result.

as discussed in Section II-D, although it’s applicable to use
Bernoulli pθ(x|z) for MNIST, we can only achieve 95.74%
accuracy (with VIMCO) and 95.12% (with EnumY). Besides,
Bernoulli assumption is not applicable for most datasets. Thus,
we stick to use Gaussian pθ(x|z) in NVISA for all datasets.

As shown in Fig. 2, training NVISA using VIMCO 15
samples without std annealing, and using NVIL with or without
std annealing, all suffer from loss divergence. This is because
the importance sampling estimators have large variance, as
discussed in Section II-D. However, with the std annealing,
NVISA with VIMCO 15 samples can be properly trained and
achieve the best clustering performance.

One thing to notice is that, directly using Gaussian with
EnumY or with VIMCO 1000 samples leads to poor per-
formance. We found that, this is likely because these two
models degenerate into true “mixture models” from the early
stage in training: only the marginal distribution pθ(z) =∑
y pθ(z|y)pθ(y) is meaningful, while each individual com-

ponent pθ(z|y) does not correspond to any particular x. This
phenomenon is shown as Fig. 3, where we obtain 100 x samples
from each model by ancestral sampling, i.e., each x is produced
by first sampling a y ∼ pθ(y), then a z ∼ pθ(z|y), and finally

0 100000 200000 300000 400000 500000
3000

2000

1000

0

1000

2000

lo
ss

(G
au

ss
ia

n)

0
100
200
300
400
500

lo
ss

(B
er

no
ul

li)

0 100000 200000 300000 400000 500000
step

1016
108

0
108

1016
1024
1032
1040

lo
ss

 (s
ym

lo
g

sc
al

e)

VIMCO15_anneal
VIMCO15_Bernoulli_no_anneal

EnumY_no_anneal
VIMCO1000_no_anneal

VIMCO15_no_anneal NVIL_no_anneal NVIL_anneal

Fig. 2. Training loss of NVISA with different Variational Inference methods
on MNIST. The loss curves are smoothed for better visualization. Only 200,000
steps are used for VIMCO-1000 since it takes too long to train. (Top) The
right y-axis corresponds to the experiment with Bernoulli pθ(x|z), while the
left y-axis corresponds to others with Gaussian pθ(x|z). (Bottom) shows
the diverged models discussed in Section III-D.

(a) (b)

(c) (d)

Fig. 3. Generated samples using NVISA with different variational inference
methods on MNIST. (a) EnumY, (b) VIMCO with 1000 samples, (c) EnumY
with std annealing, (d) VIMCO with 15 samples and std annealing

x ∼ pθ(x|z). Moreover, although the above two models can
be trained without std annealing, we find that equipped with
std annealing trick can also help them learn better embeddings
in the latent space and alleviate the “mixture model” problem.
As shown in Fig. 4, for the 10,000 test-set images on MNIST
dataset, we use z ∼ qφ(z) = Ep∗(x)Σyqφ(z|y,x)qφ(y|x) to

(a) NVISA* (98.40) (b) NVISA*+mean-field (95.25)

(c) NVISA+EnumY (78.43) (d) NVISA*+EnumY (93.81)

Fig. 4. 10,000 encoded test-set digits and 10,000 samples from the prior on
MNIST, dimensionally reduced by t-SNE, colored by model predicted labels.
“*” indicates the std annealing is applied. Values in parenthesis are the test-set
clustering accuracy.

get the encoded z (p∗(x) denotes the true data distribution on
test set). Besides, another 10,000 samples are obtained from
the prior Σypθ(z|y). These 20,000 samples are dimensionally
reduced using t-SNE [28]. As shown in Fig. 4 (d), EnumY with
std annealing learns better-separated embeddings and generates
clear digits (Fig. 3 (c)). This is in sharp contrast with Fig. 4
(c) and Fig. 3 (a), which does not apply std annealing. Similar
results are obtained when using VIMCO 1000 samples. It
empirically shows that, with the std annealing trick, the model
learns well-separated embeddings and matches the posteriors to
the priors better. The std annealing help improve the accuracy
of EnumY from (78.43%/51.41%) to (93.81%/60.56%) on
(MNIST/fashion), and improve the accuracy of VIMCO 1000
samples from 71.42% to 91.30% on MNIST.

Fig. 4 (a) and Fig. 3 (d) shows the learned embeddings
and generated digits by NVISA with VIMCO 15 samples
and std annealing, which achieves 98.40% clustering accuracy
on MNIST. It clearly shows that the embeddings are well-
separated in the latent space, each corresponds to a category
of digits in data space. According to the experiments and
analysis above, we conclude that it is adequate to use the
non-reparameterized method VIMCO with small number of
samples and std annealing to train NVISA, targeted for an
unsupervised clustering task.

E. Hyper-Parameter Selection

We did some extra experiments on MNIST to analyze the
sensitivity of std annealing to the hyper-parameter selection,
as shown in Fig. 5(b). Although the model is somewhat
sensitive to the initial std lower bound and annealing frequency,
it’s easy to choose these parameters based on the following
intuitions. Similar to the prior, we set the initial std lower
bound to 1 to make each posterior at least a unit gaussian at

Hidden Layers
f�(x)f�(x)

Linear
K Units

Latent Variable z
L Dimensions

µz �z

Latent Variable y
K Dimensions

Linear
L Units

Pixels or Features x
W Dimensions

SoftPlus +
L Units

✏z

h
x

hy

Latent Variable y
K Dimensions

Latent Variable z
L Dimensions

Hidden Layers
f✓(z)f✓(z)

Linear
W Units

SoftPlus +
W Units

✏
x

Reconstructed x
W Dimensions

µ
x

�
x

Variational Net Generative Net
(a) (b)

Fig. 5. (a) Network structure of NVISA. Gray nodes are random variables
and white nodes are layers. (b) ACC of NVISA with different parameters on
MNIST. Each configuration is evaluated in five runs.

the beginning of the training. During training process, we want
the model to converge under each intermediate std lower bound,
which empirically helps make the posterior match the Gaussian
mixture prior, and leads to a better separated embedding for
clustering. Thus, we choose to anneal the std lower bound every
100 epochs at the rate of 0.5. These configurations empirically
works well on all our five datasets.

IV. RELATED WORK

Recently, deep learning methods are widely used to learn
better latent representations from the training data for clustering
task. To further improve the clustering accuracy, recent meth-
ods [3], [20], [29] often jointly refine the latent features and
clustering assignments, through carefully designed combination
of loss functions or additional regularization terms. These
methods achieve higher clustering performance than directly
apply conventional clustering methods on raw data or features,
especially for the complex datasets.

Apart from the above methods, several generative model
based clustering methods [6]–[8], [21] have been proposed.
These methods jointly train the continuous latent variables and
the clustering assignments through a deep generative model,
where the models are able to achieve clustering in the latent
space, as well as generate meaningful samples for each class.
Some of them are based on GANs [5], e.g., GM-GAN [6]
assumed a mixture of Gaussians prior on the input noise of
GAN, while training a K-way multi-class classifier with the
samples generated from GAN model to do clustering.

Other methods are based on VAEs [4], which are the
most relevant works to our approach NVISA in this paper.
LTVAE [21] assumed the dependency among latent variables
(i.e., zs and ys) follow a tree structure model. It used a
latent tree model to perform structure learning to learn the
superstructure among latent variables, and iteratively improved
the structure while learning the representations of data in a
greedy manner. GMVAE [7], VaDE [8] and our method NVISA
can be regarded as different variants of Gaussian Mixture
VAE, but have significant differences. Both GMVAE and VaDE
applied mean-field approximation and trained their model with
SGVB [4], [11] and reparameterization trick. Specifically,
GMVAE used an additional noise input variable w to derive the
GMM prior, as well as an information theoretic regularization
term to help training. VaDE made an additional approximation,

i.e., assume q(y|x) = p(y|z) in order to train its model and
derive the cluster assignments. However, in NVISA, we point
out that directly using qφ(z|y,x) instead of using the mean-
field approximation can benefit the clustering task, and carefully
designed the corresponding model structure. In order to deal
with the non-reparameterized Categorical latent variable y,
NVISA uses VIMCO as the variational inference method.
Moreover, NVISA proposes the std annealing trick to help
the model learn better-separated embeddings, which benefits
the unsupervised clustering task. The qφ(y|x) term is directly
trained and derived by neural networks in NVISA, and then
the cluster assignment of each input x is obtained by directly
finding the y with the maximum qφ(y|x).

V. CONCLUSION

In this paper, we present the analysis and experiments
on three variational inference methods to train our proposed
NVISA model, targeted for the unsupervised clustering task.
We showed that directly using qφ(z|y,x), instead of using
the mean-field approximation, can benefit the unsupervised
clustering with Gaussian Mixture VAE. Moreover, we proposed
std annealing trick to stabilize the training process and help
form better embeddings in the latent space with different
variational inference methods.

NVISA overall outperforms all the baseline clustering
algorithms on the five benchmark datasets. Specifically, we
focus our discussions and the combinations of qφ(z|y,x), non-
reparameterized variational inference method VIMCO and std
annealing in the context of clustering problem, make NVISA
significantly outperforms the previous Gaussian Mixture VAE-
based clustering methods on all the five datasets, which
highlights the benefit of our modifications to the Gaussian
Mixture VAE. Additional experiments and analysis are taken
to show the effectiveness of each technique used in NVISA.

One direction of future works is to theoretically under-
standing why std annealing can help learn separated embed-
dings in the latent space. Another direction is to incorporate
more powerful priors in NVISA, rather than using simple
Gaussian mixtures (e.g., priors with complex structure like in
LTVAE [21], or mixture of complex distributions derived by
flow-based models [30]). This can enhance the representation
capability of our model and may potentially further improve the
clustering accuracy of NVISA on complex real-world datasets.

VI. ACKNOWLEDGEMENTS

This work has been supported by National Key R&D
Program of China 2019YFB1802504, and Beijing National
Research Center for Information Science and Technology.

REFERENCES

[1] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, vol. 1, no. 14. Oakland, CA,
USA, 1967, pp. 281–297.

[2] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[3] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in International conference on machine learning,
2016, pp. 478–487.

[4] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2nd
International Conference on Learning Representations (ICLR), 2014.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–2680.

[6] M. Ben-Yosef and D. Weinshall, “Gaussian mixture generative adversarial
networks for diverse datasets, and the unsupervised clustering of images,”
arXiv preprint arXiv:1808.10356, 2018.

[7] N. Dilokthanakul, P. A. Mediano et al., “Deep unsupervised cluster-
ing with gaussian mixture variational autoencoders,” arXiv preprint
arXiv:1611.02648, 2016.

[8] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep
embedding: an unsupervised and generative approach to clustering,” in
Proceedings of the 26th International Joint Conference on Artificial
Intelligence. AAAI Press, 2017, pp. 1965–1972.

[9] A. Mnih and D. Rezende, “Variational inference for monte carlo
objectives,” in ICML, 2016, pp. 2188–2196.

[10] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[11] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-
agation and approximate inference in deep generative models,” in
Proceedings of the 31st ICML. JMLR. org, 2014, pp. II–1278.

[12] A. Mnih and K. Gregor, “Neural variational inference and learning in
belief networks,” in ICML, 2014, pp. 1791–1799.

[13] Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance weighted
autoencoders,” arXiv preprint arXiv:1509.00519, 2015.

[14] C. Robert and G. Casella, Monte Carlo statistical methods. Springer
Science & Business Media, 1999.

[15] M. D. Hoffman and M. J. Johnson, “Elbo surgery: yet another way to
carve up the variational evidence lower bound,” in Workshop in Advances
in Approximate Bayesian Inference, NIPS, 2016.

[16] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[17] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[18] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in
unsupervised feature learning,” in Proceedings of the 14th international
conference on artificial intelligence and statistics, 2011, pp. 215–223.

[19] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” IEEE
transactions on pattern analysis and machine intelligence, vol. 30, no. 11,
pp. 1958–1970, 2008.

[20] W. Hu, T. Miyato, S. Tokui, E. Matsumoto, and M. Sugiyama, “Learning
discrete representations via information maximizing self-augmented
training,” in ICML, 2017, pp. 1558–1567.

[21] X. Li, Z. Chen, L. K. M. Poon, and N. L. Zhang, “Learning latent
superstructures in variational autoencoders for deep multidimensional
clustering,” in 7th ICLR, 2019.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. IEEE, 2009, pp. 248–255.

[24] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
The International Conference on Learning Representations (ICLR), 2015.

[26] L. Theis, A. van den Oord, and M. Bethge, “A note on the evalua-
tion of generative models,” in International Conference on Learning
Representations (ICLR 2016), 2016, pp. 1–10.

[27] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual concepts
with a constrained variational framework,” in International Conference
on Learning Representations, vol. 3, 2017.

[28] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[29] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-
means-friendly spaces: Simultaneous deep learning and clustering,” in
Proceedings of the 34th ICML. JMLR. org, 2017, pp. 3861–3870.

[30] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1x1
convolutions,” in Advances in Neural Information Processing Systems,
2018, pp. 10 236–10 245.

